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Abstract
Learning to execute a response to obtain a reward or to inhibit a response to avoid punishment is much easier than learning 
the reverse, which has been referred to as “Pavlovian” biases. Despite a growing body of research into similarities and dif-
ferences between active and observational learning, it is as yet unclear if Pavlovian learning biases are specific for active task 
performance, i.e., learning from feedback provided for one’s own actions, or if they persist also when learning by observing 
another person’s actions and subsequent outcomes. The present study, therefore, investigated the influence of action and 
outcome valence in active and observational feedback learning. Healthy adult volunteers completed a go/nogo task that 
decoupled outcome valence (win/loss) and action (execution/inhibition) either actively or by observing a virtual co-player’s 
responses and subsequent feedback. Moreover, in a more naturalistic follow-up experiment, pairs of subjects were tested 
with the same task, with one subject as active learner and the other as observational learner. The results revealed Pavlovian 
learning biases both in active and in observational learning, with learning of go responses facilitated in the context of reward 
obtainment, and learning of nogo responses facilitated in the context of loss avoidance. Although the neural correlates of 
active and observational feedback learning have been shown to differ to some extent, these findings suggest similar mecha-
nisms to underlie both types of learning with respect to the influence of Pavlovian biases. Moreover, performance levels 
and result patterns were similar in those observational learners who had observed a virtual co-player and those who had 
completed the task together with an active learner, suggesting that inclusion of a virtual co-player in a computerized task 
provides an effective manipulation of agency.

Introduction

The ability to adjust behavior based on action consequences 
is critical in dynamic or novel environments. For instance, 
the familiar phrase “once bitten, twice shy” refers to the 
reluctance to repeat an action that has previously led to 
an unpleasant experience. The Law of Effect put forward 
by Edward Thorndike states that responses which pro-
duce a satisfying or pleasing effect in a particular situa-
tion become more likely to occur again in that situation, 

and responses that produce a discomforting effect or fail to 
elicit pleasure become less likely to occur again in that situ-
ation (Thorndike, 1927). But not all contingencies between 
actions (or decisions) and their outcomes are learned 
equally! Guitart-Masip et al. (2011) devised a task that 
decoupled action and outcome valence, the orthogonalized 
go/nogo task. Adding to previous evidence for a particular 
coupling between reward and go responses and between pun-
ishment and no-go responses (Gray & MacNaughton, 2003), 
they found that in this task, learning to execute a response 
to obtain a reward (go to win) or to inhibit a response to 
avoid punishment (nogo to avoid losing) was easier than 
learning the reverse (Guitart-Masip, Huys et al., 2012a, b), 
which has been referred to as “Pavlovian” biases. Interest-
ingly, learning success depended on concerted recruitment 
of bilateral inferior frontal cortex in addition to midbrain 
regions belonging to the “reward system”, possibly indicat-
ing that brain regions implicated in response inhibition are 
needed to overcome Pavlovian control (Guitart-Masip, Huys 
et al., 2012a, b). In line with this, midfrontal theta power as 
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an electrophysiological index of prefrontal control has been 
directly linked to the ability to overcome Pavlovian biases 
(Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank, 2013)

More recent research has highlighted the importance of 
the specific context in which learning occurs. Millner et al. 
(2018) showed that an aversive context can facilitate action 
depending on whether the aversive stimulus is present or 
impending. In their study, Pavlovian processes interfered 
with feedback-based learning by promoting action to escape 
when an ongoing aversive auditory stimulus was present, 
and by promoting behavioral inhibition (i.e., withholding 
of responses) when the same aversive stimulus could be 
avoided.

Findings on the role of the neurotransmitters dopamine 
for learning and representing action–outcome contingencies 
further corroborate the notion that the factors action and out-
come valence interact. Results of a functional imaging study 
in subjects highly trained in the orthogonalized go/nogo task 
suggested that levodopa enhanced striatal and substantia 
nigra/ventral tegmental representations of actions associ-
ated with obtaining a reward, while neither representations 
of actions associated with avoiding punishment nor neural 
responses to reward as such were enhanced, thus underlin-
ing the role of dopamine for appetitively motivated behavior 
(Guitart-Masip, Chowdhury et al., 2012a, b).

For learning to occur it is not necessary to perform an 
action and bear the consequences oneself. In everyday life, 
we often observe other individuals’ actions and ensuing con-
sequences. For instance, we may watch someone operate a 
ticket machine at a train station and obtain a ticket before 
repeating the observed actions ourselves to buy our own 
tickets. On the other hand, if we observed that a ticket was 
not obtained or that the machine returned too little change 
due to a malfunction or inappropriate use, we would not be 
likely to act in the same way. This simple example illus-
trates that Thorndike’s Law of Effect applies to both active 
and observational learning. However, previous findings are 
somewhat inconsistent with regard to whether the two learn-
ing types are similarly effective, and it is as yet unclear if 
the above described Pavlovian learning biases also apply to 
observational learning. Bellebaum et al. (e.g., 2010, 2012) 
reported that learning from positive or negative feedback 
in a probabilistic learning task was similarly effective in an 
active and observational context. In contrast, Nicolle, Sym-
monds, and Dolan (2011) found observational learning to be 
associated with impaired accuracy when choosing between 
two low-value options, which was related to (subjective) 
over-estimation of the likelihood of winning in case of the 
lowest-value stimulus, i.e., an optimistic bias. Aside from 
learning, decision making has also been reported to differ 
between active subjects and observers. While both groups 
made risky choices beyond pure rationality, actors were 
riskier than observers (Fernandez-Duque & Wifall, 2007).

It has been proposed that active and observational learn-
ing may differ in attentional allocation during learning 
(Cohn et al., 1994), or in the nature of the involved knowl-
edge representation, with observational learning possibly 
requiring more explicit, declarative representations, and 
active learning relying more on procedural and non-declar-
ative representations (Kelly et al., 2003). Related to the lat-
ter, another key difference may lie within a reduced necessity 
to integrate own actions and outcome-related information 
in the observational context. This notion is supported by 
electrophysiological studies showing that variations of 
agency (here: own vs. observed choices) modulate aspects 
of action outcome processing that are related to the inte-
gration of action and outcome information. For example, 
the magnitude of the feedback-related negativity (FRN), an 
event-related potential component that has been related to 
outcome processing and coding of reward prediction errors 
(Gehring & Willoughby, 2002; Holroyd & Coles, 2002; 
Miltner et al., 1997; Nieuwenhuis et al., 2004), has been 
shown to be reduced in observational compared to active 
learning (Bellebaum et al., 2010; Bellebaum & Colosio, 
2014; Fukushima & Hiraki, 2009; Koban et al., 2012; Kobza 
et al., 2011; Yu & Zhou, 2006).

In general, previous research, therefore, points to at least 
partially distinct mechanisms underlying active and obser-
vational learning from feedback. This notion is corroborated 
by clinical studies in patients with Parkinson’s Disease (PD) 
in whom degeneration of dopaminergic neurons in the sub-
stantia nigra results in reduced dopaminergic input to the 
striatum (Kish et al., 1988). In the OFF medication stage, 
these patients exhibit a bias towards learning from negative 
feedback, likely due to facilitated disinhibition of striatal 
“nogo” neurons in response to negative feedback which then 
hampers action selection in the frontal cortex (Frank et al., 
2004; Frank, 2005). Interestingly, this bias was not found for 
learning by observation, suggesting that dopaminergic input 
to the striatum may play a less prominent role in observa-
tional than in active learning (Kobza et al., 2012). It has been 
proposed that the integration of information about (own) 
actions and their outcomes takes place in the dorsal striatum, 
where prediction errors have been shown to be more strongly 
represented in active than observational learning (Bellebaum 
et al., 2012) and in instrumental than in classical condition-
ing (O’Doherty et al., 2004; Valentin & O’Doherty, 2009).

If active and observational learning indeed differ with 
respect to striatal involvement and the coding of action–out-
come contingencies, it is conceivable that the asymmetric 
coupling of action and outcome valence is attenuated in 
observational learning. In line with this, recent findings sug-
gest that ventral striatal involvement in processing monetary 
feedback gradually decreases from own actions, a friend’s 
actions, to a stranger’s actions (Morelli et al., 2018). On the 
other hand, the dorsal striatum has been suggested to play a 
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key role in linking instrumental actions and outcomes during 
both active and observational learning (Cooper et al., 2012), 
which might entail a similar Pavlovian bias in active and 
observational learning.

