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Abstract: Background: Plant lipoxygenases (LOXs, EC 1.13.11.12) are involved in lipid degradation,
regulation of growth and development, senescence, and defence reactions. LOX represents the
starting enzyme of the octadecanoid pathway. The aim of the work was to purify LOX from California
poppy (Eschscholtzia californica Cham.), to determine its biochemical properties and to identify and
quantify the products of LOX reaction with unsaturated fatty acids. Methods: LOX from California
poppy seedlings was purified by hydrophobic chromatography (Phenyl-Sepharose CL-4B) and by
ion-exchange chromatography (Q-Sepharose). The isolated LOX was incubated with linoleic acid
used as a substrate. The HPLC experiments were performed with the Agilent Technologies 1050 series
HPLC system. For the preparative separation of a mixture of hydroxy fatty acids from the sample
matrix, the RP-HPLC method was used (column 120-5 Nucleosil C18). Then, the NP-HPLC analysis
(separation, identification, and determination) of hydroxy fatty acid isomers was carried out on a
Zorbax Rx-SIL column. Results: The purified LOX indicates the presence of a nontraditional plant
enzyme with dual positional specificity (a ratio of 9- and 13-hydroperoxide products 1:1), a relative
molecular mass of 85 kDa, a pH optimum of 6.5, an increasing activity stimulation by CaCl2 till
2 mM, and a high substrate reactivity to linoleic acid with kinetic values of KM 2.6 mM and Vmax

3.14 µM/min/mg. Conclusions: For the first time, the LOX from California poppy seedlings was
partially purified and the biochemical properties of the enzyme were analyzed. A dual positional
specificity of the LOX found from California poppy seedlings is in agreement with the results
obtained for LOXs isolated from other Papaveraceaes. A 1:1 ratio of 9-/13-HODE is attractive for the
simultaneous investigation of both biotic stress responses (indicated by the 9-HODE marker) and the
biosynthesis of jasmonic acid and jasmonates (indicated by the 13-HODE marker).

Keywords: lipoxygenase; hydroxy fatty acid isomers; Eschscholtzia californica Cham.; purification;
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1. Introduction

California poppy (Eschscholtzia californica Cham.) of the Papaveraceae family is an annual plant
originating from California [1]. The entire plant produces a mixture of tertiary and quaternary
isoquinoline alkaloids. In traditional medicine, it is used for its sedative, anxiolytic, and spasmolytic
effects. Among the alkaloids present in California poppy, sanguinarine has attracted increasing
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attention. This benzophenanthridine alkaloid has antimicrobial activity and plays a role in plant
defence [2]. Besides its antimicrobial properties, sanguinarine also exhibits antiviral and cytotoxic
activities [3].

Lipoxygenases (LOXs, linoleate:oxygen oxidoreductases, EC 1.13.11.12) are a class of widespread
dioxygenases that catalyze the regio- and stereo-specific addition of molecular oxygen to polyunsaturated
fatty acids (PUFA) containing one or more cis,cis-1,4-pentadiene systems of double bonds to form
conjugated mono-hydroperoxy fatty acids. Linoleic (LA) and linolenic acids (LeA) are the most common
substrates for LOXs in plants [4,5]. In higher plants, the oxygenation of LA by a LOX enzyme produces
the corresponding 9- or 13-hydroperoxide derivatives (9- or 13-HPODE). According to the positional
specificity of LA dioxygenation, plant LOXs are classified as 13-LOX or 9-LOX. The enzyme is
characterized as 13-LOX when the product formed is 13-hydroperoxy-9(Z),11(E)-octadecadienoic
acid (13-HPODE) and 9-LOX when 9-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9-HPODE)
is predominantly produced [4,6]. Recently, LOX isoenzymes with dual positional specificity and
producing both HPODE isomers have been reported [7–9].

Plants usually express several LOX isoforms. The intracellular location of LOXs may be cytosolic
or organelle-associated. LOXs are present in the majority of plant organs, and their gene expression
changes during developmental stages and is regulated by different forms of stress, such as wounding
or pathogen attack [10].

