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Cumulative research studies have verified that multiple circRNAs are closely associated
with the pathogenic mechanism and cellular level. Exploring human circRNA–disease
relationships is significant to decipher pathogenic mechanisms and provide treatment
plans. At present, several computational models are designed to infer potential
relationships between diseases and circRNAs. However, the majority of existing
approaches could not effectively utilize the multisource data and achieve poor
performance in sparse networks. In this study, we develop an advanced method,
GATGCN, using graph attention network (GAT) and graph convolutional network
(GCN) to detect potential circRNA–disease relationships. First, several sources of
biomedical information are fused via the centered kernel alignment model (CKA), which
calculates the corresponding weight of different kernels. Second, we adopt the graph
attention network to learn latent representation of diseases and circRNAs. Third, the graph
convolutional network is deployed to effectively extract features of associations by
aggregating feature vectors of neighbors. Meanwhile, GATGCN achieves the
prominent AUC of 0.951 under leave-one-out cross-validation and AUC of 0.932
under 5-fold cross-validation. Furthermore, case studies on lung cancer, diabetes
retinopathy, and prostate cancer verify the reliability of GATGCN for detecting latent
circRNA–disease pairs.

Keywords: circRNA-disease associations, deep learning, graph attention network, graph convolutional network,
centered kernel alignment

INTRODUCTION

Circular RNA (circRNA) is a novel endogenous non-coding RNA forming a covalently closed loop
structure, which lacks a 50-end cap and a 30-end ployA tail (Memczak et al., 2013; Meng et al., 2017).
This structure is beneficial for circRNA to develop resistance to RNA exonuclease degradation and
provides a more stable biological expression (Li et al., 2015). As a result, in most species, the average
half-life of circRNAs is substantially increased than their linear equivalent.When circRNAs were first
found as early as 1970s, they had been regarded as the abnormal shear or product of “shear noise,”
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limited to the level of technology and knowledge at that time. In
previous studies, multiple circRNAs were verified to be
widespread in eukaryotes and play an essential role in
biological functions with the advancement of biology and
sequencing technologies. Currently, the biological functions of
circRNA are reflected as follows (Rong et al., 2017): regulation of
alternative splicing or transcription, miRNA sponges, regulation
of protein binding, and generation of pseudogenes.

CircRNA has become a new biomarker due to its abundance,
structural stability, developmental stage specificity, and tissue
specificity (Zhang Z. et al., 2018), which can be discovered in
saliva, blood, and exosomes. Cumulative research studies have
confirmed that multiple circRNAs are significant to the
expression of various pathological conditions (Han et al., 2018;
Zhu et al., 2017; Zhang S. et al., 2018), especially cancer (Vo et al.,
2019), cardiovascular, cerebrovascular, and nervous system
diseases. For instance, circRNA hsa_circ_0027599 is
overexpressed in gastric cancer (Wang L. et al., 2018), thereby
regulating the expression of the gene PHLDA1 and promoting
tumorigenesis. In cardiovascular and cerebrovascular diseases,
circRNA circWDR77Z targets and regulates miRNA miR-124/
FGF-2 through the “sponge” function (Chen et al., 2017), which
affects the migration and proliferation for vascular smooth
muscle cells, thereby promoting atherosclerosis development.
For myocardial infarction, overexpression of circRNA CDR1
leads to the upregulation of downstream corresponding
enzymes and proteins (Zhang et al., 2016), thereby aggravating
myocardial infarction. In neurological diseases, the expression of
circRNA in brain tissue is different, and its distribution in the
brain is uneven (Zhang et al., 2021b).

Although circRNA is commonly expressed in various cell lines
and tissues with strong tissue specificity and development stage
specificity, the pathogenic mechanism of circular RNA and how it
interacts with other biological molecules remain unknown. In
recent years, researchers have established many experimentally
verified or reported databases on relationships between circRNAs
and diseases, such as circBase (Glažar et al., 2014), circRNADb
(Chen et al., 2016), circR2Disease (Fan et al., 2018b),
circRNADisease (Zhao et al., 2018), circ2Disease (Yao et al.,
2018) and circ2Traits databases (Ghosal et al., 2013).
Considering that conventional biological studies are cost-
ineffective and time-consuming, several computational
approaches have been designed to detect relationships between
diseases and circRNAs efficiently (Xiao et al., 2022; Lei et al.,
2021). At present, the proposed computational models for
discovering relationships between diseases and circRNAs are
mainly classified into the following groups:

Network propagating methods have been widely applied to
detect correlations between diseases and various biological
entities, including circRNAs, due to the efficient use of
network structure information (Peng et al., 2018). Zhang et al.
designed a linear neighbor marker propagation approach named
CD-LNLP via neighbor similarity to reveal relationships between
diseases and circRNAs (Zhang et al., 2019). Li et al. presented the
DWNCPCDA using DeepWalk and network consistency
projection (Chen et al., 2018) to detect unobserved
associations between diseases and circRNAs (Li G. et al.,

2020). Lei et al. constructed a prediction model named
RWRKNN, which combined the k-nearest neighbor and RWR
to calculate weighted features for diseases and circRNAs (Lei and
Bian, 2020).

