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Abstract: It is well known that there may be significant individual differences in physiological signal
patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals
is still a challenging task in the context of developing an individual-independent recognition method.
In our paper, from the perspective of spatial topology and temporal information of brain emotional
patterns in an EEG, we exploit complex networks to characterize EEG signals to effectively extract
EEG information for emotion recognition. First, we exploit visibility graphs to construct complex
networks from EEG signals. Then, two kinds of network entropy measures (nodal degree entropy
and clustering coefficient entropy) are calculated. By applying the AUC method, the effective features
are input into the SVM classifier to perform emotion recognition across subjects. The experiment
results showed that, for the EEG signals of 62 channels, the features of 18 channels selected by
AUC were significant (p < 0.005). For the classification of positive and negative emotions, the
average recognition rate was 87.26%; for the classification of positive, negative, and neutral emotions,
the average recognition rate was 68.44%. Our method improves mean accuracy by an average of
2.28% compared with other existing methods. Our results fully demonstrate that a more accurate
recognition of emotional EEG signals can be achieved relative to the available relevant studies,
indicating that our method can provide more generalizability in practical use.

Keywords: emotion recognition; complex network; network entropy measure; machine learning

1. Introduction

The basic abilities of people in social communication include accurately distinguishing
emotions and making reasonable responses [1]. With the ability of recognizing emotions,
machines could think like humans, perceive human emotional states, and make rational
responses [2]. However, the relevant research focuses more on logic and ignores the im-
portance of emotions related to human–computer interfaces (BCI) [3,4]. Current emotion
recognition methods are mainly based on non-physiological signals and physiological
signals. Non-physiological studies mainly contain speech signals [5], facial expressions [6],
body postures [7], and gestures [8]. On the other hand, physiological signals excellently
reflect the functions of humans, with the advantages of objectivity and accuracy. Com-
mon physiological signals are also diverse, and include electroencephalogram (EEG) [9],
electromyogram (EMG) [10], and electrocardiogram (ECG) [11], etc. Among the above
physiological signals, EEG signals can be obtained from the cerebral cortex using noninva-
sive devices, with the advantages of being direct, noninvasive and safe. Emotion states
can be directly reflected by EEG signals related to corresponding brain regions. Based on
the above case, emotion recognition based on EEG signals has attracted more and more
attention due to its characteristics of being safe, noninvasive and intuitive [12–15].

Relevant studies on affective classification based on EEG have faced many scientific
challenges in the past decade. First, in the same context, when the emotional incentives
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are different, due to differences in gender, age, education, cultural background, etc., peo-
ple differ in their emotional expression, and each person’s emotional experience is also
different. Individual differences directly affect the processing results of emotion recog-
nition in the same environment, which leads to a lack of generalizability in the existing
emotion recognition models [16,17]. Furthermore, relevant research mostly suffers from
large amounts of calculation and being time-consuming, using deep learning pattern clas-
sification. In addition, the EEG signals corresponding to the emotion-related sections of
the brain offer rich spatial information, because of different areas of the cerebral cortex
being associated with complex emotions [18]. However, traditional features in the existing
studies are limited by time, and lack the spatial characteristics of EEG signals. Therefore, in
order to address these challenges, it is of great research value to develop an EEG emotion
recognition technique across subjects, that includes time and spatial domain information.

In the past decade, several methods based on complex network theory for analyzing
EEG signals, in the form of time series with characteristics of nonlinearity and nonsta-
tionary, were proposed [19,20]. A complex network is a reasonable and effective method
for studying nonlinear time series and nonlinear dynamic systems [21]. A nonlinear time
series can be reasonably transformed into a complex network [22], whereby the statistical
indices of the network topology structure can be analyzed to determine the properties
of the nonlinear time series. As a classical method to construct complex networks, the
visibility graph method is based on visual conditions, thus extending the research platform
of nonlinear time series to the level of a complex network. By directly connecting the am-
plitude of the time series, the line meeting the visual condition is retained as the connecting
edge of the complex network, such that the time series is transformed into a corresponding
complex network composed of nodes and connecting edges [23]. Since the visibility graph
method of constructing complex networks has the property of remaining unchanged under
affine changes, its topological properties can effectively describe the characteristics of EEG
signals. The visibility graph method is used to present the constructed network in the
domains of time and space because it contains multiple network entropy measures [24,25].