The present study was aimed to clarify in a series of 
behavioral experiments with an orthogonalized go/nogo task 
if action and outcome valence also interact in observational 
outcome-based learning, and, if so, whether the Pavlovian 
bias is similarly pronounced in active and observational 
learning. In Experiment 1, one group of healthy adult sub-
jects completed the task as active learners, while participants 
in a second group were observational learners yoked to the 
active subjects. Importantly, the task was fully computer-
ized so that for observers, the active subject’s responses 
were presented on the computer screen and marked by a 
picture of a hand. Experiment 2 was conducted to see to 
what extent the observers’ performance depended on the 
response pattern of the observed subject and thus possibly 
reflected mere imitation of the responses they had watched. 
To this end, healthy adults observed a virtual active learner’s 
chance performance in the orthogonalized go/nogo task. 
Experiment 3, which entailed two groups of subjects again, 
active and observational learners, used a more naturalistic 
setting: pairs of subjects completed the task simultaneously, 
with one subject as active and the other as observational 
learner. In general, it was hypothesized that a Pavlovian bias 
would also occur in observational learning, with enhanced 
learning of go (vs. nogo) to win and nogo (vs. go) to avoid 
associations. Consistent with reduced striatal involvement in 
observational learning, however, the coupling of action and 
outcome valence was expected to be less strong in observa-
tional as compared to active learning.

Experiment 1

Subjects

Forty adult volunteers (33 females, 7 males) were recruited 
for participation at Heinrich-Heine-University Düsseldorf, 
Germany, by public advertisement and/or on social media. 
All had normal or corrected-to-normal vision. Mean age 
was 22.7 years (SD = 3.8; age range 18–37 years). None of 
the subjects had any history of neurological or psychiatric 
illnesses or was currently treated with neurotropic medica-
tion. All subjects were naïve to the study’s intent. IQ esti-
mates were obtained with a multiple choice vocabulary test 
(Mehrfachwahl-Wortschatz-Intelligenztest B, MWT-B Lehrl 
et al., 1995), a German test to measure crystallized intel-
ligence in which subjects are presented with 37 items in 
each of which one real German word has to be correctly 
identified among 4 non-words. Points are awarded for each 
correct answer, and total test scores are translated into IQ 

estimates by means of norm tables. IQ estimates obtained 
with the MWT-B have been shown to correlate reasonably 
well with global IQ scores (Lehrl et al., 1995). Mean IQ was 
113.57 (SD = 10.25) in the present sample. Written informed 
consent was obtained from all participants prior to participa-
tion. Subjects received course credit for participation. The 
study conforms to the Declaration of Helsinki and received 
ethical clearance by the Ethics Board of the Faculty of Math-
ematics and Natural Sciences at Heinrich-Heine-University 
Düsseldorf, Germany.

Experimental task

The experimental task was a variant of a go/nogo task spe-
cifically designed to decouple outcome valence and action 
(Guitart-Masip et al., 2011). In this game-like task, partici-
pants can choose between different behavioral options in 
order to receive or avoid losing points. Four combinations 
of action and outcome valence were balanced throughout 
the task: go to win points, go to avoid losing points, nogo to 
win points, and nogo to avoid losing points. Four abstract 
fractal images (Mathôt et al., 2015; obtained from https​://
githu​b.com/smath​ot/mater​ials_for_P0010​.5) were used as 
imperative stimuli and randomly assigned to these com-
binations at the beginning of each test session. Separate 
subsamples of N = 20 subjects completed the task as active 
learners or observational learners, with each observational 
learner yoked to one actively learning subject. In order to 
allow for a comparable assessment of learning performance 
in both active and observational learners, the task comprised 
not only four (active or observational) learning blocks with 
feedback, but also four test blocks without feedback which 
required active responding by both active and observer par-
ticipants. The types of blocks alternated, beginning with a 
learning block. Individual learning performance for both 
groups of participants was assessed based on test block per-
formance (see below).

Figure 1 illustrates the time course and sequence of stim-
ulus presentation in trials in the learning block. In the task 
version for active learners (Fig. 1a), each trial started with 
a fractal image which was presented for 1000 ms, followed 
by a fixation cross for 250–2000 ms. Afterwards, an open 
circle was presented on the left or right side of the screen 
for 1500 ms. Subjects were instructed to decide between 
responding and not responding, and in case of responding 
to press the response button (left or right STRG key on a 
standard USB keyboard) corresponding to the side the cir-
cle had been presented on (e.g., left button for circle on left 
side). Responses were required to occur within 1000 ms of 
stimulus onset. In case the participants chose not to respond 
they had to let the response period pass. If they accidentally 
pressed the wrong button on the opposite side of the circle, 
they were explicitly informed about this and the trial was 

https://github.com/smathot/materials_for_P0010.5
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aborted. Following presentation of the circle cue, a fixation 
cross was displayed for 750–1000 ms, before symbolic feed-
back about the choice (response/no response) was provided. 
An upward pointing arrow indicated that 10 points had been 
gained (win), a downward pointing arrow indicated that 10 
points had been lost (loss), and a horizontal bar indicated 
that no points had been gained or lost (draw). Throughout 
the task participants could learn which fractal stimulus was 
associated with which kind of outcome (win/draw/loss) 
for which kind of choice (go or nogo). For two stimuli, the 
“good” outcome was to avoid losing points (draw) and the 
alternative was a loss of points. For two others, a win was the 
favorable outcome and a draw the non-favorable outcome. 
For one stimulus per outcome combination, the good out-
come could be obtained with a go or a nogo choice, respec-
tively. Correct choices led to the more favorable outcome 
in 80% of the trials, while the non-favorable outcome was 
received in the other 20% of the trials.

Sequence and time course of stimulus presentation in 
the task version for observational learners were as similar 
to the active version as possible (Fig. 1b). As mentioned 
above, observational learners completed the task in a yoked 
design in which an observing subject was shown a previ-
ous “active” subject’s choices. Participants were explicitly 
informed about this and advised that the previous subject’s 
choices were illustrated on the screen by a hand that was 
displayed hovering over the circle if the previous subject had 
responded. All subjects were asked to pay close attention to 
the observed choices and ensuing feedback.

For both active and observational learners, each learn-
ing block was followed by a test block in which no feed-
back was provided for the subject’s decision to respond or 

not respond; otherwise test trials were identical to active 
participants’ learning trials. Importantly, both active and 
observational learners were explicitly instructed to decide 
between responding and not responding on each trial, and to 
optimize their performance based on the feedback that had 
been provided in the learning blocks.

In total, the task comprised four learning and four test 
blocks with 40 trials (10 per combination) each. Trial order 
was randomized within each block. Subjects could take short 
breaks between blocks and were informed about their cur-
rent score at the end of each block. In order to keep the 
subjects motivated and to prevent negative scores especially 
early on in the task, the starting score was set to 400 points. 
Observing subjects were instructed that they would receive 
both the points won by the active subject as displayed after 
each learning block, and the points they themselves won 
in the test trials. Of note, subjects were also informed that 
their final scores would not translate to a financial reward 
after testing because they would receive standardized course 
credit for participation. Task completion took approximately 
50 min. Stimulus presentation and timing was controlled by 
Presentation software (Version 17.2, Neurobehavioral Sys-
tems, Inc., Berkeley, CA, USA).

Procedure

Subjects were informed that the study investigated active 
and observational outcome-based learning. After written 
informed consent had been obtained, demographic informa-
tion was collected and participants completed the MWT-B. 
Subsequently, subjects were seated in front of a computer 
screen at a viewing distance of approximately 50 cm. Before 

Fig. 1   Schematic illustration of the sequence and time course of stimulus presentation in a single learning block trial in the active (a) and obser-
vational versions (b) of the go/nogo task. This task was specifically designed to decouple outcome valence (win/loss) and action (go/nogo)
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the experimental task was started, on-screen instructions and 
five learning and five test trials for practice were presented to 
the subjects. Of note, these practice trials contained colored 
geometric shapes instead of fractal images as imperative 
stimuli, as they were intended to familiarize the subjects 
with sequence and time course of stimulus presentation in 
the task without inducing learning just yet. The entire test 
session took approximately 60 min.

Statistical analyses

Mean IQ estimates were compared between active and 
observational learners by means of an independent samples 
t test. This was done to ensure that potential effects of learn-
ing condition could not be attributed to group differences 
in intellectual abilities. In order to check for outliers with 
regard to task performance, accuracy rates (i.e., the percent-
ages of correct responses in test blocks) according to action 
(go/nogo) and outcome valence (win/loss) were checked for 
subjects with scores that were more than 2 standard devia-
tions (SDs) below (or above) the sample mean in more than 
two conditions. No outliers were identified, so all data from 
all subject could be used for analysis.