Path-based methods are widely adopted to calculate potential
interactions between diseases and circRNAs by measuring the
weight of paths in different networks. Lei et al. presented a path-
weighted method named PWCDA, which predicted the
circRNA–disease relationships by calculating the probability
value for each circRNA–disease pair via path information (Lei
et al., 2018). Fan et al. presented the model named KATZHCDA
via the circRNA expression profile, the similarity of the disease
phenotype, and the nuclear similarity of the Gaussian interaction
profile using the KATZ method to detect potential interactions
between diseases and circRNAs through the heterogenous
network (Fan et al., 2018a). Zhao et al. revealed a computed
method named IBNPKATZ using the bipartite network
projection model and the KATZ (Zhang et al., 2021a) model
to discover circRNA–disease interactions (Zhao et al., 2019).

Matrix factorization–based methods have been carried out for
detecting circRNA–disease relationships by constructing a low-
dimensional matrix to represent the initial input features (Wang
P. et al., 2018; Peng et al., 2020a). Wei et al. used weight-based
nearest neighbor nodes to reconstruct the association matrix and
designed a graph regularized non-negative matrix factorization
algorithm iCircDA-MF to detect relationships between diseases
and circRNAs (Wei and Liu, 2020). Lu et al. constructed a model
named DMFCDA with deep matrix factorization, which infers
potential circRNA–disease interactions by mapping features of
diseases and circRNAs into low-dimensional spaces (Lu et al.,
2021). Yan et al. used the Kronecker product kernel to design a
regularized least squares algorithm called DWNN-RLS to detect
relationships (Yan et al., 2018). Li et al. presented an advanced
approach named SIMCCDA by regarding predicting associations
as a recommendation system task, which achieves outstanding
performance for discovering circRNA–disease associations (Li M.
et al., 2020).

Deep learning integrates low-level features to construct
high-level representations of features or attribute categories
through the deep non-linear network structure (Peng et al.,
2021; Zhou et al., 2021). Wang et al. designed a model to reveal
interactions between diseases and circRNAs using deep
convolutional neural networks and deep generative
adversarial networks (Wang et al., 2020a). Wang et al.
designed an approach named GCNCDA to identify disease-
related circRNAs, which extracts high-level features contained
in the circRNA–disease heterogenous network through graph
convolutional networks to calculate association scores (Wang
et al., 2020b). GATCDA is a novel model for discovering the
correlation between diseases and circRNAs, which learns the
latent representation of nodes by assigning corresponding
weights to each neighbor node (Bian et al., 2021). Xiao
et al. designed a computational model named NSL2CD that
adopts network embedding by adaptive subspace learning
(Xiao et al., 2021).

Although the abovementioned approaches have achieved
excellent predictive performance, there are still several
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limitations given as follows: First, network-based methods
achieve poor performance in sparse networks due to a small
amount of network structure information. Second, path-based
methods fail to dynamically calculate weights based on known
associations, which makes it unable to efficiently detect
relationships between diseases and circRNAs with new
diseases or circRNAs. Third, matrix factorization–based
methods could not discover a non-linear interaction between
diseases and circRNAs. Last, current deep learning–based
methods could not effectively utilize the multisource data and
only pay more attention to features of the neighbor nodes or the
node itself, respectively.

To solve the abovementioned challenges, we develop an
advanced method GATGCN via graph attention network
(GAT) and graph convolutional network (GCN) to detect
potential circRNA–disease relationships. The complete process
could be summarized as four steps: First, multisource similarity
data for circRNAs and diseases are fused by the centered kernel
alignment model (CKA) (Cristianini et al., 2006). Second, we
adopt the graph attention network to learn the dense
representation of nodes on fused disease similarity network
and fused circRNA similarity network. Third, we construct the
heterogenous network by connecting circRNA–disease
interaction network, feature matrix of diseases, and feature
matrix of circRNAs. Finally, the graph convolutional network
is adopted to get prediction scores based on the heterogenous
network. According to reliable computer experiments, GATGCN
outperforms several state-of-the-art methods with a prominent
AUC of 0.932.

MATERIALS

Human CircRNA–Disease Associations
The circR2Disease provides verified relationships between diseases
and circRNAs, which is a manually curated database including 739
known relationships between 100 diseases and 676 circRNAs. We
eventually extract 661 associations between 88 diseases and 585
circRNAs for humans after removing the associations unrelated to
human species and duplicate associations.

Human Disease–MiRNA Associations
MiRNAs are significant to pathogenesis and treatment of diseases
as the important regulatory molecule for genes. On dataset, we
collect 1,883 experimentally verified disease–miRNA
relationships between 462 miRNAs and 88 diseases from the
HMDD (Li et al., 2014), which provides disease-associated
miRNAs and their target genes, including 8,802 known
relationships between 350 diseases and 32281 miRNAs.

Human Disease–Gene Associations
Due to gene mutation and expression affecting diseases, diseases
are closely related to genes. On the dataset, 74 experimentally
verified disease–gene associations between 61 genes and 88
diseases are filtered out, downloaded from http://cssb2.biology.
gatech.edu/knowgene/.

