
Vol.:(0123456789)1 3

Molecular Biology Reports (2020) 47:4827–4833 
https://doi.org/10.1007/s11033-020-05511-6

SHORT COMMUNICATION

Development and characterization of 20 polymorphic microsatellite 
markers for the white‑bellied pangolin Phataginus tricuspis 
(Mammalia, Pholidota)

Samantha Aguillon1 · Alain Din Dipita2 · Emilie Lecompte1 · Alain Didier Missoup2 · Maurice Tindo2 · 
Philippe Gaubert1 

Received: 28 February 2020 / Accepted: 8 May 2020 / Published online: 17 May 2020 
© Springer Nature B.V. 2020

Abstract
Pangolins, or scaly anteaters, have recently been flagshiped as one of the most illegally traded mammals, and as a corol-
lary, as potential intermediate hosts at the origin of the COVID-19 pandemic. In order to improve the traceability of their 
trade, we developed 20 polymorphic microsatellite loci for the white-bellied pangolin (Phataginus tricuspis), the species 
most frequently found on African bushmeat markets. We genotyped 24 white-bellied pangolins from the Douala market, 
Cameroon, originating from the Ebo forest c. 75 km north-east of Douala. The number of alleles per locus ranged from 4 
to 12 (mean = 6.95), and mean observed and expected heterozygosities were 0.592 (0.208–0.875) and 0.671 (0.469–0.836), 
respectively. Genetic diversity was higher than that cross-estimated from microsatellite loci developed for other species 
of pangolins. Two loci deviated from Hardy–Weinberg equilibrium and two loci showed linkage disequilibrium. Genetic 
variance (PCoA) was increased with the addition of 13 pangolins of unknown origin, possibly suggesting that the Douala 
market is fed from differentiated source populations of white-bellied pangolins. Each of the 37 individuals had a unique 
multilocus genotype. The unbiased probability of identity (uPI) and the probability of identity among siblings (PIsibs) were 
both very low (uPI = 8.443 e−21; PIsibs = 1.011 e−07). Only five microsatellite loci were needed to reach the conservative 
value of PIsibs < 0.01, overall indicating a powerful discriminating power of our combined loci. These 20 newly developed 
microsatellite loci might prove useful in tracing the local-to-global trade of the white-bellied pangolin, and will hopefully 
contribute to the DNA-assisted implementation of future conservation strategies at reasonable costs.
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Introduction

The illegal wildlife trade is a flourishing, parallel economy 
that threatens the worldwide biodiversity [1]. Pangolins, 
or scaly anteaters, have recently been flagshiped as one of 
the most illegally traded mammals, being literally eaten to 
extinction [2]. Based on reports from the Convention on 
International Trade in Endangered Species of Wild Fauna 
and Flora (CITES), a minimum number of c. 895,000 Afri-
can and Asian pangolins were trafficked during the last 
decade (2010–2019). They were mainly destined to Asian 
markets including China and Vietnam [3], where they feed 
the growing demand from the Traditional Chinese Medi-
cine market [4]. As a corollary, the pangolin trade has very 
recently been pinpointed as posing a serious threat to human 
health, pangolins being potentially involved in the COVID-
19 pandemic [5, 6]. Pangolins are also part of the traditional 
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wild meat intake and pharmacopeia in most of their range 
countries [7, 8], and as such suffer from the ‘bushmeat crisis’ 
that threaten the survival of many vertebrates in the tropics 
[9].

The traceability of the pangolin trade is rendered dif-
ficult by the elusive, international criminal networks that 
fuel the market, but also by the various forms under which 
pangolins are traded. Indeed, a large spectrum of pangolin-
related ‘items’ are involved in the trade, from scales alone 
to smoked skins, boiled and ‘pealed’ carcasses, chopped 
meat, scale powder and embryo soups [10–12]. The soci-
etal demand for mitigating the pangolin trade [13] implies 
to develop tools capable of accurately identifying the traf-
ficked species of pangolins, tracing their geographic origins 
(sources) and estimating the number of pangolins when body 
parts and scales are seized.

The genetic ‘tool box’ may constitute an efficient support 
to reach these objectives. To date, a certain number of mito-
chondrial, nuclear and Y-borne genes have been sequenced 
in pangolins [14–17], providing useful resources for the 
accurate ‘tagging’ of the species involved in the trade [18]. 
On the other hand, our ability to trace the geographic origins 
of seized pangolins has remained limited because of a lack 
of exhaustive DNA registers and the reduced geographic 
resolution of traditional gene sequencing [19–23]. Although 
microsatellite loci were developed in an Asian (Manis 
javanica) and an African species (Smutsia temminckii) [24, 
25], their application to the issue of the traceability of the 
trade remains limited or pending [26, 27]. Recently, single 
nucleotide polymorphic markers (SNPs) have successfully 
been used to assign seizures of M. javanica to potential geo-
graphic sources in South-East Asia [28]. So far, no geno-
typing approach has been applied to assess the number of 
individuals involved in large (scale) seizures, despite the 
potential advantage this would have for seizure processing 
[29].