Accuracy rates were then analyzed with a repeated-
measures analysis of variance (ANOVA) with the between-
subjects factor learning condition (active/observational) and 
the within-subjects factors block (1–4), action (go/nogo), 
and outcome valence (win/loss). Greenhouse–Geisser cor-
rection was applied when the assumption of sphericity was 
violated. Significant main effects of block were resolved by 
means of linear trend analysis. Interactions were resolved 
by subordinate ANOVAs or post-hoc paired-sample t tests 
where appropriate. Bonferroni correction was applied to 
account for multiple testing when necessary.

In case the ANOVA yielded no significant main effects 
or interactions of the factor learning condition, we planned 
to perform complementary Bayesian hypothesis testing in 
order to confirm that this factor did not improve the predic-
tive adequacy of the statistical model. To this end, a Bayes-
ian repeated-measures ANOVA with the between-subject 
factor learning condition (active/observational) and the 
within-subjects factors block (1–4), action (go/nogo), and 
outcome valence (win/loss) was performed using JASP 

(Version 0.9.2; JASP Team, 2017; Wagenmakers, Love 
et al., 2018a; Wagenmakers, Marsman et al., 2018b). In the 
Bayesian ANOVA, the null model was compared against 
all other statistical models, i.e., models containing the main 
effects for the factors learning condition, action, outcome 
valence, and block as well as models containing any com-
bination of these effects or respective interaction effects. 
Bayes factors (BFs) for each model were computed as the 
ratio of the predictive adequacy (i.e., the change from prior 
to posterior odds based on the present data) of each statisti-
cal model and the null model. Thus, the higher the BF, the 
more the evidence is in favor of the respective statistical 
model (Wagenmakers, Love et al., 2018a; Wagenmakers, 
Marsman et al., 2018b). BFs were classified as suggested by 
Lee and Wagenmakers (2014) (adapted from Jeffreys, 1998; 
see also (Wagenmakers, Marsman et al., 2018b), with values 
between 1 and 3 indicating anecdotal, values between 3 and 
10 indicating moderate, values between 10 and 30 indicating 
strong, values between 30 and 100 indicating very strong, 
and values larger than 100 indicating extreme evidence for 
a specific model against the null model. The priors were 
set to p(m) = 0.006 for all 167 conceivable models, thus 
reflecting a uniform distribution of prior model probabili-
ties. Since the complex 4 × 2 × 2 × 2 design of the present 
study resulted in a very large number of models, we applied 
Bayesian model averaging in order to quantify how much the 
data supported the inclusion of each effect. This procedure 
yields the change from prior to posterior odds (BFInclusion) 
for each effect, taking into account each candidate models’ 
conclusions (Wagenmakers, Marsman et al., 2018b).

Results

Mean IQ scores did not differ between active learn-
ers (mean = 112.29, SD = 7.94) and yoked observers 
(mean = 114.78, SD = 12.15; p = 0.482).

Standard repeated‑measures analysis of variance

Figure 2 shows mean performance accuracy according 
to action and outcome valence collapsed across blocks 
for active learners and yoked observers. The respective 
means according to block are provided as supplementary 

Fig. 2   Mean performance 
accuracy according to action 
and outcome valence for active 
learners, yoked observers, and 
subjects who observed chance 
performance
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material. The ANOVA yielded a significant main effect 
of block (F[2, 87] = 7.838, p < 0.001, ƞp

2 = 0.171). Lin-
ear trend analysis revealed that accuracy rates increased 
linearly across blocks (F[1, 38] = 11.466, p = 0.002, 
ƞp

2 = 0.232). The main effect of action was also signifi-
cant (F[1, 38] = 26.172, p = 0.002, ƞp

2 = 0.232), with better 
performance on go (mean = 76.31% ± 2.69) compared to 
nogo trials (mean = 52.06% ± 3.89). These effects were 
further qualified by a significant block by action inter-
action (F[2, 93] = 3.052, p = 0.042, ƞp

2 = 0.074). To resolve 
this interaction, separate univariate ANOVAs with the 
within-subjects factor block (1–4) were performed for go 
and nogo trials. For go trials, the main effect of block was 
significant (F[3, 117] = 2.841, p = 0.042, ƞp

2 = 0.067) and did 
not reflect a linear (p = 0.221) but a cubic trend in accuracy 
rates across blocks (F[1, 39] = 7.185, p = 0.011, ƞp

2 = 0.156). 
For nogo trials, the main effect of block was also signifi-
cant (F[2, 91] = 6.797, p < 0.001, ƞp

2 = 0.148) and reflected a 
linear increase in accuracy across blocks (F[1, 39] = 11.683, 
p = 0.001, ƞp

2 = 0.231).
Furthermore, the action by outcome valence inter-

action was significant (F[1, 38] = 37.396, p < 0.001, 
ƞp

2 = 0.496). Post-hoc paired-sample t tests revealed 
that performance accuracy was higher for go to win 
(mean = 88.81% ± 2.60) than for go to avoid losing 
(mean = 63.8% ± 4.01; t39 = 6.012, p < 0.001), and for nogo 
to avoid losing (mean = 59.88% ± 4.88) than for nogo to 
win (mean = 44.25% ± 4.59; t39 = -3.051, p = 0.004), thus 
confirming the asymmetric coupling of action and out-
come valence.

Last, the block by outcome valence by learning condi-
tion interaction was significant (F[2,91] = 5.450, p = 0.003, 
ƞp

2 = 0.125). To resolve this interaction subordinate ANO-
VAs with the within-subjects factors block (1–4) and 
outcome valence (win/loss) were performed separately 
for active and observational learners. For active learn-
ers, the main effect of block (F[2,39] = 3.024, p = 0.059, 
ƞp

2 = 0.137 and the block by outcome valence interaction 
(F[3, 57] = 2.597, p = 0.061, ƞp

2 = 0.120) merely approached 
significance. For yoked observational learners, the analysis 
yielded a significant main effect of block (F[3,57] = 5.684, 
p = 0.002, ƞp

2 = 0.230), reflecting a linear increase in perfor-
mance (F[1,39] = 7.176, p = 0.015, ƞp

2 = 0.274), and a signifi-
cant block by outcome valence interaction (F[3,57] = 2.869, 
p = 0.044, ƞp

2 = 0.131). In order to resolve the interaction, 
separate univariate ANOVAs were performed for win and 
loss trials. The main effect of block was significant for win 
trials (F[2,43] = 7.460, p = 0.001, ƞp

2 = 0.282), reflecting a 
linear increase in accuracy across blocks (F[1,19] = 14.037, 
p < 0.001, ƞp

2 = 0.425), but not for loss trials (p = 0.127). 
These results indicate that a linear increase in accuracy over 
the course of the task was more pronounced in observational 
learners, particularly for win trials.

All other effects failed to reach significance (all 
p > 0.163).

Bayesian repeated‑measures analysis of variance

Table 1 shows the results of the Bayesian analysis of effects. 
Note that this analysis averaged across all models that con-
tained a specific factor (Bayesian model averaging): while 

Table 1   Results of the analysis 
of effects for data from active 
learners and yoked observers 
(Experiment 1)

This analysis averaged across all models containing a specific factor. The prior inclusion probability for a 
specific factor (P(incl)) is the summed prior probability of all models that include this factor. The posterior 
inclusion probability of a specific factor (P(incl|data)) is the summed posterior probability of all models 
that include this factor. The change from prior to posterior inclusion odds is provided as BFInclusion

Effects P(incl) P(incl|data) BFInclusion

Block 0.886 0.829 0.622
Action 0.886 1.000 > 10,000
Outcome valence 0.886 1.000 > 10,000
Learning condition 0.886 0.695 0.293
Block * action 0.503 0.120 0.135
Block * outcome valence 0.503 0.012 0.012
Block * learning condition 0.503 0.020 0.020
Action * outcome valence 0.503 1.000 > 10,000
Action * learning condition 0.503 0.467 0.864
Outcome valence * learning condition 0.503 0.245 0.321
Block * action * outcome valence 0.120 < 0.001 < 0.001
Block * action * learning condition 0.120 < 0.001 < 0.001
Block * outcome valence * learning condition 0.120 < 0.001 < 0.001
Action * outcome valence * learning condition 0.120 0.029 0.220
Block * action * outcome valence * learning condition 0.006 < 0.001 < 0.001
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the prior inclusion probability for a specific factor (P(incl)) 
is the summed prior probability of all models that include 
this factor, the posterior inclusion probability of a specific 
factor (P(incl|data)) is the summed posterior probability of 
all models that include this factor. The change from prior 
to posterior inclusion odds is expressed as BFInclusion. The 
results show that the data strongly supported the inclusion of 
the main effects for the factors action and outcome valence, 
as well as the action by outcome valence interaction. Effects 
involving the factor learning condition received very weak 
support (all BFsInclusion < 1), as did all remaining effects.