Human CircRNA–MiRNA Associations
With plenty miRNA binding sites (Hansen et al., 2013; Peng et al.,
2020b), circRNAs actively affect the expression of miRNA’s
downstream genes as miRNA sponges (Peng et al., 2017; Zeng
et al., 2020). We obtain 17844 known circRNA–miRNA
associations between 640 miRNAs and 585 circRNAs from
ENCORI (available at http://starbase.sysu.edu.cn/agoClipRNA.
php? source=circRNA).

Human CircRNA–Gene Associations
According to the previous research, circRNAs are verified to be
significant in regulating the expression of genes. On the dataset,
487 known circRNA–gene associations between 418 genes and
585 circRNAs are extracted from http://cssb2.biology.gatech.edu/
knowgene/search.html.

Disease Semantic Similarity
The semantic information of the diseases has been wildly adopted
to measure the similarity of diseases because of its effectiveness
and stability. In this study, we obtain the related annotation terms
for each disease from MeSH.

In MeSH, the directed acyclic graph (DAG) is applied to
represent the semantic relationship among diseases, in which
nodes denote corresponding disease information and directed
edges denote the relationship among diseases. Specifically, disease
di can be described as three items DAGi = [di, T (di, E(di))], where
T(di) represents di itself and its ancestor nodes and E(di) is
relationships between di and all diseases. The contribution of
disease di in DAGi is formulated as follows:

{ Ddi(n) � 1 if n � d
Ddi(n) � max{σ ·Ddi(n′)∣∣∣∣n′∈ children of n} if n ≠ d

, (1)

where σ denotes the attenuation factor for semantic contribution,
which is defined as the optimal value of 0.5 according to Wang’s
experience Wang et al. (2010); n’ represents the child node of the
node n. Therefore, the overall semantic score of the disease di is
measured by accumulating the contribution scores from its
ancestor diseases and itself as follows:

D(di) � ∑
n∈T(di)

Ddi(n). (2)

In general, diseases with more common parts shared in the
DAG achieve higher semantic similarities. Based on this
hypothesis, the value of disease semantic similarity between
disease di and disease dj is formulated via Eq.3:

DS(di, dj) � ∑n∈Tdi
∩Tdj

(Ddi(n) +Ddj(n))
D(di) +D(dj) . (3)

CircRNA Functional Similarity
According to previous studies, circRNAs that are relevant to more
similar diseases are prone to bemore similar in functions (Li et al.,
2019). Then, the BMA method is deployed to measure the
functional similarity score among different circRNAs
according to relevant disease sets. Given a specific disease di
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andD = (d1, d2, . . . , dt), the score of functional similarity between
circRNA ci and circRNA cj is measured via Eqs 4, 5:

FS(ci, cj) � ∑|Di|

m�1
S(dm,Dj) +∑|Dj|

n�1
S(dn, Di)

|Di| +
∣∣∣∣Dj

∣∣∣∣ , (4)

S(dm,Dj) � max
1≤t≤|Dj|(S(dm, dt)), (5)

whereDj represents the collection of diseases associated with circRNA
cj. S(dm, Dj) represents the similarity between disease dm associated
with circRNA ci and disease collection Dj associated with circRNA cj.

Pearson’s Correlation Coefficient Similarity
Since the circRNA functional similarity network and the disease
semantic similarity network are prone to be sparse, we adopt
Pearson’s correlation coefficient approach to enrich multisource
similarity data by calculating the linear correlation among
different variables. To be specific, the value of Pearson’s
correlation between variable M and variable N is measured as
follows:

Cor(M,N) � cov(M,N)�������������
var(M)var(N)√ , (6)

where var(M) measures the variance of M; cov(M, N) calculates
the covariance between M and N; the value of Cor(M, N) ranges

from −1 to 1, which reflects the strength of the linear correlation
between M and N.

Four binary networks have been built including the
disease–gene network, circRNA–miRNA network,
circRNA–gene network, and disease–miRNA network. Then,
Pearson’s correlation coefficient approach is adopted to
compute disease similarity and circRNA similarity via
corresponding bipartite networks. The equation is computed
as follows:

Cor(ni, nj) � cov(IP(ni), IP(nj))��������������������
var(IP(ni))var(IP(nj))√ , (7)

where IP(ni) denotes the ith row of the corresponding association
network. Cor(ni, nj) denotes the value of Pearson’s correlation
similarity between node ni and node nj based on the
corresponding association network.

METHODS

In this work, we develop an advanced method GATGCN via the
graph attention network and graph convolutional network to
detect potential circRNA–disease relationships. As shown in
Figure 1, the complete process could be summarized in four

FIGURE 1 | Overall workflow of the GATGCN.
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steps: First, the CKA-based model is adopted to fuse multisource
similarity data for circRNAs and diseases. Second, we adopt the
graph attention network to calculate the dense representation of
nodes on the fused disease similarity network and fused circRNA
similarity network. Third, we construct the heterogenous network,
including circRNA–disease interactions network, feature matrix of
diseases, and feature matrix of circRNAs. Eventually, the graph
convolutional network is adopted to get prediction scores based on
the constructed heterogenous network.