LOXs are enzymes implicated in plant lipid metabolism. It has been proposed that these enzymes
play an important role in the formation of signalling molecules, such as jasmonic acid and phytodienoic
acid, at distinct stages of development and in plant defence responses [10,11]. LOX catalyzes the first
reaction in the pathway, collectively named the lipoxygenase (octadecanoid) pathway, containing
at least seven different branches. The key intermediates of this pathway (formed by the LOX)
are hydroperoxides of fatty acids that are transformed into their corresponding metabolites called
oxylipins [12]. The 9-hydroperoxides are enzymatically converted into a variety of oxylipins in plants,
which are major compounds of the flavours and aromas of many fruits. The 9-LOXs also have a role
in biotic stress responses. On the other hand, only 13-LOXs activate the biosynthesis of jasmonates
and jasmonic acid, typically known as a wounding hormone [13]. Moreover, 13-LOX mediates the
mobilization and release of 13-HODE during germination [14]. Therefore, the positional specificity of
LOX is the crucial factor in determining whether the LOX is involved in the biosynthesis of jasmonic
acid or not. Oxylipins generated by the LOX pathway have important biological activities as signalling
molecules such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or
divinyl ethers, and volatile compounds such as leaf alcohols [15,16].

Although California poppy is an interesting model object for the study of secondary metabolite
production (sanguinarine), there have been no references about the biochemical properties of California
poppy LOX before this study. The highest activity of LOX was observed in newly developing
tissues [10]. Therefore, the activity of the LOX during the germination of California poppy seeds was
analyzed in the present work. A characterization of the LOX from California poppy with respect to its
biochemical properties could help to broaden our knowledge about LOXs in higher plants.

The main goal of the work was to isolate and purify the LOX from California poppy seedlings
(Eschscholtzia californica Cham.) and to determine its biochemical properties, such as substrate and
positional specificity, pH optimum, the effect of calcium ion concentration, relative molecular mass,
and kinetic parameters.

2. Results and Discussion

2.1. LOX Activity during Germination of California Poppy Seeds

Changes in LOX activities during the germination of California poppy were analyzed in
1–7 day(s)-old seedlings (Figure 1). The enzyme activity increased with the period of germination,
with the maximum on the 4th day after germination, then the LOX activity decreased. Higher LOX
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activities were determined in developing seedlings than in endosperm. The maximum specific activity
of LOX was detected in 4-days-old developing seedlings without endosperm (38.77 ± 2.59 nkat/mg).
Based on these results, 4-days-old seedlings without endosperm were chosen for the purification of
California poppy LOX.
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Figure 1. Changes of specific lipoxygenase (LOX) activity in endosperm and in developing seedlings
(1st–7th day after germination). Linoleic acid was used as a substrate. Values are means ± SD from
triplicate experiments.

Oilseed germination is characterized by the mobilization of storage lipids, which provide energy
and serve as a major carbon source for the growth of seedlings. It is well-known that during
germination, new LOXs are synthetized in the seedlings and cotyledons, with a maximal accumulation
of LOX protein from a few hours to few days after germination. This corresponds with results observed
in sunflower seedlings (Helianthus annuus L.) during germination [17]. The LOX activity increased
from 1 to 5 days of germination, and then the enzyme activity declined on the 6th day. The highest LOX
activity was reported in 5-days-old sunflower seedlings. Similarly, purified LOX isolated from opium
poppy seedlings showed the highest activity on the 4th day after germination [9]. Terp et al. [18]
monitored the formation of oxylipins, which are indicative of endogenous LOX activity during the
first 2 weeks of germination, in oilseed rape (Brassica napus L.). In the case of seeds germinating in
the dark, the maximal accumulation of oxylipins was observed on the 3rd day of germination. All of
these results suggest that high LOX levels found during germination indicate the role of this enzyme
in plant growth and development.