Discussion

In Experiment 1, individual subjects performed the orthogo-
nalized go/nogo task either as active learners or based on 
observing a previous subject’s responses and subsequent 
feedback (yoked design) on the computer screen. In accord-
ance with previous findings (Guitart-Masip, Economides 
et al., 2014a, b), results revealed a linear increase in per-
formance irrespective of learning condition, indicating that 
active learners and observers were able to learn the stimulus-
(non)response-outcome associations. Moreover, learning 
performance was generally better for go relative to nogo 
trials, which has also been observed in different variants of 
go/nogo tasks, including the orthogonalized version (Gui-
tart-Masip et al., 2011; Guitart-Masip, Economides et al., 
2014a, b; Ocklenburg et al., 2017), and may reflect gen-
erally increased task difficulty when response inhibition is 
required or could result from a general propensity to respond 
in experimental tasks.

Crucially, prior studies (Guitart-Masip et al., 2011; Gui-
tart-Masip, Economides et al., 2014a, b) have yielded robust 
evidence for an asymmetric coupling of action and outcome 
valence in feedback-based learning. Learning to execute 
a response to obtain a reward (go to win) or to inhibit a 
response to avoid punishment (nogo to avoid losing) was 
easier than learning to inhibit a response to obtain a reward 
(nogo to win) or learning to execute a response to avoid 
losing (go to avoid) (Guitart-Masip, Duzel et al., 2014a, 
b). This result pattern was interpreted to reflect a conflict 
between Pavlovian control of behavior, which promotes 
active approach when rewards are anticipated, and inhibi-
tion or withdrawal when punishment is anticipated (Gray 
& MacNaughton, 2003), and the more flexible instrumen-
tal control that is driven by outcome valence. The present 
results replicate these findings.

Learning condition did not affect overall performance, 
which is consistent with findings from studies that applied 
other probabilistic learning tasks (Bellebaum et al., 2012; 
Bellebaum & Colosio, 2014; Rak et al., 2013). Importantly, 
the interaction of action and outcome valence was found 
to be comparable in active and observational learning, 

indicating that Pavlovian biases affected both learning 
types alike. Learning condition did, however, interact with 
outcome valence as a function of block: the linear increase 
in performance accuracy was more pronounced in observa-
tional learners, and particularly in the context of wins. How-
ever, Bayesian analysis of effects confirmed inclusion of the 
main effects for the factors action and outcome valence, and 
of the action by outcome valence interaction in the model, 
while providing very weak support for inclusion of the fac-
tors learning condition or block.

Taken together, the results from Experiment 1 appear to 
suggest that active and observational learning are similarly 
affected by Pavlovian biases, thus adding to evidence for 
similarities between processing of personal and vicarious 
rewards (Morelli et al., 2015). However, the possibility 
that observers merely imitated the responses of the active 
subjects rather than actually learned the stimulus-(non)
response-outcome contingencies cannot be excluded. There-
fore, a follow-up experiment (Experiment 2) was performed 
in which observational learners were presented with chance 
performance in order to test whether (a) their performance 
accuracy would still increase over the course of the task, 
thus reflecting true observational learning, and (b) a Pavlo-
vian bias would still persist when chance performance was 
observed.

Experiment 2

Subjects

Twenty healthy adults (12 females, 8 males) were recruited 
by public advertisement at Heinrich-Heine-University Düs-
seldorf, Germany, or on social media. All had normal or 
corrected-to-normal vision, were naïve to the study’s intent, 
did not currently take any neurotropic medication, and had 
no history of neurological or psychiatric illnesses. Mean 
age was 22.7 years (SD = 2.0; age range 19 to 27 years). 
Mean IQ as determined with the MWT-B (Lehrl et al., 1995) 
was 112.90 (SD = 13.22) in this sample and did not differ 
from the sample tested in Experiment 1 (p = 0.834). Written 
informed consent was obtained from all participants prior to 
participation. As subjects were Psychology students, course 
credit was assigned for participation. The study conforms 
to the Declaration of Helsinki and received ethical clear-
ance by the Ethics Board of the Faculty of Mathematics and 
Natural Sciences at Heinrich-Heine-University Düsseldorf, 
Germany.

Experimental task and procedure

The experimental task and task instructions were identical 
to the ones used for observational learners in Experiment 
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1. However, the observational learners in the present sam-
ple actually observed one of four pseudorandomized trial 
sequences, all of which entailed chance performance (i.e., 
for each of the four combinations of action and outcome 
valence go to win, go to avoid, nogo to win, nogo to avoid, 
the same number of correct and incorrect responses were 
shown). Each of the four fractal images was assigned to each 
of the conditions in one of these sequences in order to pre-
vent stimulus-specific learning effects. Testing procedures 
were otherwise identical to Experiment 1. Importantly, feed-
back probability for each decision was unchanged so that 
participants could still learn which choices led to what type 
of feedback.

Statistical analyses

As done for Experiment 1, accuracy rates (i.e., the per-
centages of correct responses in test blocks) according to 
action (go/nogo) and outcome valence (win/loss) were first 
checked for outliers. There were no subjects with scores 
that deviated from the sample means by more than 2 SDs 
in more than two conditions. Hence, data from all subject 
were used for analysis. Accuracy rates were analyzed with a 
repeated-measures ANOVA with the within-subjects factors 
block (1–4), action (go/nogo), and outcome valence (win/
loss). Greenhouse–Geisser correction was applied when the 
assumption of sphericity was violated. Linear trend analysis 
was performed in order to resolve the main effect of block. 
Interactions were resolved by post-hoc paired-sample t tests 
where appropriate. Bonferroni correction was applied to 
account for multiple testing when necessary. In addition, 
Bayesian hypothesis testing was used to determine if the 
learning condition had an impact on performance. To this 
end, data from the observational learners of Experiment 2 
were analyzed together with data from active learners in 
Experiment 1, and a Bayesian repeated-measures ANOVA 
with the between-subjects factor learning condition (active/
observational) and the within-subjects factors block (1–4), 
action (go/nogo), and outcome valence (win/loss) was per-
formed as described above (see Experiment 1).

Results

Standard repeated‑measures analysis of variance 
(observational learners only)

Mean performance accuracy according action and out-
come valence collapsed across blocks for learners observ-
ing chance performance is provided in Fig. 2. Respective 
descriptives according to the block factor are provided in 
the supplement. The ANOVA yielded a significant main 
effect of block (F[3,57] = 4.020, p = 0.012, ƞp

2 = 0.175), 
reflecting a linear increase in performance over the course 

of the task (F[1,19] = 13.484, p = 0.002, ƞp
2 = 0.415). Fur-

thermore, the action by outcome valence interaction was 
significant (F[1,19] = 16.870, p = 0.001, ƞp

2 = 0.470). Post-
hoc paired-sample t tests showed that performance accu-
racy was higher for go to win (mean = 87.00% ± 3.53) than 
for go to avoid losing (mean = 62.00% ± 4.99; t39 = 4.660, 
p < 0.001). There was no difference between nogo to 
avoid losing (mean = 69.75% ± 7.12) and nogo to win 
(mean = 56.13% ± 7.01; p = 0.134). The main effect of action 
merely approached significance (F[1,19] = 3.654, p = 0.071, 
ƞp

2 = 0.161), and all other effects were non-significant (all 
p > 0.157).

Bayesian repeated‑measures analysis of variance (active 
and observational learners)

Table 2 shows the results of the analysis of effects for data 
from subjects who had observed chance performance and 
active learners from Experiment 1. Averaged across all can-
didate models, the data strongly supported the inclusion of 
the main effects for the factors action and outcome valence 
and the action by outcome valence interaction, while effects 
involving the factor learning condition received very weak 
support (all BFsInclusion < 1), as did all remaining effects. The 
overall result pattern was hence very consistent with results 
Experiment 1.

Discussion

The present data clearly show that observational learners did 
not merely imitate the responses they had seen, as their per-
formance accuracy increased linearly over the course of the 
task and their performance levels were generally comparable 
to those in active learners and yoked observers in Experi-
ment 1. The interaction between action and outcome valence 
was also observed, with better performance for go to win 
relative to go to avoid, while the difference between nogo to 
avoid and nogo to win was not significant. The latter result 
is in contrast to our findings in Experiment 1. It has to be 
noted, however, that results of previous studies with active 
learning are also inconsistent in this respect, because this 
difference has been found to be significant in one (Guitart-
Masip, Economides et al., 2014a, b) and non-significant in 
another study (Guitart-Masip et al., 2011). It appears that 
Pavlovian interference with instrumental control may be 
more pronounced in the context of response execution than 
response inhibition, and our findings illustrate that this effect 
is not modulated by learning condition.