Centered Kernel Alignment
In previous studies, multisource data are usually fused by
calculating the average value, which ignores the importance
among different kernels. Thus, the centered kernel alignment
(CKA) model (Wang et al., 2021) is adopted to fuse several kinds
of similarities for diseases and circRNAs based on different
weights. We consider Kd = {K1

d, . . ., K
v
d} and Kc = {K1

c , . . ., K
u
c }

as different kernels for disease space and circRNA space. The v
and u denote the number of kernels from disease space and
circRNA space, respectively. Meanwhile, the basic CKA model
(Cristianini et al., 2006) is used as the objective of MKL (Ding
et al., 2019) to measure the corresponding weight of each kernel.

To be specific, the kernels Kp
c and K*d based on optimal weight

are calculated as follows:

Kp
c � ∑u

p�1
apc K

p
c , Kp

c ∈ Rm×m, (8)

Kp
d � ∑v

p�1
aqdK

q
d, Kq

d ∈ Rn×n, (9)

where ɑc = {ɑ1c , . . ., ɑ
u
c }and ɑd = {ɑ1d, . . ., ɑ

v
d}.

Basic CKA (Cristianini et al., 2006) is adopted to calculate the
weights of each kernel on the training set. The kernel alignment
score between the two kernels is formulated as follows:

U(E, I) � 〈E, I〉F
‖E‖F‖I‖F, (10)

where E, I denotes the corresponding similarity matrix, ||E||F denotes
the Frobenius norm, and <E, I> = Trace(ETI) denotes the Frobenius
inner product. The kernel alignment score represents the similarity
among different kernels. Specifically, the kernel alignment score
between the similarity kernel (disease kernel or circRNA kernel) and
the ideal kernel matrix is measured as follows:

max
β≥0

CU(Kp, Kideal) � max
β≥0

〈ZNKpZN,Kideal〉F
‖ZNKpZN‖F‖Kideal‖F, (11)

subject ˜ to ˜Kp � ∑N
p�1

βpKp β≥ 0, p � 1, 2..., N, (12)

∑N
p�1

βp � 1, (13)

where Kideal denotes a label kernel constructed by known
associations; Kideal, d = YT

trainYtrain ∈ Rn×n and Kideal, c =
YtrainY

T
train ∈ Rm×m denote the ideal kernel of diseases and

circRNAs, respectively.

Attention Mechanism on Similarity
Considering that current methods did not capture potential
features on the similarity network, we adopt the graph
attention method to learn latent representation of diseases and
circRNAs, which assigns corresponding weights to different node
features based on the local graph structure to ignore noise and
redundancy. The advantage of the attention mechanism is to
directly evaluate which features are preferred embedding for
specific downstream tasks by calculating the weights. First, we
obtain the corresponding association matrix by setting a
threshold on the similarity network for diseases and circRNAs.
Then, the GAT (Veličković et al., 2017) is applied to learn dense
representation for diseases and circRNAs as follows:

The input layer of the graph attention network is formulated
as follows:

f � {f1, f2, ..., fN}, fi ∈ RF, (14)
where F denotes the dimension of features, and N represents the
number of nodes in the corresponding similarity network. f ∈
RN×F is constructed by the features of nodes in the corresponding
similarity network. The output layer of the graph attention
network is defined as follows:

f′ � {f1
′, f2

′, ..., f′
i}, f′

i ∈ RF′, (15)
where F′ denotes the length of learned features, and f’ ∈ RN×F’

represents the learned latent representations of nodes in the
network. The first step is to calculate the weight of the
corresponding neighbor node. The importance of the given
nodes is computed by the self-attention mechanism. For each
association pair between node ni and node nj, the attention
coefficient eij is calculated as follows:

eij(ni, nj) � att(Wfi,Wfj), (16)
where att represents a mapping function transforming high-level
features to a real number for association pair between node ni and
node nj based on input features, andW ∈ RF’×F denotes a trainable
weight matrix. To avoid the influence of dimension between
different attention coefficients, eij is further normalized as follows:

θij � softmax(eij) � exp(eij)∑t∈Ni
exp(eit)′, (17)

where Ni represents the collection of neighbor nodes of node ni.
θij denotes the normalized weight representing the importance
between node ni and node nj in the network.

From the abovementioned formula, we obtain the combined
attention mechanism as follows:

θij � exp(leakyRelu(aT[Wfi

∣∣∣∣∣∣∣∣Wft]))∑t∈Ni
exp(leakyRelu(aT[Wfi

∣∣∣∣∣∣∣∣Wft]))′, (18)

where leakyRelu denotes a non-saturated activation function,
which can solve the vanishing gradients and accelerate
convergence. a ∈ R2F’ denotes the weight matrix, which maps
features to a real number. The second step is to aggregate the
features of all neighbors for a given node by integrating the

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8299375

Li et al. Exploring CircRNA–Disease Associations

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


corresponding weight. The aggregation between the given node
and neighbors is formulated as follows:

f′
i � σ(∑

t∈Ni
θitWft) (19)

where σ denotes a non-saturated activation function. Multi-head
attention mechanism is applied in GAT to integrate features and
prevent overfitting. The output with the multi-head attention
mechanism contains the features in different representation
subspaces, which enhances the expressive capacity of the
model. To be specific, the multi-head attention model based
on the combination of K-independent attention mechanisms
learns latent features as follows:

f′
i � σ(1

K
∑K

K�1∑
t∈Ni

θkit ·WKft), (20)

where K represents the number of self-attention models. Wk

denotes the trained weight matrix of the kth attention model.