2.2. Purification of California Poppy LOX

LOX purification consisted of several steps, as summarized in Table 1. Acetone powder was found
to be necessary for the optimization of LOX extraction from California poppy seeds, the preservation of
enzyme activity, the delipidation of plant material, and removing other impurities. Some undesirable
impurities that might act as inhibitors of the LOX may also have been removed. Acetone powder was
prepared from 4-days-old California poppy seedlings without endosperm. Solubilised acetone powder
was centrifuged at 12,000× g and the supernatant was used as a crude extract for the purification of
the LOX from California poppy. The crude extract was subjected to ammonium sulfate precipitation to
60% saturation as a first step of LOX purification. The specific activity of the LOX after precipitation
was 0.34 nkat/mg. Hydrophobic chromatography on a Phenyl-Sepharose CL-4B column was selected
as a subsequent stage for the partial purification process. As shown in Figure 2, one major peak was
detected with LOX activity (0.49 nkat/mg) after hydrophobic chromatography. Partially purified LOX
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was further purified by ion-exchange chromatography on a Q-Sepharose column (Figure 3). An overall
69-fold purification was achieved. The specific activity of the pure LOX reached 23.47 nkat/mg when
LA was used as a substrate.

Table 1. Purification of LOX from California poppy seedlings.

Purification Step Proteins (mg/mL) Activity (nkat/mL) Specific Activity
(nkat/mg) Purification Fold

Crude extract 0.78 0.27 0.34 1
Phenyl-Sepharose CL-4B 1.07 0.48 0.49 1.4

Q-Sepharose 0.04 0.90 23.47 69
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Williams and Harwood [19] isolated the LOX from callus cultures of Olea europaea L. In this
experiment, acetone powder from the cultures was used to prevent the loss of LOX activity. Ammonium
sulfate precipitation up to 60% saturation achieved a 12-fold purification of the LOX. After subsequent
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ion-exchange chromatography on a DEAE Sephadex A50, two LOX isoenzymes with 48 and
55 purification factors were obtained. The results of our studies correspond well with those obtained by
Holková et al. [9], where also one LOX isoenzyme from opium poppy was indicated. Vanko et al. [20]
isolated and purified the LOX from opium poppy chloroplasts with a purification fold of 126.1 by
a combination of ion-exchange chromatography and affinity chromatography. Other comparable
results to ours were reported by Lorenzi et al. [21]. Differential centrifugation and hydrophobic
chromatography yielded a 65-fold purified LOX isolated from fruit of the olive tree (Olea europaea L.).
Two LOX isoforms were isolated from broad beans (Vicia faba L.) [22], and a 327-fold purified LOX was
isolated from banana leaves by ammonium sulfate fractionation, hydroxyapatite column separation,
and gel filtration [23].

2.3. Determination of the Relative Molecular Mass of the LOX

The purity of California poppy LOX was detected by SDS-PAGE in 10% polyacrylamide gel.
The purified LOX appeared as a unique band at 85 kDa (Figure 4a) in Coomasse Brilliant Blue stained
gel. After an immunoblot with anti-soybean LOX antibodies, one band showing the same molecular
mass was identified (Figure 4b). In general, plant LOXs have a relative molecular mass in the range of
94–104 kDa [24]. However, in some plant sources, LOXs with lower molecular mass have also been
found. Our results are in good agreement with previously published data for some plant LOXs, such as
in banana leaves [23] and in common bean seeds [25]. The LOX 1 isoform isolated from pearl millet
has an Mr of approximately 85 kDa [26]. Interestingly, the Mr of the LOX from opium poppy seedlings
is 78 kDa [9] and the LOX isoenzyme isolated from the chloroplast of opium poppy leaves has an Mr
of 92 kDa [20].
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(10% acrylamide gel stained with Coomasse Brilliant Blue) of purified LOX from California poppy.
(b) Western blot analysis of a gel with the same samples. Lane 1: purified LOX from California poppy
after ion-exchange chromatography. Lane 2: protein marker PageRulerTM Plus Prestained Protein
Ladder (Fermentas, Lithuania) (11–250 kDa).