In this paper, we developed a cross-subject emotion recognition method that contains
rich EEG time and spatial domain information to identify positive and negative emotions
from EEG signals in a cross-subject situation. The purpose of our work is to enhance
the robustness of the cross-individual emotion recognition method, exploiting the fused
network entropy measures of complex networks. The main innovations of our emotion
recognition method are as follows: (a) The complex network related to brain emotion
was constructed using the visibility graph method from EEG signals, and rich spatial
information of brain signals was retained. (b) Network entropy measures were derived
from the complex networks. We applied NDE and CCE, which allow for characterizing
complex networks globally and locally as a performance index of brain network analysis, to
reveal the complexity and dynamic behavior of the brain experiencing different emotions.
(c) The cross-subject emotion training method based on the SEED dataset was used to
overcome individual differences, which thus makes emotion recognition more universal
and generalized. The main contributions of this paper are outlined below.

Firstly, we exploit the EEG features of network entropy measures based on time and
spatial domains as effective emotion recognition patterns. In contrast to the traditional EEG
emotional patterns, the adopted EEG emotional features can extract the local and global
features from complex networks associated with brain networks. Secondly, we develop an
excellent emotion recognition method by taking advantage of a machine learning model
across individuals, which effectively enhances robustness. Finally, our experimental results
fully demonstrate that the proposed method is able to achieve a better performance in
cross-subject emotion recognition, with a higher accuracy than other existing methods.

The organization of this paper is as follows: Section 2 describes the visibility graph
method and the extraction of network entropy measures. Section 3 presents the data
analysis and experimental results. In Section 4, we discuss the experimental results in
comparison with recently reported studies. Lastly, the article is concluded in Section 5.
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2. Materials and Methods

The framework of our proposed emotion recognition model is shown in Figure 1,
comprising several processes. First, for the subjects, video stimuli were used to elicit
emotional reactions and EEG data were recorded. When the preprocessing of EEG signals
was completed, the EEG signals were mapped as a complex network using the visibility
graph method. Next, two features (NDE and CCE) were calculated from the complex
network. In addition, the AUC values of each channel were calculated, and the effective
channels were selected according to the defined criterion (AUC = 0.8) to classify emotions.
The features of the selected channels were fused to a feature vector sent to a machine
learning model. Lastly, the support vector machine (SVM) was used as a pattern classifier
to recognize different emotions.
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Figure 1. Framework of our proposed emotion recognition model.

2.1. Experimental Dataset

Our study used an open dataset for analysis, namely, SEED (SJTU Emotion EEG
Dataset) [15]. This dataset includes 15 Chinese subjects (7 males and 8 females; mean value:
23.27; STD: 2.37). A total of 15 Chinese film clips (positive, neutral, and negative emotions)
were selected as the subjects’ emotional stimuli, with each film lasting about 4 min. A total
of three groups of experiments were conducted, with each subject participating in 15 trials
in each case. Three kinds of emotions were induced in each subject, i.e., positive, neutral,
and negative emotions, through an emotional film clip. Therefore, each subject participated
in three experiments of 15 trials each, i.e., the subjects conducted 45 (15 × 3) trials using
the SEED dataset. For more information about the SEED database, please refer to http:
//bcmi.sjtu.edu.cn/seed/ (accessed on 25 July 2021). In this study, we used EEG signals
corresponding to trials of positive, neutral, and negative emotions to distinguish among the
three types of emotions. We intercepted EEG signals from SEED for 30 s of data, extracted
from the middle portion of each trial, i.e., from 60 s to 90 s.