Heterogenous Network
The heterogenous network is constructed as initial features of
GCN, including circRNA–disease associations, learned feature
matrix of circRNAs, and learned feature matrix of diseases. The
binary matrix A is constructed, and Aij = 1 if the interaction
between circRNA ci and disease dj has been verified; otherwise Aij

= 0. The learned feature matrix of circRNAs and learned feature
matrix of diseases based on GAT are denoted as matrix Sc and
matrix Sd, respectively. The heterogenous network AH is defined
as follows:

AH � [ Sc

AT
A
Sd

] ∈ R(M+N)×(M+N). (21)

Graph Convolutional Network on
Heterogenous Network
In recent years, GCN has achieved superior performance in node
prediction, node classification, and edge prediction tasks (Kipf
and Welling, 2016). In order to discover potential relationships
between diseases and circRNAs, GCN models (Wang et al.,
2020b) are designed to effectively extract features of
circRNA–disease relationships based on the global graph
structure by aggregating feature vectors of neighbors. To be
specific, given a network G, each layer of the GCN model
embedding is formulated as follows:

H(l+1) � σ(D−1
2GD−1

2H(l)W(l)), (22)
whereH(l) denotes the propagation of features at the lth layer, σ(·)
represents a nonlinear activation function, D = diag(∑

i
Gij)

denotes the degree matrix of G, and W(l) is the trained weight
matrix at the lth layer. GCN integrates low-level features to
construct high-level representations of nodes on the
constructed heterogenous network AH. In addition, we adjust
the number of graph convolutional network layers and set node
dropout to avoid overfitting, which can reduce excessive

parameters and improve the generalization ability of the
GATGCN. The penalty factor µ is set to regulate the
contribution of learned similarity features in the embedding of
graph convolutional layers. Specifically, the input heterogenous
network G is defined as follows:

G � [ μ · Sc
AT

A
μ · Sd ]. (23)

Then, the initial embedding is defined as follows:

H(0) � [ 0
AT

A
0
]. (24)

The first layer of the GCN model embedding is calculated as
follows:

H(1) � σ(D−1
2GD−1

2H(0)W(0)), (25)
where W(0) ∈ R(M+N)×k represents an input-to-hidden trained
weight matrix, H(1) ∈ R(M+N)×k represents the first-layer
propagation of features, including circRNAs and diseases. K
denotes the embedding dimension in graph conventional
layers. We adopt the exponential linear unit (Clevert et al.,
2016) as the nonlinear activation function to enhance noise
robustness and expressive capacity of the model in all graph
convolutional layers. Eventually, the bilinear decoder A′
proposed by Huang et al., (2020) is deployed to reconstruct
the circRNA–disease association matrix as follows:

A′ � sigmoid(HCW′HT
D), (26)

whereW′ ∈ Rk×k denotes a trained weight matrix. HD ∈ RN×k and
HC ∈ RM×k represent the last embedding for diseases and
circRNAs, respectively. The final predicted relationship score
a′ij between circRNA ci and disease dj is obtained according to
the corresponding (i, j)th entry of A′.

RESULTS

In this section, several verification experiments are deployed to
assess the predictive capacity of GATGCN. First, we assess the
influence of different parameters setting on GATGCN. Second,
we introduce the evaluation metrics under leave-one-out cross-
validation and 5-fold cross-validation to analyze the predictive
capacity of GATGCN. Third, we design the ablation study to
assess the impact of each part on GATGCN. Fourth, we discuss
and compare GATGCN with state-of-the-art models on the same
dataset. Last, case studies are deployed to further assess the
performance in detecting potential relationships on GATGCN.

Parameter Setting
The performance of the model is frequently impacted by
hyperparameter settings. Analysis of the parameters can
quantitatively evaluate the stability of the model and provide a
reference for parameter selection. The learning rate is significant
to the convergence of the gradient descent algorithm in the
model. Figure 2 indicates that the model will converge slowly
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with too small a learning rate, while too large a learning rate
makes it hard to converge. According to the results in Figure 3,
the embedding dimension within a certain size range has less
impact on the convergence of our model. However, when the
embedding dimension is too large, the model is prone to
overfitting due to plenty of parameters. As shown in Figure 4,
the model performs better with small layers of the graph
convolutional network, and the performance drops
significantly when the number of layers of GCN is l > 4. The
reason is that the GCN with more layers not only captures more
global prior information but also captures a lot of noise at the
same time. Meanwhile, the penalty factor µ is set to regulate the
contribution of learned similarity features in the propagation of
convolutional layers, and the dropout rate a is adopted to avoid
overfitting. As shown in Figure 5, the model achieves best
performance at µ = 6 and a = 0.6.