2.4. Optimal pH for LOX Activity

The enzymatic activity was analyzed spectrophotometrically at different pH values (range 5.0–9.0)
using LA as a substrate. A pH of 6.5 was determined to be the optimal pH for the activity of purified
LOX from California poppy (Figure 5). At a pH of 8.5, 37% of maximum activity was observed, and at
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a pH of 5.0, only 23% of maximum activity was observed. The optimum pH of the LOX enzyme from
other plants has been estimated to be between a wide pH range (5.5–9.5). On comparison to the pH
optimum for LOXs isolated from other plant sources, the same pH optimum for LOX activity was
reported for the enzyme from opium poppy seedlings [9], avocado fruit [27], tomato [28], and pea
roots [29]. Optimum pH is also known to be related to the type of LOX isoenzyme. Soybean LOX-1 has
a pH optimum at 9.0 and LOX-2 isoform at 6.5 [30]. The effect of pH on LOX activity may be explained
by the fact that at different pH the catalytic site of the enzyme has different conformations and iron
oxidation states [31].
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Figure 5. Effect of pH on the activity of the purified LOX from California poppy seedlings. Linoleic
acid was used as a substrate. The buffer system included 100 mM potassium phosphate buffer ranging
from pH 5.0 to 9.0. Values are means ± SD from triplicate experiments.

2.5. HPLC Analysis of LOX Reaction Products

LOXs catalyze the oxygenation of PUFAs with a cis,cis-1,4-pentadiene system to produce
corresponding conjugated diene hydroperoxides. Plant LOXs are usually classified as 9-LOX or
13-LOX on the basis of their product specificity. To investigate the positional specificity of the purified
LOX, the HPLC experiment was performed in two steps.

In the first step, the RP-HPLC preparative separation of the sample obtained from the incubation
of the isolated LOX with LA as a substrate was carried out according to the procedure described in [20].
The reaction products, hydroperoxy fatty acids, were reduced with NaBH4 to the corresponding
hydroxy fatty acid and then separated from the incubated sample matrix. The reversed-phase
effectively removed a majority of the interfering residual sample matrix constituents present in
the isolated LOX employed for the incubation experiment, as can be seen in Figure 6 (upper
chromatographic profile). The mixed peak absorbing at 234 nm in the RP-HPLC profile containing
the hydroxy fatty acids (i.e., LA products as well as other possible structurally related compounds
originating from the plant matrix) was isolated and collected.

In the second step, the mixed peak fraction was subjected to an NP-HPLC analysis of each
individual 9- and 13-HODE: see the lower chromatographic profile in Figure 6. The normal-phase
HPLC mode was optimal for the fine separation of hydroxy fatty acids isomers, i.e., distinguishing
among structurally related products including 13-HODE, 9-HODE, and other possible structurally
related fatty acids originating from the plant matrix (the other two abundant peaks in the NP-HPLC
profile of Figure 6). For identification, the retention times of the reaction products of the California
poppy LOX were compared with the reaction products of soybean LOX and authentic standards of
9- and 13-HODE. Based on the calibration curves prepared using 9-HODE and 13-HODE standards,
the amount of LOX products formed during the reaction with LA was determined.
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The HPLC analysis of the purified California poppy LOX products showed a dual positional
specificity of the enzyme (lower chromatographic profile in Figure 6) with the ratio of 9-/13-HODE
being about 1:1 when LA was used as a substrate at a pH of 6.5. The concentration of 9-HODE
in the incubation mixture was calculated to be 3.86 ± 0.76 µg/mL and that of 13-HODE was
4.30 ± 0.60 µg/mL. For a comparison, commercial soybean LOX was analyzed. The main reaction
product of soybean LOX was 13-HODE (77%), while 9-HODE was formed at 23%. Interestingly, plant
LOXs with dual positional specificity are classified as nontraditional LOX enzymes able to synthetize
compounds that play a role in developmental processes and defence responses in plants. Dual-specific
LOX are supposed to be able to supply hydroperoxides both for jasmonate and plant leafy volatiles
biosynthesis [20]. The fact that California poppy LOX has a dual positional specificity with the ratio
of 9-/13-HODE being about 1:1 is in agreement with results obtained for LOXs isolated from other
Papaveraceaes, such us opium poppy seedlings [9] and chloroplast poppy LOX [20]. LOXs that
produce both 9-HODE and 13-HODE were detected in olive fruit (with the ratio of 9-/13-HPODE
being 2:1) [32], and nontraditional dual-specific LOX was expressed in maize seedlings in response to
wounding and stress [33].
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Figure 6. HPLC analysis of LOX reaction products for the determination of the positional specificity of
California poppy LOX. Upper panel: Chromatographic profile of the preparative RP-HPLC separation
of the sample obtained from the incubation of the isolated LOX with Linoleic acid (LA) as a substrate.
A marked peak represents an isolated fraction used for the subsequent NP-HPLC separation of HODEs.
The eluate of the isolated fraction was collected in the interval of 20–23 min. The elution time of the
marked peak is 21.971 min. Lower panel: Chromatographic profile of the fine NP-HPLC separation of
9-/13-HODE products present in the isolated RP-HPLC fraction. Two unidentified abundant peaks in
the NP-HPLC profile could be structurally related compounds, such as fatty acids originating from
the plant matrix (based on their similar elution and UV absorbance properties). The elution times of
13-HODE and 9-HODE are 9.398 and 15.778 min, respectively. For the RP- and NP-HPLC analytical
conditions see Section 3.5.
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2.6. Substrate Specificity of the LOX