Bayesian analysis yielded result patterns identical to 
Experiment 1: The inclusion of the main effects for the 
factors action and outcome valence, and of the action by 
outcome interaction was very strongly supported, while all 
other effects received very weak support (all BFsInclusion < 1).
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While Experiments 1 and 2 thus provide consistent evi-
dence in favor of a Pavlovian bias in observational learn-
ing which is comparable to the one in active learning, both 
experiments did not comprise a manipulation check to deter-
mine if the observational learners had actually believed to 
be watching an active subject’s performance. Since there is 
a growing body of evidence that social contextual factors 
such as the presence of an uninvolved observer (Voegler 
et al., 2018), the representation of the task set of another 
individual during task sharing (Peterburs et al., 2019), or the 
degree of familiarity between subjects (Morelli et al., 2018) 
affect performance monitoring and reward processing for 
own and observed behavior, we decided to run a follow-up 
experiment that involved simultaneous testing of pairs of 
subjects, with one individual as the active and the other as 
the observational learner.

Experiment 3

Subjects

Forty-eight adult volunteers (27 females, 21 males) were 
recruited for participation at Heinrich-Heine-University 
Düsseldorf, Germany, by public advertisement and/or 
on social media. All had normal or corrected-to-normal 
vision and were naïve to the study’s intent. Mean age was 
22.4 years (SD = 2.8; age range 18–30 years). None of the 
subjects had any history of neurological or psychiatric ill-
nesses or was currently treated with neurotropic medica-
tion. Mean IQ as determined with the MWT-B (Lehrl et al., 

1995) was 110.15 (SD = 10.21). Written informed consent 
was obtained from all participants prior to the experiment. 
Subjects received course credit for participation. The study 
conforms to the Declaration of Helsinki and received ethical 
clearance by the Ethics Board of the Faculty of Mathematics 
and Natural Sciences at Heinrich-Heine-University Düssel-
dorf, Germany.

Experimental task

The experimental task was identical to the one used for 
active learners in Experiment 1. However, two subjects per-
formed the task simultaneously, one as the active learner, 
and the other one as the observational learner. During learn-
ing blocks, the two subjects were seated next to each other, 
with the observing subject on the right. Responses by the 
active subject were recorded with an RB-844 USB response 
pad (Cedrus Corporation, San Pedro, CA, USA) to ensure 
that observers could easily identify button presses or the lack 
thereof. In this way the observer could learn by observing 
the actions and ensuing outcomes of the active person. At 
the end of each learning block, the active learner engaged 
in a block of test trials without feedback, but without being 
observed by the observer participant. The observing subject, 
instead, turned to the right by 90° to complete his/her own 
block of test trials on a separate computer with an identical 
RB-844 USB response pad. The computer screen was visu-
ally shielded from the active subject’s screen by means of 
a divider in order to prevent interference. After completion 
of the test block, the observing subjects moved back to the 
left to resume their position next to the active subject for the 

Table 2   Results of the analysis 
of effects for data from subjects 
who had observed chance 
performance and active learners 
from Experiment 1

The prior inclusion probability for a specific factor (P(incl)) is the summed prior probability of all models 
that include this factor. The posterior inclusion probability of a specific factor (P(incl|data)) is the summed 
posterior probability of all models that include this factor. The change from prior to posterior inclusion 
odds is provided as BFInclusion

Effects P(incl) P(incl|data) BF Inclusion

Block 0.886 0.526 0.143
Action 0.886 1.000 > 10,000
Outcome valence 0.886 1.000 > 10,000
Learning condition 0.886 0.254 0.044
Block * action 0.503 0.047 0.048
Block * outcome valence 0.503 0.082 0.089
Block * learning condition 0.503 0.002 0.002
Action * outcome valence 0.503 1.000 > 10,000
Action * learning condition 0.503 0.074 0.079
Outcome valence * learning condition 0.503 0.047 0.049
Block * action * outcome valence 0.120 < 0.001 0.002
Block * action * learning condition 0.120 < 0.001 < 0.001
Block * outcome valence * learning condition 0.120 < 0.001 < 0.001
Action * outcome valence * learning condition 0.120 < 0.001 0.019
Block * action * outcome valence * learning condition 0.006 < 0.001 < 0.001
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next learning block. In this way, learning could be assessed 
in both participants independently.

Subjects were informed that observers would receive both 
the points won by the active subject in the learning blocks 
and the points they themselves won in the test blocks, and 
that, accordingly, active subjects would receive the points 
they had won in the learning and the test blocks.

Procedure

Subjects were informed that the study investigated active 
and observational outcome-based learning and that they, 
therefore, would be assigned the role of an active or an 
observational learner. After written informed consent had 
been obtained, demographic information was collected and 
subjects were positioned in front of a computer screen at a 
viewing distance of approximately 50 cm. Before the task 
was started, on-screen instructions were presented, and five 
learning and five test trials were completed in order to famil-
iarize subjects with the task. Note that observing subjects 
watched active subjects during practice trials for learning 
blocks and actively completed practice trials for test blocks 
on the second computer. After finishing with the experimen-
tal task, participants completed the MWT-B. The entire test 
session took approximately 60 min.

Statistical analyses

Statistical analyses were performed in accordance with 
the procedures described for Experiment 1. Outlier analy-
sis did not identify any subjects whose accuracy scores 
deviated from the sample means by more than 2 SDs in 
more than two conditions.

Results

Mean IQ scores did not differ (p = 0.072) between sub-
jects serving as active (mean = 112.79, SD = 11.40) and 
observational learners (mean = 107.50, SD = 8.27).

Standard repeated‑measures analysis of variance

Figure 3 provides mean performance accuracy accord-
ing to action and outcome valence for active and 
observational learners. Respective descriptives that 
include the block factor are provided in the supple-
ment. The ANOVA yielded a significant main effect of 
block (F[2, 177] = 12.722, p < 0.001, ƞp

2 = 0.217). Lin-
ear trend analysis showed that accuracy rates increased 
linearly across blocks (F[1, 46] = 23.060, p = 0.002, 
ƞp

2 = 0.334). The main effect of action was also signifi-
cant (F[1, 46] = 39.824, p < 0.001, ƞp

2 = 0.464), with better 
performance on go (mean = 80.23% ± 2.55) compared to 
nogo trials (mean = 58.15% ± 3.39). The block by action 
interaction approached significance (F[2, 104] = 2.750, 
p = 0.062, ƞp

2 = 0.056). These effects were further quali-
fied by a significant block by action by learning condi-
tion interaction (F[3, 138] = 4.365, p = 0.006, ƞp

2 = 0.087). 
In order to resolve this effect, subordinate ANOVAs with 
block and action as within-subjects factors were calcu-
lated separately for active and observational learners. 
The ANOVA for active learners yielded significant main 
effects of block (F[2, 46] = 5.900, p = 0.005, ƞp

2 = 0.204), 
indicating a linear increase in performance throughout 
the task (F[1, 23] = 10.278, p = 0.004, ƞp

2 = 0.309), and 
action (F[1, 23] = 13.038, p = 0.001, ƞp

2 = 0.362), reflect-
ing better performance in go (mean = 76.46% ± 4.18) 
relative to nogo trials (mean = 55.05% ± 5.56). The block 
by action interaction merely approached significance 
(F[2, 49] = 2.934, p = 0.056, ƞp

2 = 0.113). For observational 
learners, analysis also revealed significant main effects 
of block (F[3, 69] = 6.922, p < 0.001, ƞp

2 = 0.231), reflect-
ing a linear increase in accuracy over the course of the 
task (F[1, 23] = 12.837, p = 0.002, ƞp

2 = 0.358), and action 
(F[1, 23] = 37.441, p < 0.001, ƞp

2 = 0.619), indicating bet-
ter go (mean = 84.01% ± 2.91) than nogo performance 
(mean = 61.25% ± 3.87). In addition, the block by action 
interaction was significant (F[2, 51] = 3.835, p = 0.024, 
ƞp

2 = 0.143). In order to resolve this interaction, linear 
trend analyses were performed to clarify the effect of block 
separately for go and nogo trials. A significant main effect 
of block (F[2, 54] = 6.781, p = 0.001, ƞp

2 = 0.228), reflecting 

Fig. 3   Mean performance 
accuracy according to action 
and outcome valence for active 
learners and observers who 
completed the task simultane-
ously (Experiment 3)
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a linear performance increase (F[1, 23] = 13.481, p = 0.001, 
ƞp

2 = 0.370) was only found for nogo but not for go trials 
(p = 0.730).