2.2. Constructing Complex Networks Using Visibility Graph from EEG Signals

The EEG results are shown in the form of a signal time series, which has nonlinear and
nonstationary characteristics. Time series signals can be effectively and quantitatively ana-
lyzed using complex network theory, e.g., visibility graphs. EEG signals contain 62 channels,
each of which is a time series of N points. The main operation method of the visibility graph
is to transform the time series into numerical points

{
xchj(i)

}
, i = 1, 2, . . . , N, j = 1, 2, . . . 62,

and each numerical point corresponds to the height of the vertical axis coordinate system,

http://bcmi.sjtu.edu.cn/seed/
http://bcmi.sjtu.edu.cn/seed/
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displayed as vertical lines; then, the numerical points are defined as a network, and these
network nodes are connected as a function of the numerical points. As shown in Figure 2,
node i has neighbor nodes xchji =

(
xchj1, xchj2, . . . , xchjm− 1, xchjm

)
, 1 ≤ i ≤ m, where m

is the total number of neighbor nodes. The visibility graph method remains unchanged
following affine changes; as such, its topological properties can effectively describe the
characteristics of a time series.
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Figure 2. Construction of complex networks using visibility graph derived from EEG signals.

2.3. Fusion of Network Entropy Measures

After constructing the complex network corresponding to the EEG signals, for its com-
prehensive characterization, we described the spatial characteristics of the brain network
as a function of its global and local characteristics using the CCE and NDE of EEG signals
for different emotions calculated on each channel. CCE, as a local feature of the network,
describes the attribute of local node connectivity in the network, and represents the distri-
bution of the proportion of interconnected neighbor nodes in the whole network [26–28].
CCE also represents the clustering state of nodes in the network. In a network with a large
number of nodes, the nodes form high-density connections, which lead to local clustering.
In the complex network corresponding to the EEG signals, CCE is defined as

CCE = −∑i ClogC, (1)

C =
1
n ∑i∈N Ci =

1
n ∑i∈N

2epq

mi(mi − 1)
, (2)

where epq is the one-hop connection between neighbor node p and node q, and mi is the
total number of neighbor nodes connecting to node i.

As a global characteristic of the network, NDE describes the neighborhood degree of
global nodes in the network, which represents an effective measure of network node inte-
gration. NDE is an effective method to evaluate node heterogeneity from the perspective
of neighborhood degree. In complex networks, NDE is defined as

NDE = −∑i pilogpi, (3)
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where pi is the probability description of the nodal degree about node i. This is defined as

pi =
di

∑j∈N dj
, (4)

where di is the neighbor node connected to node i.
The pseudo code for emotion recognition based on complex networks is presented in

Algorithm 1. The sampling rate was 200 Hz. Each data point was used as a network node.
The time series was constructed into complex networks using the visibility graph method.
The CCE and NDE features were extracted from the complex networks, and both features
were set as the feature vector.

Algorithm 1. Extraction of emotion features based on complex network

Input: EEG time series from 15 subjects
1: Initialization
2: M← the channel number of EEG signals
3: Y← the nodes of complex networks constructed from EEG signals
4: HC← the number of neighbors of each node
5: KB← the number of hops between nodes
6: L(j,:) ← sum (HC(j,:))
7: S(j,:) ← sum (KB(j,:))
8: mi ← the total number of neighbor nodes connecting to node i
9: for j = 1→M do begin
10: for i = 1→ Y
11: xchji← xchj1, xchj2, . . . , xchjY
12: end
13: ∀t, 1 ≤ t ≤ mi(j) do begin
14: CC(j,t)← (1/t)*(( (2*KB(j,t))/(SY(j,1)*(SY(j,1)−1))))
15: CCE(j,t)←−(CC(j,t).*(log(CC(j,t))))
16: ∀t, 1 ≤ t ≤ mi(j) do begin
17: ND(j,t)← (HC(j,t))./L(j,1)
18: NDE(j,t)←−(ND(j,t).*(log(ND(h,t))))
19: end
Output: vector <CCE, NDE>