The substrate specificity of the purified LOX was investigated using LA, LeA, and arachidonic
acid (AA) as substrates (Figure 7). The highest relative enzyme activity was obtained with LA (100%),
followed by LeA (16%) and AA (9%). These findings correspond with the features found for other
plant LOXs, which showed the highest activity when the reaction substrates were C18 PUFA, such as
LA or LeA. Furthermore, in many oilseeds plants (sunflower, cucumber), LA is a major fatty acid
esterified in storage triacylglycerols [14]. According to this, LA may be considered to be the main
substrate for the LOX in oilseed plants. LOXs from other plants have also shown high preference to
LA [34,35]. Interestingly, the eggplant LOX showed high affinity to LA but did not metabolize AA [35].
A LOX isolated from pea (Pisum sativum L.) showed a substrate preference to LA, followed by AA and
LeA [36].
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linolenic acid (LeA), and arachidonic acid (AA) were used as substrates. Values are means ± SD from
triplicate experiments.

2.7. Stimulatory Effect of Ca2+ Ions on LOX Activity

The activity of several plant LOX isoenzymes is calcium dependent, and therefore the effect of Ca2+

concentration on the activity of the purified LOX was evaluated. To examine the Ca2+ dependency of
the purified LOX from California poppy, the enzyme activity was analyzed spectrophotometrically at
a pH of 6.5. Calcium ions markedly increased LOX activity, and the results indicated that the maximal
stimulation of enzyme activity to 3.1 fold was observed at a concentration of 2 mM of CaCl2 (Figure 8).
The ability of calcium to stimulate LOX activity has been reported in avocado fruit [27] and in opium
poppy seedlings, in which the highest LOX activity was observed at 0.75 mM Ca2+ concentration [9].
In plants, calcium is known to play roles in senescence and defence against pathogens, and a possible
role for calcium in the oxidation of PUFA has been proposed. Although LOX activity was thought to
be calcium-independent in plants, the ability of calcium to stimulate LOX activity has been reported in
some plants. Furthermore, calcium may regulate the LOX-catalyzed oxidation of PUFA by more than
one mechanism [37].
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2.8. Kinetic Paramaters