The main effect of outcome valence was also signifi-
cant (F[1, 46] = 4.483, p = 0.040, ƞp

2 = 0.089), indicating 
that accuracy was higher for loss (mean = 72.40% ± 2.60) 
than for win trials (mean = 65.99% ± 3.11). The block 
by outcome valence interaction approached significance 
(F[3, 138] = 2.602, p = 0.055, ƞp

2 = 0.054). Crucially, 
the action by outcome valence interaction was signifi-
cant (F[1, 46] = 28.305, p < 0.001, ƞp

2 = 0.381). Post-hoc 
paired-sample t tests revealed that performance accu-
racy was higher for go to win (mean = 88.33% ± 2.92) 
than for go to avoid losing (mean = 72.14% ± 3.95; 
t47 = 3.482, p = 0.001), and for nogo to avoid los-
ing (mean = 72.66% ± 3.38) than for nogo to win 
(mean = 43.65% ± 5.25; t47 = -5.118, p < 0.001), con-
firming the asymmetric coupling of action and outcome 
valence.

Bayesian repeated‑measures analysis of variance

Table 3 shows the results of the analysis of effects for 
data from simultaneously performing subjects. Again, 
the results show that, averaged across all candidate mod-
els, the data strongly supported the inclusion of the main 
effects for the factors action and outcome valence, as 
well as the action by outcome valence interaction. Effects 
involving the factor learning condition received very weak 

support (all BFsInclusion < 1), as did all remaining effects. 
The overall result pattern was hence very consistent with 
the one obtained in Experiment 1.

Discussion

In Experiment 3, pairs of subjects were tested, with one 
individual as active and the other as observational learner, 
in order to create a more naturalistic setting. Results con-
firmed a significant main effect of action (better go than 
nogo performance) and the significant action by outcome 
valence interaction (better performance for go to win rela-
tive to go to avoid losing and for nogo to avoid losing 
relative to nogo to win). Comparing the result pattern to 
Experiment 1, effects of simultaneous testing of two sub-
jects were rather subtle: in active subjects of simultane-
ously tested pairs, a gradual performance increase over the 
course of the task was found as well as overall better go 
than nogo performance. In observing subjects, aside from 
generally also better go than nogo performance, a linear 
increase in accuracy across blocks was only found for nogo 
but not go trials. This could be explained in terms of a 
ceiling effect, given generally high performance accuracy 
in go trials in observational learners, particularly in the go 
to win condition (see Fig. 3).

Bayesian analysis yielded comparable results to Experi-
ment 1. Substantial predictive power was confirmed only 
for the main effects of the factors action and outcome 
valence, and their interaction.

Table 3   Results of the analysis 
of effects for data from 
simultaneously performing 
subjects (Experiment 3)

The prior inclusion probability for a specific factor (P(incl)) is the summed prior probability of all models 
that include this factor. The posterior inclusion probability of a specific factor (P(incl|data)) is the summed 
posterior probability of all models that include this factor. The change from prior to posterior inclusion 
odds is provided as BFInclusion

Effects P(incl) P(incl|data) BF Inclusion

Block 0.886 0.944 2.176
Action 0.886 1.000 > 10,000
Outcome valence 0.886 1.000 > 10,000
Learning condition 0.886 0.383 0.080
Block * action 0.503 0.063 0.066
Block * outcome valence 0.503 0.032 0.033
Block * learning condition 0.503 0.006 0.006
Action * outcome valence 0.503 1.000 > 10,000
Action * learning condition 0.503 0.043 0.044
Outcome valence * learning condition 0.503 0.083 0.089
Block * action * outcome valence 0.120 < 0.001 < 0.001
Block * action * learning condition 0.120 < 0.001 < 0.001
Block * outcome valence * learning condition 0.120 < 0.001 < 0.001
Action * outcome valence * learning condition 0.120 0.003 0.019
Block * action * outcome valence * learning condition 0.006 < 0.001 < 0.001
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General discussion

The present study investigated the influence of action 
and outcome valence in active and observational feed-
back learning in order to determine if Pavlovian learning 
biases are specific to active task performance, or if they 
persist also under conditions of observational learning. 
In a series of three experiments, subjects completed an 
orthogonalized go/nogo task in which action (response 
execution or inhibition) and outcome valence (win or loss) 
were decoupled. In line with previous findings (Guitart-
Masip, Huys et al., 2012a, b) and the a priori hypothesis, 
learning performance was modulated by both action and 
outcome valence as well as by the interaction of these fac-
tors. Importantly, and somewhat against our predictions, 
results revealed comparable Pavlovian learning biases 
in active and observational learning, with learning of go 
responses facilitated in the context of reward obtainment, 
and learning of nogo responses facilitated in the context 
of loss avoidance.

Pavlovian learning biases arise from a conflict between 
instrumental control of behavior, in which the behavioral 
output is entirely driven by outcome valence, and Pavlo-
vian control, which favors approach or response execution 
in the prospect of reward and avoidance or response inhibi-
tion in the prospect of punishment (Guitart-Masip, Huys 
et al., 2012a, b). It has been suggested that Pavlovian con-
trol may represent evolutionary “hard-wired knowledge of 
good behavioral responses” that has proven advantageous 
despite its deleterious effect on learning in unusual envi-
ronments (Guitart-Masip, Duzel et al., 2014a, b; Rangel 
et al., 2008). Along these lines, it seems plausible that Pav-
lovian biases should also be present in observational learn-
ing. On the other hand, previous research has provided 
evidence for reduced striatal recruitment for observational 
relative to active learning (e.g., Bellebaum et al., 2012; 
Kobza et al., 2012) and for processing of own relative to 
co-experienced/observed rewards (Morelli et al., 2018), 
likely reflecting reduced integration of outcome- and 
action-related information. This, in turn, could be associ-
ated with a reduction in Pavlovian learning biases. The 
present results clearly show that Pavlovian learning biases 
affect observational and active learning in a similar way, 
thus supporting the notion that these types of biases may 
be rather robust and deeply rooted. Experiment 2, in which 
participants observed chance performance and could thus 
learn similarly from correct and incorrect choices, clari-
fied furthermore that the Pavlovian biases in observa-
tional learning do not reflect mere imitation of observed 
behavior, corroborating our previous finding that imitation 
plays only a minor role in observational learning (Belle-
baum et al., 2016). The present study adds to evidence 

for similarities between active and observational learning 
and outcome processing that may be based on common 
mechanisms and shared neural substrates (Cooper et al., 
2012; Morelli et al., 2015). Unfortunately, with its purely 
behavioral approach, the present study cannot directly 
inform about the underlying neural processes, but future 
imaging or electrophysiological studies might shed some 
light in this regard.

It has been suggested that active and observational learn-
ing may differ with regard to the type of knowledge represen-
tations they require (Kelly et al., 2003). Unfortunately, the 
present study is not suited to clarify whether observational 
learning may involve more explicit, declarative representa-
tions. Nicolle et al. (2011) asked subjects to provide explicit 
(subjective) estimates of the likelihood for winning for each 
of the stimuli in the learning task, a procedure that could be 
adopted in future studies to measure participants’ explicit 
knowledge about stimulus–action–outcome contingencies.

Interestingly, the present findings showed very similar 
result patterns for observation of virtual subjects and real 
subjects, indicating that an efficient observation manipula-
tion does not require simultaneously performing subjects. 
While previous work has indicated that the degree of famili-
arity with the observed person (Morelli et al., 2018) and 
other inter-individual factors such as state or trait empathy 
(Thoma & Bellebaum, 2012) may modulate neural responses 
to observed rewards, these aspects were not manipulated in 
the present study. However, if Pavlovian biases are indeed 
rather hard-wired, it could be speculated that the asymmet-
ric coupling between action and outcome valence might not 
be affected by these factors in observational learning. This 
could be addressed in future studies.

Another limitation of the present study relates to the fact 
that subjects did not receive performance-dependent pay-
out. It could be speculated that receiving actual money in a 
performance-dependent manner might have increased moti-
vation and thereby affected learning rates. Along these lines, 
future investigations should determine whether Pavlovian 
biases can be overcome more easily when subjects expect 
performance-dependent payout.

Acknowledgements  Open Access funding provided by Projekt DEAL. 
We would like to thank Annika Schäfer, Benjamin Dickmann, Joris van 
Bohemen, Antonia Hubbe, Nils Brandenburg, and Susanne Mauers-
berger for their help with data collection.