2.4. Feature Dimension Reduction

The redundant information in the feature dimension should be reduced to optimize
the feature vector for machine learning. The accuracy of the classification result and the
machine learning efficiency can be improved by eliminating invalid feature dimensions
and retaining valid feature dimensions. In our work, feature dimensionality reduction
was carried out using the AUC method. Aiming at reducing feature dimensionality, this
paper first screened 62 channels in the SEED dataset. Then, we selected the most effective
channels among the 62 channels. Several feature dimension reduction methods have been
introduced, such as paired t-test, mutual information, PCA, and AUC. The performance
of these feature dimension reduction methods varied. In our work, we used AUC as
the feature dimension reduction method, which is defined as the area bounded by the
coordinate axis under the ROC curve. Obviously, the value of this area is less than 1. Since
the ROC curve is generally above the line y = x, the value range of AUC is between 0.5
and 1. An AUC value closer to 1 denotes the higher authenticity of the test method and
a higher application value. The AUC method judges the difference between samples by
calculating the area under the ROC curve of multiple samples. After channel screening
using the AUC method, the entropy of the network structure of positive and negative
emotions derived from EEG signals was calculated for the selected channel to achieve the
effect of dimensionality reduction.
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2.5. Support Vector Machine Classifier

As a machine learning algorithm, the support vector machine is a classification model
whose purpose is to find a hyperplane with which to segment samples. The principle of
segmentation is to maximize the interval. Each channel of EEG signals was calculated as
a network structural feature. We obtained 128-dimensional features by calculating CCE
and NDE for 62 channels. Then, we used the leave-one-subject-out verification strategy
to specify the test and training sets. The SEED dataset contained 15 subjects, and the data
of one subject were used as the testing set, while the data of the remaining subjects were
used as the training set; this was repeated for each subject. SVM was used as a classifier of
positive and negative emotions or of positive, negative, and neutral emotions. SVM is a
kernel-based classifier that can achieve both linear and nonlinear classification via the use
of various kernel functions, which differ in their performance. We compared several of the
most commonly used existing kernels of SVM, with the results revealing the radial basis
function (RBF) as the best performer.

The LIBSVM software package was used for the SVM classifier, along with the RBF
kernel. The parameters in the SVM classifier included S, T, C, and other default values.
Parameter T was set to 2 and parameter S was set to 0. Parameter C was an optimum value
determined through a one-step search of the parameter space (10−3:2). The framework of
complex network entropy measures for emotion recognition using the SVM classifier is
described in Figure 3.
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Figure 3. Framework of complex network structure entropy measures for emotion recognition
across individuals.