Evaluation Metrics
Cross-validation is a self-consistent testing approach widely adopted
to demonstrate the predictive capacity of a method. The basic idea is
to carry out the resampling method to select a portion of the
benchmark data set as the training set to train the model, and
the remaining samples to verify themodel. Five-fold cross-validation
and leave-one-out cross-validation are deployed to assess the
predictive capacity of GATGCN. For five-fold cross-validation,
the whole samples in the dataset are randomly separated into five
roughly identical sections, four of which are adopted to train the
GATGCN and the other is used to test the GATGCN. In order to
decrease the bias produced by sample segmentation, the five-fold
cross-validation is repeated 30 times to calculate the average result as
the ultimate output. For leave-one-out cross-validation, each time
only one sample in the dataset is selected among all recorded
circRNA–disease relationships to test the model, and the
remaining known relationships are utilized as training samples.
In this study, since circRNA functional similarity relies on known
associations; we recalculate the circRNA functional similarity in each
repetition of the experiment.

FIGURE 2 | Outcome of comparing various learning rates.

FIGURE 3 | Outcome of comparing various embedding dimensions.

FIGURE 4 | Outcome of comparing various GCN layers.

FIGURE 5 | Outcome of comparing various dropout rates and penalty
factors.
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In this study, the area under the curve (AUC) is applied as the
primary metric to assess our model, which can visually show the
predictive ability of GATGCN under each decision threshold.
The basic principle is to treat the false-positive rate (FPR) and the
true rate (TPR) as a two-dimensional coordinate point in a
Cartesian coordinate system with FPR as the abscissa and TPR
as the ordinate under different discrimination thresholds.
Besides, several threshold-based metrics are adopted to further
evaluate the predictive performance of the GATGCN including
recall, specificity, accuracy, and F1. The detailed results of five-
fold cross-validation and leave-one-out cross-validation are
summarized in Table 1.

Ablation Study
The model GATGCN is used to detect potential relationships
between diseases and circRNAs based on the centered kernel
alignment model (CKA), graph attention network (GAT), and
graph convolutional network (GCN). In order to verify the
importance of CKA, GAT, and GCN in our model, we apply
the ablation study to our model. In this part, we replace the
CKA model with calculated average to fuse multisource
similarity as NOCKA. Meanwhile, we only combine the

CKA model and GCN model as NOGAT to calculate
association scores. In addition, we only adopt the GCN to
predict associations between diseases and circRNAs as
NOCKAGAT. According to the results in Figure 6, the
complete model GATGCN is compared with NOCKA,
NOGAT, and NOCKAGAT with five-fold cross-validation,
which achieves the best AUC of 0.932. In general, using the
the graph attention network on the similarity network is
beneficial to learn the latent representation of nodes. The
AUC of GATGCN and NOCKA is significantly higher than
that of the other two models, which indicates that GAT is
significant to detect relationships between diseases and
circRNAs. Moreover, the comparison between GATGCN
and NOCKA suggests that the fusion of multisource
similarity based on weights can improve performance in
circRNA–disease relationship prediction.

Comparison With Other Methods
To confirm the advantage of GATGCN, we compare it with
several classic prediction methods with five-fold cross-
validation. Since these methods adopt various datasets and
evaluation metrics, we apply the same dataset and AUC as the
metrics to compare the predictive capacity of models fairly and
reasonably. In this part, the GATGCN is compared with
several state-of-the-art methods, including KATZHCDA
(Fan et al., 2018a), DWNN-RLS (Yan et al., 2018), PWCDA
(Lei et al., 2018), GCNCDA (Wang et al., 2020b), and
GATCDA (Bian et al., 2021). KATZHCDA is a graph-based
method that uses the walking lengths and number of walks
among nodes to measure the similarity among nodes in the
heterogenous network. The DWNN-RLS measures initial
relational values of new diseases and circRNAs via the
decreasing weight k-nearest neighbor model and adopts the
Kronecker product kernel to predict associations between
diseases and circRNAs. The PWCDA predicts the
circRNA–disease relationships by searching the paths
without repeating for all circRNA–disease pairs based on
the constructed heterogenous network. The GCNCDA
extracts high-level features in the heterogenous network
through graph convolutional neural networks and predicts
the correlation between circRNAs and diseases via Forest by
Penalizing Attributes. GATCDA learns the latent
representation of nodes by assigning corresponding weights
to each neighbor node, which efficiently aggregates the
information of neighbor nodes and utilizes the local
features of the graph. The results in Figure 7 indicate that

TABLE 1 | Results generated by the GATGCN under five-fold CV and LOOCV.

Test set Accu Rec Spe F1 AUC

5-fold CV_1 0.988 0.682 0.989 0.437 0.956
5-fold CV_2 0.987 0.568 0.991 0.361 0.918
5-fold CV_3 0.987 0.644 0.988 0.373 0.922
5-fold CV_4 0.990 0.627 0.991 0.414 0.931
5-fold CV_5 0.991 0.647 0.990 0.402 0.934
Average 0.9886 ± 0.0024 0.6336 ± 0.0656 0.9898 ± 0.0012 0.3974 ± 0.0396 0.9322 ± 0.0238
LOOCV 0.987 0.782 0.992 0.542 0.951

FIGURE 6 | Performance of the GATGCN based on various model
combinations.
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GATGCN achieves the best AUC of 0.932, which is
substantially greater than that of other models, and
produces 7.9%, 43.3%, 4.5%, 3.2%, and 3.4% improvement
in the AUC compared with KATZHCDA, DWNN-RLS,
PWCDA, GCNCDA, and GATCDA respectively.