On the basis of the Lineweaver–Burk method, the kinetic parameters of the purified LOX from
California poppy were determined using LA as a substrate. The value of the Michaelis–Menten constant
of the purified LOX was 2.6 mM and the Vmax was 3.14 µM/min/mg. Also, the kinetic parameters in
the presence of LeA as a substrate were analyzed (data not shown). Our results correspond well to those
obtained for the LOX from green pea (KM 2.33 mM) [38] and banana leaves (Vmax 2.4 µM/min/mg) [23]
using LA as a substrate. Similar results for Vmax were reported for the LOX purified from eggplant
(2.2 µM/min/mg) [35] and the LOX from Cichorium intybus L. (2.05 µM/min/mg) [34]. For the tomato
LOX, the value of KM was 4.2 mM [39] and for chloroplast opium poppy LOX 1.78 mM [20]. Lower KM

values obtained towards LA were for the olive LOX (0.89 mM) [27] and the membrane-bound LOX
isolated from banana leaves (0.15 mM) [23].

3. Materials and Methods

3.1. Plant Material

California poppy seeds (Eschscholtzia californica Cham., Papaveraceae) were obtained from SEVA
SEED, Valtice, Czech Republic. Seeds were treated using 5% sodium hypochlorite and rinsed with
sterile water several times. Sterile seeds were sown on moistened cotton wool placed in Petri dishes
and germinated in the dark at 25 ◦C and 70–80% relative humidity in an incubator (BINDER BD 115,
Tuttlingen, Germany).

3.2. Preparation of Crude Extracts

After different periods of germination (1st–7th day), California poppy seedlings were harvested
and separated from endosperm. Two grams (2 g) of plant material (endosperm or developing seedlings
without endosperm) were homogenized in a precooled mortar using 10 mL of potassium phosphate
buffer (100 mM, pH 6.5). Homogenates were centrifuged for 10 min at 12,000× g and 4 ◦C (Sigma 3-30K,
Osterode am Harz, Germany). Then, the supernatant was centrifuged for 5 min under the same
conditions and used for LOX activity determination.

3.3. Enzyme Purification

First, 54 g of 4-days-old developing seedlings without endosperm were ground with dry ice as
described by Obložinský et al. [40]. Acetone powder (3.0 g) was homogenized at a low temperature
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with 55 mL of extraction buffer containing 25 mM potassium phosphate buffer (pH 6.0), 1 mM
cysteine hydrochloride monohydrate, 0.5 mM ethylenediaminetetraacetic acid (EDTA), 10 mM sodium
thiosulfate, and 1 mM phenylmethylsulfonyl fluoride (PMSF). The homogenate was filtered through a
layer of cheesecloth and centrifuged at 12,000× g for 15 min at 4 ◦C.

All of the extraction and purification procedures were performed at 4 ◦C. The proteins in the
supernatant fluid were precipitated to 60% (w/v) saturation with ammonium sulfate and centrifuged at
15,000× g for 30 min. The concentrated protein sample was dissolved in 3 mL of potassium phosphate
buffer (50 mM, pH 7.0) containing 1 M ammonium sulfate and applied to a Phenyl-Sepharose CL-4B
column (Ø 1.5 × 15 cm, Sigma-Aldrich, St. Louis, MO, USA) equilibrated with the same buffer.
The resin was washed with 50 mM potassium phosphate buffer (pH 7.0) containing 1 M ammonium
sulfate, and bound proteins were eluted with 10 mM potassium phosphate buffer (pH 6.5) containing
0.5 mM glutathione and 0.04% (v/v) Tween 20, followed by 5 mM potassium phosphate buffer (pH 6.5)
containing 0.5 mM glutathione and 0.08% (v/v) Tween 20. Fractions of 2 mL were collected using an
Econo-Column® Pump (BIO-RAD, Hercules, CA, USA), and the protein elution profile was measured
spectrophotometrically at 280 nm (Epoch Microplate spectrophotometer, BioTek Instruments, Winooski,
VT, USA). Then, LOX activity was determined at 234 nm.