3. Results

Firstly, we analyzed the NDE and CCE features of the complex network, which were
extracted to classify positive and negative emotions from EEG signals. The time duration
of EEG data used in the study was 30 s, selected from the middle of the 62-channel EEG
signals (i.e., from 60 s to 90 s). The SEED dataset included 15 subjects and 62-channel EEG
signals. We calculated the values of network structural entropy from each channel, thereby
obtaining two types of 62-dimensional features, namely, CCE and NDE. Figure 4 shows the
results for the CCE of EEG signals in classifying positive and negative emotions, positive
and neutral emotions, and negative and neutral emotions. The CCE of most channels
presented significant differences. As shown in Figure 4, 68% of the EEG channels exhibited
a significant difference between positive and negative emotions (p < 0.005), 74% exhibited a
significant difference between positive and neutral emotions (p < 0.005), and 65% exhibited
a significant difference between neutral and negative emotions (p < 0.005). The NDE of
most channels presented significant differences. As shown in Figure 5, 64% of EEG channels
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exhibited a significant difference between positive and negative emotions (p < 0.005), 69%
exhibited a significant difference between positive and neutral emotions (p < 0.005), and
58% exhibited a significant difference between neutral and negative emotions (p < 0.005).
Therefore, according to the results of these two network structural entropies, positive,
negative, and neutral emotions could be deduced.
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Depending on the emotion, these two network structural entropies presented different
discriminative abilities for each EEG channel. We analyzed the contrast in area under
the ROC curve for any two kinds of emotions (i.e., various combinations of positive,
negative, and neutral emotions). Figure 6 shows the AUC values of structural entropy
for the 62-channel EEG network with respect to these combinations. The horizontal axis
represents the 62 EEG channels, while the vertical axis represents the AUC values. In our
work, we defined the AUC threshold as 0.8, whereby values above this threshold were
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considered to represent effective channels. Figure 6 also presents the electrode positions
for the SEED dataset, wherein the selected channels using network structure entropy and
the ROC method are highlighted in red, namely, C1, C5, FCZ, FC1, FC2, FC3, FC4, FC6, FZ,
F2, F3, F4, F6, AF3, AF4, FPZ, FP1, and FP2. As shown in Figure 6, most of the selected
channels came from the anterior hemisphere.
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In order to evaluate the effectiveness of our proposed emotion recognition method,
we compared the performances of the 62-channel and newly created 18-channel SEED
datasets in classifying positive and negative emotions using CCE and NDE as a feature
vector. Figure 7 shows the classification results for positive and negative emotions, while
Figure 8 shows the classification results for positive, neutral, and negative emotions. The
horizontal axis represents the 15 subjects, while the vertical axis represents the classification
results. As shown in Figure 7, the 18 selected channels performed better in classifying
positive and negative emotions, with a significant improvement in accuracy (p < 0.005)
compared to the 62-channel dataset. For each subject in the dataset, the accuracy increases
were 0.08, 0.09, 0.10, 0.08, 0.08, 0.09, 0.14, 0.08, 0.08, 0.09, 0.04, 0.06, 0.03, 0.14, and 0.07 in
classifying positive and negative emotions (p < 0.005).
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4. Discussion

This study proposed a method for fusing network entropy measures, used to achieve
effective emotion recognition results based on EEG signals across subjects. The main inno-
vations of the fused network entropy measures method are as follows: (1) mapping the time
series of EEG signals to complex networks using the visibility graph method; (2) exploiting
the CCE and NDE features from the complex network, describing the spatial properties
of EEG signals in the form of local and global information, respectively; (3) using the
cross-subject emotion training method based on the SEED dataset to overcome individual
differences, thus improving the universality and generalizability of emotion recognition.

To illustrate the excellent performance of our method for emotion recognition, we
compared our results with those of other studies based on same dataset, as well as a
different dataset. We compared our work with the studies of Li et al. [7], Yucel et al. [29],
Hao et al. [30], and Lu et al. [31], which also used the SEED dataset. In Li’s study, the
positive and negative emotions in the EEG data collected from the SEED dataset were
categorized. Eighteen linear and nonlinear EEG features (singular entropy, spectral entropy,
permutation entropy, etc.) were extracted from the EEG signals. Then, these features
were combined with the SVM classifier to categorize positive and negative emotions. The
average value of each feature was used as the input of the support vector machine. In Li’s
research, the framework of pattern learning used for emotion recognition was based on
average entropy. In our work, the EEG dataset, classifier, and validation strategy were the
same as in Li’s study, thus ensuring the fairness of performance comparison. In Yucel’s
study, the convolutional neural network (CNN) architecture was exploited, whereby raw
EEG data were used after applying windowing, preadjustments, and normalization. In
Hao’s study, the raw feature vector sequence was extracted from multichannel EEG signals
using a sliding window. The K-nearest neighbor algorithm was employed to estimate
the emotion state. Lu et al. proposed dynamic entropy-based pattern learning with SVM
to identify emotions from EEG signals, and then the positive and negative emotions in
EEG data collected from the SEED dataset were categorized. Table 1 shows the accuracy
comparison of the abovementioned methods from this study, as well as from the studies
of Li et al., Yucel et al., Hao et al., and Lu et al., in the identification of negative and
positive emotions among individuals. As shown in Table 1, the average accuracy of
emotion recognition was 83.33%, 86.56%, 83.46%, and 85.11% using the methods from
Li et al., Yucel et al., Hao et al., and Lu et al., respectively. However, in our work, we
achieved an average accuracy of 87.26% based on complex network entropy measures. The
experimental results show that our method performs well for emotion classification. The
accuracy of cross-individual emotion classification was improved by 2.28% compared with
other existing methods.