Furthermore, the number of known interactions between
diseases and circRNAs in the dataset can greatly affect the
performance of the method, which also indicates the

robustness of the method. Thus, we randomly remove a part
of known associations between diseases and circRNAs at a ratio
r∈{80%, 85%, 90%, 95%, and 100%} with five-fold cross-
validation. As shown in Figure 8, the performance of
GATGCN improves with increasingly known associations.
Meanwhile, the GATGCN achieves the best result across
different data richness among KATZ, DWNN-RLS, PWCDA,
GCNCDA, and GATCDA.

Case Studies
In this part, two kinds of case studies are utilized to further assess
the reliability of the GATGCN for detecting potential
circRNA–disease associations, which calculated the predicted
probability matrix via a candidate set comprising unproven
circRNAs. For the first kind of case study, all known
circRNA–disease relationships are selected as training samples,
and all unknown circRNA–disease relationships are prioritized

FIGURE 7 | Comparison results of various prediction models under five-
fold cross-validation.

FIGURE 8 | Performance of methods based on various percentages of known relationships.

TABLE 2 | Top 10 candidate circRNAs related to lung cancer.

Rank circRNA Evidence (PMID)

1 hsa_circ_0007385 29372377
2 hsa_circ_0014130 29440731
3 hsa_circ_0016760 33416186
4 hsa_circ_0043256 28958934
5 hsa_circ_0012673 32141533
6 hsa_circRNA_404833 unconfirmed
7 hsa_circRNA_006411 unconfirmed
8 hsa_circRNA_401977 unconfirmed
9 hsa_circ_0013958 28685964
10 hsa_circ_0006404 unconfirmed
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according to the corresponding prediction scores. We select the
top 10 scores by sorting the scores of the probability matrix in
descending order and verified those predicted candidates through
validated databases and literature, such as CircR2Disease,
CircBase, and PubMed. Eventually, we adopt case studies on
lung cancer, diabetes retinopathy, and prostate cancer.

Lung cancer occurs in the bronchial mucosa or glands with the
highest incidence and the highest number of deaths in the world.
The results in Table 2 show that six associations are verified by
experiments among top 10 predicted candidate circRNAs for lung
cancer. For example, the hsa_circ_0007385 (top 1) knockdown
resulted in considerable inhibition of the proliferation, invasion,
and migration of lung cancer cells (Jiang et al., 2018). Zhang et al.
discovered that hsa_circ_0014130 (top 2) exhibited substantially
overexpression in NSCLC tissues (Zhang S. et al., 2018). Zhu et al.
indicated that hsa_circ_0016760 (top 3) accelerated the
malignant growth of NSCLC by sponging miR-145-5p/FGF5
(Zhu et al., 2021).

Diabetes retinopathy is a microvascular complication caused
by diabetes, which can be divided into proliferative diabetic
retinopathy and non-proliferative diabetic retinopathy. As
shown in Table 3, the predictive results contain seven
experimentally verified associations among the top 10 ranked
candidate circRNAs. For instance, hsa_circRNA_063981 (top 1),
hsa_circRNA_404457 (top 2), and hsa_circRNA_100750 (top 3)
are considerably elevated in the serum of T2DR patients
compared to T2DM and control patients (Gu et al., 2017).

Prostate cancer refers to malignant tumors produced by the
epithelial cells of the prostate under the action of a variety of

carcinogenic factors, which causes bone pain, pathological
fractures, and paraplegia. Using the GATGCN, we successfully
predict five of 10 top candidate circRNAs for prostate cancer
(Table 4). The results in the literature indicate that circHIPK3
(top 1) expression is upregulated in prostate cancer cells and
prostate cancer tissues (Liu et al., 2020). Kong et al. found that
circFOXO3 (top 3) acted as a sponge for miR-29a-3p, exhibiting
oncogenic activity in prostate cancer (Kong et al., 2020). Li et al.
revealed that hsa_circ_0044516 (top 8) downregulation
suppressed prostate cancer cell metastasis and growth (Li T.
et al., 2020).

In order to further assess the capacity of GATGCN for
detecting new diseases, two common diseases, that is, clear cell
renal cell carcinoma and cholangiocarcinoma are chosen for case
studies. Specifically, all known associations about clear cell renal
cell carcinoma and cholangiocarcinoma are reset to unknown and
all candidate circRNAs are prioritized according to
corresponding prediction scores. Eventually, we select the top
10 scores to assess the performance of GATGCN for detecting
new circRNAs and diseases.

Cholangiocarcinoma is a malignant tumor that originates
from the extrahepatic bile duct. The result in Table 5 shows
that five associations are verified among the top 10 ranked
candidate circRNAs. For example, Louis et al. demonstrated
that the expression of circHIPK3 (top 2) was specifically
elevated in cholangiocarcinoma cell lines (Louis et al., 2019).
Chen et al. discovered that in cholangiocarcinoma, ciRS-7 (top 3)
acts as an oncogene and promotes tumor development by
competitively inhibiting miR-7. (Chen et al., 2021). Lu et al.