Compliance with ethical standards 

Conflict of interest  Author J.P. declares that she has no conflict of in-
terest. Author A.F. declares that she has no conflict of interest. Author 
C.B. declares that he has no conflict of interest.

Ethical approval  All procedures performed in this study were in 
accordance with the ethical standards of the institutional and/or 



1565Psychological Research (2021) 85:1553–1566	

1 3

national research committee and with the 1964 Helsinki declaration 
and its later amendments or comparable ethical standards.

Informed consent  Informed consent was obtained from all individual 
participants included in the present study.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Bellebaum, C., Jokisch, D., Gizewski, E. R., Forsting, M., & Daum, I. 
(2012). The neural coding of expected and unexpected monetary 
performance outcomes: Dissociations between active and obser-
vational learning. Behavioural Brain Research, 227(1), 241–251. 
https​://doi.org/10.1016/j.bbr.2011.10.042.

Bellebaum, C., Kobza, S., Ferrea, S., Schnitzler, A., Pollok, B., & 
Südmeyer, M. (2016). Strategies in probabilistic feedback learning 
in Parkinson patients OFF medication. Neuroscience, 320, 8–18. 
https​://doi.org/10.1016/j.neuro​scien​ce.2016.01.060.

Bellebaum, C., & Colosio, M. (2014). From feedback- to response-
based performance monitoring in active and observational learn-
ing. Journal of Cognitive Neuroscience, 26(9), 2111–2127. https​
://doi.org/10.1162/jocn_a_00612​.

Bellebaum, C., Kobza, S., Thiele, S., & Daum, I. (2010). It was not MY 
fault: Event-related brain potentials in active and observational 
learning from feedback. Cerebral Cortex, 20(12), 2874–2883. 
https​://doi.org/10.1093/cerco​r/bhq03​8.

Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, 
M. J. (2013). Frontal theta overrides Pavlovian learning biases. 
Journal of Neuroscience. https​://doi.org/10.1523/JNEUR​
OSCI.5754-12.2013.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization 
with active learning. Machine Learning, 15(2), 201–221. https​://
doi.org/10.1007/BF009​93277​.

Cooper, J. C., Dunne, S., Furey, T., & O’Doherty, J. P. (2012). Human 
dorsal striatum encodes prediction errors during observational 
learning of instrumental actions. Journal of Cognitive Neurosci-
ence, 24(1), 106–118. https​://doi.org/10.1162/jocn_a_00114​.

Fernandez-Duque, D., & Wifall, T. (2007). Actor/observer asymmetry 
in risky decision making. Judgment and Decision Making, 2(1), 
1–8.

Frank, M. J. (2005). Dynamic dopamine modulation in the basal 
ganglia: A neurocomputational account of cognitive deficits in 
medicated and nonmedicated Parkinsonism. Journal of Cogni-
tive Neuroscience, 17(1), 51–72. https​://doi.org/10.1162/08989​
29052​88009​3.

Frank, M. J., Seeberger, L. C., & Oreilly, R. C. (2004). By carrot or by 
stick: Cognitive reinforcement learning in parkinsonism. Science, 
306(5703), 1940–1943. https​://doi.org/10.1126/scien​ce.11029​41.

Fukushima, H., & Hiraki, K. (2009). Whose loss is it? Human elec-
trophysiological correlates of non-self reward processing. Social 

Neuroscience, 4(3), 261–275. https​://doi.org/10.1080/17470​91080​
26250​09.

Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex 
and the rapid processing of monetary gains and losses. Science, 
295(5563), 2279–2282. https​://doi.org/10.1126/scien​ce.10668​93.

Gray, J. A., & MacNaughton, N. (2003). The neuropsychology of anxi-
ety: An enquiry into the functions of the septo-hippocampal sys-
tem (second edition). Oxford psychology series: Vol. 33. Oxford 
University Press.

Guitart-Masip, M., Chowdhury, R., Sharot, T., Dayan, P., Duzel, E., & 
Dolan, R. J. (2012a). Action controls dopaminergic enhancement 
of reward representations. Proceedings of the National Academy 
of Sciences of the United States of America, 109(19), 7511–7516. 
https​://doi.org/10.1073/pnas.12022​29109​.

Guitart-Masip, M., Duzel, E., Dolan, R., & Dayan, P. (2014a). Action 
versus valence in decision making. Trends in Cognitive Sciences, 
18(4), 194–202. https​://doi.org/10.1016/j.tics.2014.01.003.

Guitart-Masip, M., Economides, M., Huys, Q. J. M., Frank, M. J., 
Chowdhury, R., Duzel, E., et al. (2014b). Differential, but not 
opponent, effects of L -DOPA and citalopram on action learn-
ing with reward and punishment. Psychopharmacology (Berl), 
231(5), 955–966. https​://doi.org/10.1007/s0021​3-013-3313-4.

Guitart-Masip, M., Fuentemilla, L., Bach, D. R., Huys, Q. J. M., 
Dayan, P., Dolan, R. J., et al. (2011). Action dominates valence 
in anticipatory representations in the human striatum and dopa-
minergic midbrain. The Journal of Neuroscience: The Official 
Journal of the Society for Neuroscience, 31(21), 7867–7875. 
https​://doi.org/10.1523/JNEUR​OSCI.6376-10.2011.

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, 
E., & Dolan, R. J. (2012b). Go and no-go learning in reward 
and punishment: Interactions between affect and effect. Neu-
roImage, 62(1), 154–166. https​://doi.org/10.1016/j.neuro​image​
.2012.04.024.

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human 
error processing: Reinforcement learning, dopamine, and the 
error-related negativity. Psychological Review, 109(4), 679–
709. https​://doi.org/10.1037//0033-295X.109.4.679.

Jeffreys, H. (1998). Theory of probability: Oxford classic texts in the 
physical sciences (3rd ed.). Oxford: Clarendon Press.

Kelly, S. W., Burton, A. M., Riedel, B., & Lynch, E. (2003). 
Sequence learning by action and observation: Evidence for 
separate mechanisms. British Journal of Psychology, 94(Pt 3), 
355–372. https​://doi.org/10.1348/00071​26037​67876​271.

Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pat-
tern of dopamine loss in the striatum of patients with idiopathic 
Parkinson’s disease: Pathophysiologic and clinical implications. 
The New England Journal of Medicine, 318(14), 876–880. https​
://doi.org/10.1056/NEJM1​98804​07318​1402.

Koban, L., Pourtois, G., Bediou, B., & Vuilleumier, P. (2012). Effects 
of social context and predictive relevance on action outcome 
monitoring. Cognitive, Affective & Behavioral Neuroscience, 
12(3), 460–478. https​://doi.org/10.3758/s1341​5-012-0091-0.

Kobza, S., Ferrea, S., Schnitzler, A., Pollok, B., Südmeyer, M., & 
Bellebaum, C. (2012). Dissociation between active and obser-
vational learning from positive and negative feedback in Par-
kinsonism. PLoS ONE, 7(11), e50250. https​://doi.org/10.1371/
journ​al.pone.00502​50.

Kobza, S., Thoma, P., Daum, I., & Bellebaum, C. (2011). The feed-
back-related negativity is modulated by feedback probability in 
observational learning. Behavioural Brain Research, 225(2), 
396–404. https​://doi.org/10.1016/j.bbr.2011.07.059.

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive mod-
eling: A practical course. Cambridge University Press. https​://
doi.org/10.1017/CBO97​81139​08775​9.

Lehrl, S., Triebig, G., & Fischer, B. (1995). Multiple choice vocabu-
lary test MWT as a valid and short test to estimate premorbid 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bbr.2011.10.042
https://doi.org/10.1016/j.neuroscience.2016.01.060
https://doi.org/10.1162/jocn_a_00612
https://doi.org/10.1162/jocn_a_00612
https://doi.org/10.1093/cercor/bhq038
https://doi.org/10.1523/JNEUROSCI.5754-12.2013
https://doi.org/10.1523/JNEUROSCI.5754-12.2013
https://doi.org/10.1007/BF00993277
https://doi.org/10.1007/BF00993277
https://doi.org/10.1162/jocn_a_00114
https://doi.org/10.1162/0898929052880093
https://doi.org/10.1162/0898929052880093
https://doi.org/10.1126/science.1102941
https://doi.org/10.1080/17470910802625009
https://doi.org/10.1080/17470910802625009
https://doi.org/10.1126/science.1066893
https://doi.org/10.1073/pnas.1202229109
https://doi.org/10.1016/j.tics.2014.01.003
https://doi.org/10.1007/s00213-013-3313-4
https://doi.org/10.1523/JNEUROSCI.6376-10.2011
https://doi.org/10.1016/j.neuroimage.2012.04.024
https://doi.org/10.1016/j.neuroimage.2012.04.024
https://doi.org/10.1037//0033-295X.109.4.679
https://doi.org/10.1348/000712603767876271
https://doi.org/10.1056/NEJM198804073181402
https://doi.org/10.1056/NEJM198804073181402
https://doi.org/10.3758/s13415-012-0091-0
https://doi.org/10.1371/journal.pone.0050250
https://doi.org/10.1371/journal.pone.0050250
https://doi.org/10.1016/j.bbr.2011.07.059
https://doi.org/10.1017/CBO9781139087759
https://doi.org/10.1017/CBO9781139087759


1566	 Psychological Research (2021) 85:1553–1566

1 3

intelligence. Acta Neurologica Scandinavica, 91(5), 335–345. 
https​://doi.org/10.1111/j.1600-0404.1995.tb070​18.x.