Furthermore, we compared our work with the studies of Yin et al. [32], Liu et al. [33],
Asghar et al. [34], and Cheng et al. [35], who used different datasets. Yin et al. used a
graph convolutional neural network and a long short-term memory neural network as
the fusion model, named ERDL, to classify emotions. However, this method had the
disadvantages of a long training time and tedious amounts of computation. Liu et al.
exploited features from the time series and fused them to a vector for subject emotion
recognition. However, this method only took into account the temporal information and
left out the spatial information. Asghar et al. used gated recurrent units (GRUs) and
recurrent neural networks (RNNs) to extract features from the SLGU-ENet model. Cheng
et al. inputted features extracted from EEG signals into a deep forest classification model.
Although their mean accuracy of emotion recognition was better than that in this study, the
memory consumption was excessive and the model was bloated. As shown in Table 2, the
average accuracy of emotion recognition was 84.81%, 84.30%, 82.60%, and 89.30% when
using the methods from Yin et al., Liu et al., Asghar et al., and Cheng et al., respectively.
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Table 1. Accuracy comparison of methods from this study, Yucel et al., Hao et al., Lu et al., and Li et al. in the identification
of positive and negative emotions across individuals from the SEED dataset.

Dataset Year Methodology Cross-Subject VS Classifier Mean Accuracy StdACC

Zhang’s study [36] SEED 2021 DE Yes LOSO ResNets 86.43% —
Yucel’s study [29] SEED 2020 IR-V2 Yes LOSO CNN 86.56% 6.94%
Hao’s study [30] SEED 2020 DBN-CRF Yes LOSO KNN 83.46% —
Lu’s study [31] SEED 2019 DySampEns Yes LOSO SVM 85.11% 11.54%
Li’s study [7] SEED 2018 ApEn, ShEn, etc. Yes LOSO SVM 83.33% 10.16%
Our work SEED 2021 NEM Yes LOSO SVM 87.26% 6.06%

SVM: support vector machine; CNN: convolutional neural network; KNN: K-nearest neighbor; NEM: network entropy measures; VS:
validation strategy; LOSO: leave-one-subject-out; StdACC: standard deviation of accuracy; CN: complex networks; DBN-CRF: deep belief
network with conditional random field; IR-V2: InceptionResnetV2; StdACC: standard deviation of accuracy; DySampEns: dynamic sample
entropies; ApEn: approximate entropy; ShEn: Shannon entropy, DE: differential entropy.

Table 2. Accuracy comparison of methods from this study, Yin et al., Liu et al., Asghar et al., and Cheng et al. in the
identification of positive and negative emotions using various datasets.

Dataset Year Methodology Cross-Subject Classifier Mean Accuracy StdACC

Yin’s study [32] DEAP 2021 DEAP YES GCN, LSTM 84.81% —
Liu’s study [33] DEAP 2021 2021 No SVM 84.30% —
Asghar’s study [34] DEAP 2021 No No SVM 82.60% 6.54%
Cheng’s study [35] DREAMER 2021 SVM No DF 89.03% 5.56%
Our work SEED 2021 84.30% Yes SVM 87.26% 6.06%

DE: differential entropy; SVN: support vector network; DF: deep forest; GCN: convolutional neural network; LSTM: long short-term
memory neural network; SVM: support vector machine.