TABLE 3 | Top 10 candidate circRNAs related to diabetes retinopathy.

Rank circRNA Evidence (PMID)

1 hsa_circRNA_063981 28817829
2 hsa_circRNA_404457 28817829
3 hsa_circRNA_100750 28817829
4 hsa_circRNA_406918 28817829
5 hsa_circRNA_104387 28817829
6 hsa_circRNA_103410 28817829
7 hsa_circRNA_100192 28817829
8 hsa_circ_0013509 unconfirmed
9 circSLC8A1-1 unconfirmed
10 hsa_circ_101396 unconfirmed

TABLE 4 | Top 10 candidate circRNAs related to prostate cancer.

Rank circRNA Evidence (PMID)

1 circHIPK3 32547085
2 hsa_circ_0004383 unconfirmed
3 circ-Foxo3 31733095
4 hsa-circRNA 2149 unconfirmed
5 circR-284 unconfirmed
6 circDLGAP4 unconfirmed
7 hsa_circ_0008887 unconfirmed
8 hsa_circ_0044516 31625175
9 CDR1as 23900077
10 Cir-ITCH 32904490

TABLE 5 | Top 10 candidate circRNAs related to cholangiocarcinoma.

Rank circRNA Evidence (PMID)

1 hsa_circ_000438 unconfirmed
2 circHIPK3 31654054
3 ciRS-7 33390857
4 circR-284 unconfirmed
5 circDLGAP4 unconfirmed
6 circSMARCA5 31880360
7 hsa_circ_0008887 unconfirmed
8 hsa_circ_0006404 unconfirmed
9 hsa_circRNA_000585 34182814
10 hsa_circ_0000673 33221765

TABLE 6 | Top 10 candidate circRNAs related to clear cell renal cell carcinoma.

Rank circRNA Evidence (PMID)

1 circHIPK3 32409849
2 circR-284 unconfirmed
3 circDLGAP4 unconfirmed
4 hsa_circ_0004383 unconfirmed
5 Cir-ITCH unconfirmed
6 hsa_circRNA_003251 unconfirmed
7 circPVT1 33453148
8 hsa_circ_0001451 30271486
9 ciRS-7 32496306
10 circZFR 31571906
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indicated that circSMARCA5 (top 6) expression was lower in ICC
tumor tissues than surrounding tissues (Lu and Fang, 2020).

Clear cell renal cell carcinoma is derived from adenocarcinoma of
renal tubular epithelial cells, which forms hemangioma thrombus or
metastasizes to lymph nodes and other organs. As shown inTable 6,
the predicted results contain five experimental verified associations
among the top 10 ranked candidate circRNAs. For example, Li et al.
discovered that overexpression of circHIPK3 (top 1) substantially
reduced CCRCC cell invasion and migration in vitro (Li H. et al.,
2020). Zheng et al. discovered that circPVT1 (top 7) promotes
progression in CCRCC cells by regulating TBX15 expression and
spongingmiR-145-5p (Zheng et al., 2021).Wang et al. indicated that
hsa_circ_0001451 (top 8) upregulation could promote CCRCC cell
invasion and proliferation (Wang G. et al., 2018).

The results of the case studies show that GATGCN can
efficiently detect the potential circRNA–disease relationships
and provide clues for exploring the mechanism between
human complex diseases and circRNAs.

CONCLUSION

Cumulative evidence has proved that the development of powerful
calculation methods is significant to infer the interactions between
diseases and circRNAs. These calculation models address challenges
of high cost and high time consumption in conventional biological
experiments. In this study, an advanced calculation method called
GATGCN is designed to discover potential circRNA–disease
relationships via graph attention mechanism and graph
convolutional network. First, multisource similarity data for
circRNAs and diseases are fused by the centered kernel
alignment model. Second, the graph attention network is
deployed to learn the dense representation of nodes on the
disease–disease similarity network and circRNA–circRNA
similarity network. Third, the heterogenous network is
constructed by connecting known circRNA–disease associations,
feature matrix of diseases, and feature matrix of circRNAs. Finally,
the graph convolutional network is applied to get prediction scores
based on the constructed heterogenous network. To further confirm
the advantage of GATGCN for detecting circRNA–disease
interactions, we compare it with several state-of-the-art prediction
models under five-fold cross-validation. The results indicate that
GATGCN achieves significant performance among compared
methods. Meanwhile, the case study substantiates the excellent
capability of the GATGCN for detecting potential
circRNA–disease relationships. In conclusion, GATGCN is a

powerful and promising approach for detecting circRNA–disease
relationships.

Although we have integrated multisource biological information
and utilized graph attention network and graph convolutional
network to learn latent representation for diseases and circRNAs,
there is still room to strengthen the predictive capability of the
model. On the one hand, a large number of nonlinear features are
extracted to detect circRNA–disease associations, which ignore the
importance of linear features.We could further solve this problem by
fusing nonlinear features and linear features to enhance the stability
of our model. On the other hand, feature aggregation in excessive
network layers could affect the expression of initial feature
information. In the future, we can splice the representations of
nodes in different layers as node features.
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