Mathôt, S., Siebold, A., Donk, M., & Vitu, F. (2015). Large pupils 
predict goal-driven eye movements. Journal of Experimental 
Psychology. General, 144(3), 513–521. https​://doi.org/10.1037/
a0039​168.

Millner, A. J., Gershman, S. J., Nock, M. K., & den Ouden, H. E. 
M. (2018). Pavlovian control of escape and avoidance. Jour-
nal of Cognitive Neuroscience, 30(10), 1379–1390. https​://doi.
org/10.1162/jocn_a_01224​.

Miltner, W. H., Braun, C. H., & Coles, M. G. (1997). Event-related 
brain potentials following incorrect feedback in a time-estima-
tion task: Evidence for a "generic" neural system for error detec-
tion. Journal of Cognitive Neuroscience, 9(6), 788–798. https​://
doi.org/10.1162/jocn.1997.9.6.788.

Morelli, S. A., Knutson, B., & Zaki, J. (2018). Neural sensitivity to 
personal and vicarious reward differentially relates to prosocial-
ity and well-being. Social Cognitive and Affective Neuroscience, 
13(8), 831–839. https​://doi.org/10.1093/scan/nsy05​6.

Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and dis-
tinct neural correlates of personal and vicarious reward: A quan-
titative meta-analysis. NeuroImage, 112, 244–253. https​://doi.
org/10.1016/j.neuro​image​.2014.12.056.

Nicolle, A., Symmonds, M., & Dolan, R. J. (2011). Optimistic biases 
in observational learning of value. Cognition, 119(3), 394–402. 
https​://doi.org/10.1016/j.cogni​tion.2011.02.004.

Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. H. (2004). 
Reinforcement-related brain potentials from medial frontal cor-
tex: Origins and functional significance. Neuroscience and Biobe-
havioral Reviews, 28(4), 441–448. https​://doi.org/10.1016/j.neubi​
orev.2004.05.003.

Ocklenburg, S., Peterburs, J., Mertzen, J., Schmitz, J., Güntürkün, O., 
& Grimshaw, G. (2017). Effects of Emotional Valence on Hemi-
spheric Asymmetries in Response Inhibition. Symmetry, 9(8), 145. 
https​://doi.org/10.3390/sym90​80145​.

O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & 
Dolan, R. J. (2004). Dissociable roles of ventral and dorsal stria-
tum in instrumental conditioning. Science, 304(5669), 452–454. 
https​://doi.org/10.1126/scien​ce.10942​85.

Peterburs, J., Liepelt, R., Voegler, R., Ocklenburg, S., & Straube, 
T. (2019). It’s not me, it’s you - Differential neural process-
ing of social and non-social nogo cues in joint action. Social 
Neuroscience, 14(1), 114–124. https​://doi.org/10.1080/17470​
919.2017.14033​74.

Rak, N., Bellebaum, C., & Thoma, P. (2013). Empathy and feedback 
processing in active and observational learning. Cognitive, Affec-
tive & Behavioral Neuroscience, 13(4), 869–884. https​://doi.
org/10.3758/s1341​5-013-0187-1.

Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for 
studying the neurobiology of value-based decision making. Nature 
Reviews. Neuroscience, 9(7), 545–556. https​://doi.org/10.1038/
nrn23​57.

Thoma, P., & Bellebaum, C. (2012). Your Error’s Got me Feeling - 
How Empathy Relates to the Electrophysiological Correlates of 
Performance Monitoring. Frontiers in Human Neuroscience, 6, 
135. https​://doi.org/10.3389/fnhum​.2012.00135​.

Thorndike, E. L. (1927). The Law of Effect. The American Journal of 
Psychology, 39(1/4), 212. https​://doi.org/10.2307/14154​13.

Valentin, V. V., & O’Doherty, J. P. (2009). Overlapping prediction 
errors in dorsal striatum during instrumental learning with juice 
and money reward in the human brain. Journal of Neurophysiol-
ogy, 102(6), 3384–3391. https​://doi.org/10.1152/jn.91195​.2008.

Voegler, R., Peterburs, J., Lemke, H., Ocklenburg, S., Liepelt, R., & 
Straube, T. (2018). Electrophysiological correlates of performance 
monitoring under social observation in patients with social anxi-
ety disorder and healthy controls. Biological Psychology, 132, 
71–80. https​://doi.org/10.1016/j.biops​ycho.2017.11.003.

Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Ver-
hagen, J., et al. (2018a). Bayesian inference for psychology. Part 
II: Example applications with JASP. Psychonomic Bulletin & 
Review, 25(1), 58–76. https​://doi.org/10.3758/s1342​3-017-1323-7.

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., 
Love, J., et al. (2018b). Bayesian inference for psychology. Part I: 
Theoretical advantages and practical ramifications. Psychonomic 
Bulletin & Review, 25(1), 35–57. https​://doi.org/10.3758/s1342​
3-017-1343-3.

Yu, R., & Zhou, X. (2006). Brain responses to outcomes of one’s 
own and other’s performance in a gambling task. NeuroReport, 
17(16), 1747–1751. https​://doi.org/10.1097/01.wnr.00002​39960​
.98813​.50.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1111/j.1600-0404.1995.tb07018.x
https://doi.org/10.1037/a0039168
https://doi.org/10.1037/a0039168
https://doi.org/10.1162/jocn_a_01224
https://doi.org/10.1162/jocn_a_01224
https://doi.org/10.1162/jocn.1997.9.6.788
https://doi.org/10.1162/jocn.1997.9.6.788
https://doi.org/10.1093/scan/nsy056
https://doi.org/10.1016/j.neuroimage.2014.12.056
https://doi.org/10.1016/j.neuroimage.2014.12.056
https://doi.org/10.1016/j.cognition.2011.02.004
https://doi.org/10.1016/j.neubiorev.2004.05.003
https://doi.org/10.1016/j.neubiorev.2004.05.003
https://doi.org/10.3390/sym9080145
https://doi.org/10.1126/science.1094285
https://doi.org/10.1080/17470919.2017.1403374
https://doi.org/10.1080/17470919.2017.1403374
https://doi.org/10.3758/s13415-013-0187-1
https://doi.org/10.3758/s13415-013-0187-1
https://doi.org/10.1038/nrn2357
https://doi.org/10.1038/nrn2357
https://doi.org/10.3389/fnhum.2012.00135
https://doi.org/10.2307/1415413
https://doi.org/10.1152/jn.91195.2008
https://doi.org/10.1016/j.biopsycho.2017.11.003
https://doi.org/10.3758/s13423-017-1323-7
https://doi.org/10.3758/s13423-017-1343-3
https://doi.org/10.3758/s13423-017-1343-3
https://doi.org/10.1097/01.wnr.0000239960.98813.50
https://doi.org/10.1097/01.wnr.0000239960.98813.50

	Asymmetric coupling of action and outcome valence in active and observational feedback learning
	Abstract
	Introduction
	Experiment 1
	Subjects
	Experimental task
	Procedure
	Statistical analyses
	Results
	Standard repeated-measures analysis of variance
	Bayesian repeated-measures analysis of variance

	Discussion

	Experiment 2
	Subjects
	Experimental task and procedure
	Statistical analyses
	Results
	Standard repeated-measures analysis of variance (observational learners only)
	Bayesian repeated-measures analysis of variance (active and observational learners)

	Discussion

	Experiment 3
	Subjects
	Experimental task
	Procedure
	Statistical analyses
	Results
	Standard repeated-measures analysis of variance
	Bayesian repeated-measures analysis of variance

	Discussion

	General discussion
	Acknowledgements 
	References