Differential entropy combined with SVM was used by Zheng et al. to achieve three
categories (negative, positive, and neutral) of emotion recognition across subjects using
the SEED dataset [6]. An average accuracy of 60.93% was obtained in Zheng’s study. An
average accuracy of 64.15% was achieved in Lu’s research [31], which used a dynamic
entropy-based pattern learning model to identify emotions from EEG signals. However,
we achieved a higher average accuracy of 68.44% using network entropy measures of
complex networks.

At present, using entropy measures as the input feature is one of the most effective
methods for emotion recognition based on EEG signals. The human brain is a nonlinear
dynamic system, and EEG signals have nonlinear and complex characteristics. Entropy
measures are widely used to quantify the complexity of dynamic systems. A large amount
of evidence has shown that clinically meaningful information can be effectively extracted
from EEG signals using entropy measures. Using entropy measures and a machine learning
classifier to recognize emotions based on EEG signals is an excellent method, as reported
in various application cases. However, the entropy methods used in the current studies on
emotion recognition of EEG signals lack spatial characteristics. By mapping EEG signals
into complex networks and extracting the network structural entropy, we could not only
effectively express the complexity of EEG signals, but also retain their spatial properties.
The EEG signals are described in the two dimensions of time and space in order to obtain
more features. Network structural entropy was used to create probability measures based
on network parameters such as nodes and links. CCE and NDE represent the information
of a complex network from local and global perspectives, respectively.

In order to determine the influences of different dimension reduction methods on our
proposed emotion recognition method based on network entropy measures, we compared
PCA, one of the currently popular methods, with AUC, which was adopted in our work.
For the PCA method, the original data matrix was constructed from the data of 62 channels
from the SEED dataset. Firstly, covariances among the data were calculated and sorted
according to the eigenvalue of their covariance, from the largest to the smallest. The data
with an eigenvalue of 0 were excluded, and the data with the lowest 50% eigenvalue were
removed. The dimension reduction was completed by projecting the original data matrix
onto the eigenmatrix corresponding to the selected eigenvalue. The classification results of
the comparison are shown in Figure 9.
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In our study, we proposed an effective emotion recognition method based on EEG
signals, which achieved effective results. By measuring the entropy characteristics of
the complex network structure, the spatial characteristics of EEG signals were increased.
The EEG emotional patterns based on entropy measurements of complex networks were
compared in detail with other existing studies, where it was shown that our method can
effectively and accurately identify emotions.

Although excellent emotion classification accuracy was obtained in our work, there
remains room for improvement. First, we will determine the interpretability aspects
of complex networks associated with brain networks. Moreover, we will explore other
advanced machine learning methods, such as deep neural networks and deep learning, to
investigate emotion recognition across individuals.

5. Conclusions

In our work, we exploited network entropy measures with the SVM classifier to
implement an excellent model for emotion recognition based on EEG signals. We mapped
the EEG signals to complex networks and extracted the network entropy measures to
represent the temporal and spatial characteristics of EEG information. We conducted a
classification study on three emotions: positive, neutral, and negative. In order to improve
the universality of our approach, we used the cross-subject emotion training method based
on complex networks to overcome individual differences and build a more robust emotion
recognition method. After reducing the dimensionality of features using the AUC method,
effective features were fused to a feature vector input into a support vector machine to
recognize emotions. In addition, we carried out a detailed comparison between our work
and existing studies. The results fully prove that emotion recognition utilizing network
entropy measures of complex networks can achieve better results. Owing to its excellent
generalizability, our proposed emotion recognition method has great potential applicability
in brain–computer interfaces.
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