Pooled fractions with the highest LOX activity were concentrated to the final volume of 3 mL using
50 kDa membrane filter Amicon Ultra Centrifugal Filters Ultracel®-50K (Millipore, Massachusetts,
USA) using centrifugation at 15,000× g for 15 min and at 4 ◦C. The sample was applied to a
Q-Sepharose® Fast Flow column (Ø 2 × 15 cm; Sigma-Aldrich, St. Louis, MO, USA) pre-equilibrated
with potassium phosphate buffer (100 mM, pH 7.0). Elution was achieved with a discontinuous
salt gradient of 0.25-2.0 M NaCl. Two milliliter (2 mL) fractions were collected, and the absorbance
at 280 nm was determined. Fractions with significant LOX activity were pooled, concentrated as
described in the step above, and used for other analyses. The purified LOX was stored at −20 ◦C.

3.4. Lipoxygenase Activity Assay and Protein Determination

The lipoxygenase activity assay was performed spectrophotometrically (Epoch, Microplate
spectrophotometer, BioTek Instruments, Winooski, VT, USA) at room temperature by measuring
the increase of absorbance at 234 nm. The enzyme substrate, LA, was prepared according to Chen and
Whitaker [41] and used in subsequent experimental stages. The reaction mixture contained 184 µL of
potassium phosphate buffer (100 mM, pH 6.5), 21–25.1 µL of substrate solution (10 mM), and 0.9–5.0 µL
of LOX enzyme preparation (according to protein concentration). Enzyme activity was expressed in
katals. The protein content was determined according to the Bradford assay [42] with bovine serum
albumin (Sigma-Aldrich, St. Louis, MO, USA) as a standard.

3.5. HPLC Analysis of LOX Positional Specificity

The HPLC analysis was carried out using Agilent Technologies HP 1050 Series LC (Waldbronn,
Germany) coupled with a UV detector as described by Andreou et al. [43]. One hundred microliters
(100 µL) of partially purified LOX was mixed with 900 µL of potassium phosphate buffer (100 mM,
pH 6.5) and incubated for 30 min at 25 ◦C with 10 µL of substrate (10% methanol solution of
LA, v/v). The reaction was stopped by adding 10 mg of NaBH4 and 100 µL of concentrated HCl.
Hydroxyoctadecadienoic acids (HODEs) were isolated by diethyl ether (2 × 1.0 mL) and evaporated
to dryness under a stream of nitrogen. The sample was dissolved in 100 µL of methanol and stored at
−20 ◦C until analysis. After removing the organic solvent, the residue was reconstituted in 200 µL
of methanol/water/acetic acid (85:15:0.1, v/v/v). The reaction products were then analyzed by
reverse-phase HPLC (RP-HPLC) using a Nucleosil 120-5 C18 120 Å column (250 × 4 mm; Watrex,
Praha, Czech Republic) eluted with a solvent system of: solvent A (methanol/acetic acid (100:0.1,
v/v) and solvent B (deionized water) at a flow rate of 0.2 mL/min. The program of elution was
as follows: 10 min with solvent system of 85% A and 15% B at a flow rate of 0.2 mL/min; 12 min
with 100% A, flow rate 0.4 mL/min; 22 min with 100% A, flow rate 0.4 mL/min; 25 min with 85%
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A and 15% B, flow rate 0.4 mL/min; and 27 min with 85% A and 15% B, flow rate 0.4 mL/min.
The eluate containing hydroxy fatty acids (peak fraction at 234 nm) was collected and evaporated
to dryness under a stream of nitrogen. The residue was dissolved in 150 µL of hexane and aliquots
of 50 µL were analyzed by normal-phase HPLC (NP-HPLC). The NP-HPLC of the hydroxy fatty
acid isomers was carried out on a Zorbax Rx-SIL column (150 × 2.1 mm, 5 µm particle size, Agilent
Technologies, Waldbronn, Germany) eluted with a solvent system of hexane/2-propanol/acetic acid
(100:1:0.1, v/v/v) at a flow rate of 0.2 mL/min. The absorbance at 234 nm (conjugated diene system of
the hydroxyl fatty acids) was set for all of the HPLC experiments. The products of the LOX reaction
were identified using the authentic standards 9(S)-hydroxy-(10E,12Z)-octadecadienoic acid (9-HODE,
5 µg/mL) and 13(S)-hydroxy-(9Z,11E)-octadecadienoic acid (13-HODE, 5 µg/mL) (Cayman Pharma,
Neratovice, Czech Republic) and their mixture containing the same concentration of both standards.
For quantification of the LOX products in the NP-HPLC profiles, calibration curves for 9- and 13-HODE
were obtained in the range 0.84–100.0 µg/mL and 1.29–100.0 µg/mL, respectively.

3.6. Effect of pH and Ca2+ Ions on LOX Activity

For determination of optimum pH on LOX activity, the spectrophotometric method was used
with LA as a substrate. The enzyme activity was measured in 100 mM potassium phosphate buffer in
the pH range of 5.0–9.0. LOX activity was evaluated at different CaCl2 concentrations in the range of
0.25–2.0 mM.

3.7. Kinetic Assay of Purified LOX

The KM (Michaelis–Menten constant) and Vmax (maximum velocity) values of the purified enzyme
were estimated at different substrate concentrations (0.476–1.33 mM of LA as substrate) while keeping
the concentration of the enzyme constant. Both parameters were calculated from the Lineweaver–Burk
linearization plots relating 1/V to 1/[S] [44].

3.8. Substrate Specificity

To determine the substrate specificity of the purified LOX, different substrates (LA, LeA, and AA)
were added to the reaction mixture at a concentration of 10 mM and LOX activity was measured
spectrophotometrically at 234 nm as described in Section 3.4. Each substrate was prepared according
to Chen and Whitaker [41].

3.9. Electrophoresis and Western Blotting

SDS-PAGE was performed in a Mini-PROTEAN® 3 Cell electrophoresis apparatus (BIO-RAD,
USA) according to the method of Laemmli [45] using 10% separating gel and 3.9% stacking gel. The gel
were stained with PageBlueTM Protein Staining Solution (Thermo Scientific, Waltham, MA, USA) with
Coomassie Briliant Blue G 250 and destained in 25% ethanol, 10% acetic acid, and 65% redistilled water
(v/v/v). As a standard, PageRulerTM Plus Prestained Protein Ladder (Fermentas, Vilnius, Lithuania)
within 11–250 kDa was used. Proteins separated by SDS-PAGE were transferred to a nitrocellulose
membrane of 0.45 µm (Advantec® MFS, Suite A Dublin, CA, USA) using TRANS-BLOT SD (BIO-RAD,
Hercules, CA, USA) according to Towbin et al. [46]. As a primary antibody, polyclonal anti-LOX serum
was prepared against the soybean LOX as described by Holková et al. [47]. Commercially available
Anti-Rabbit IgG (H+L), HRP Conjugate (Promega, Madison, WI, USA) was used as a secondary
antibody. The reaction was visualised with a TMB-stabilized (3,3′,5,5′-tetramethylbenzidine) substrate
for horse radish peroxidase (Promega, Madison, WI, USA). The molecular mass of the purified enzyme
was assessed by comparing the mobility of LOX protein with the mobility of molecular markers in
10% SDS-polyacrylamide gel. PageRulerTM Plus Prestained Protein Ladder (11–250 kDa, Fermentas,
Vilnius, Lithuania) was used to make a plot of the logarithm of molecular mass versus the relative
mobility of protein bands.
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4. Conclusions

In the present study, a novel LOX enzyme from California poppy seedlings was partially purified
and biochemical properties of the enzyme were analyzed. The results indicate that the California
poppy LOX belongs to nontraditional plant LOXs with dual positional specificity and has a relative
molecular mass of 85 kDa. This dual positional specificity of the California poppy 9/13-LOX suggests
that it is able to synthesize compounds that play a role in both the developmental process and defence
response in plants. The optimal pH for LOX activity is 6.5, and the enzyme shows a high preference
towards LA. Moreover, the results indicate that calcium may play an important role in regulating
the activity of the LOX from California poppy. The KM value of the LOX is 2.6 mM, and the Vmax

3.14 µM/min/mg. The identification and characterization of plant LOX should prove to be a useful
approach to interpret the physiological role of LOX in plants.
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