Pangolins are highly sensitive to habitat degradation and 
have slow reproduction rates [30]. They are one of the mam-
malian lineages most prone to extinction (https ://www.edgeo 
fexis tence .org/). In the last years, there have been pressing 
initiatives for increasing awareness on the unsustainability 
of the pangolin trade and for promoting law enforcement 
at the international level. All eight species were moved to 
the Appendix I of CITES in 2016 [31] and have recently 
been upgraded to “Vulnerable”, “Endangered” or “Critically 
Endangered” on the IUCN Red List of Threatened Species 
[32].

Recent seizures indicate that, as Asian pangolins are 
becoming rarer, traffickers are now sourcing from Africa 
possibly via the same criminal networks used for the trade 
of ivory [33, 34]. The white-bellied pangolin (Phataginus 
tricuspis) is the most abundant species of pangolin in Africa, 
with a widespread sub-Saharan distribution covering the 

African lowland rainforests [30]. It is one of the most fre-
quent mammalian species observed on the stalls of the range 
countries’ bushmeat markets [35–38]. The species is also 
likely undergoing heavy international trade pressure as it 
has been the constituent of large seizures both in Africa and 
Asia since 2010 [39].

Recently, an unexpected level of cryptic diversity was 
revealed across the species range through the existence of 
six geographically traceable genetic lineages [17]. Although 
those results might constitute valuable support to delimitate 
the sources of traded pangolins at the regional scale, deeper 
resolution is needed to improve our ability to trace the trade 
at the local scale. We therefore developed and character-
ized 20 microsatellite loci from the genome of P. tricuspis, 
with the objective of providing a tool applicable at reason-
able costs to range countries and international agencies that 
would be keen to implement the genetic tracing of the pan-
golin trade.

Materials and methods

A total of 37 samples of white-bellied pangolins were col-
lected from the Douala market network. A first sample set 
included 24 samples from the Ebo forest (population ‘Ebo’), 
c. 75 km north-east of Douala, as ascertained by circum-
scribing the supply area that receives bushmeat from Ebo 
together with interviews with bushmeat sellers (data not 
shown). A second sample set included 13 samples likely 
originating from diverse geographic sources, possibly 
including Ebo (‘altEbo’), according to the same interviews. 
Samples consisted of fresh and smoked tissues (tongue or 
muscle) collected from dead animals sold on the market. 
Sampling was done, after explaining the aim of our study, 
with the initial agreement of the seller and following the 
guidelines of the Comité d’Ethique Institutionnel de la 
recherche pour la Santé humaine de l’Université de Douala 
(CEI-UDo). All the samples were preserved in 90% ethanol.

Genomic DNA was extracted with the NucleoSpin® Tis-
sue Kit (MACHEREY–NAGEL, Hoerdt, France), following 
the manufacturer’s recommendations. The elution step was 
repeated twice in 50 μL BE to maximize DNA yield and 
concentration. DNA concentration was quantified using the 
NanoDrop 1000 Spectrophotometer (ThermoFisher Scien-
tific). All the DNA extracts were stored at -20 °C.

Microsatellite markers were developed at Ecogenics, 
Balgach, Switzerland (https ://www.ecoge nics.ch/home.
html). An Illumina TruSeq nano library was built from a 
single DNA extract, which was enriched for simple sequence 
repeat content using magnetic streptavidin beads and bio-
tin‐labeled CT and GT repeat oligonucleotides. The library 
was sequenced on an Illumina MiSeq sequencing platform 
using a nano 2 (500 cycles) sequencing chip. The resulting 
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paired-end reads which passed Illumina’s chastity filter were 
subject to de-multiplexing and trimming of Illumina adaptor 
residuals. Subsequently, the quality of the surviving reads 
was checked with the software FastQC 0.117 (https ://www.
bioin forma tics.babra ham.ac.uk/proje cts/fastq c). In a next 
step, the paired-end reads were merged with the software 
USEARCH 10.0.240 [40] to reform in silico the sequenced 
molecule. The resulting reads were screened with the soft-
ware Tandem Repeats Finder 4.09 [41]. After this process, 
8,488 merged reads contained a microsatellite insert with a 
tetra- or a trinucleotide of at least six repeat units or a dinu-
cleotide of at least 10 repeat units. Primer design was per-
formed with Primer 3 4.1.0 [42]. Suitable primer design was 
possible in 6,025 microsatellite candidates. Individual tests 
for amplification and polymorphism of the 48 best primer-
designed loci were performed on 14 individuals (from the 
western central African and Gabon lineages; see [17]), after 
which 20 polymorphic markers were retained (Table 1). 
Overall, eight loci were di-nucleotide, three tri-nucleotide 
and nine tetra-nucleotide repeats.

We used MULTIPLEX MANAGER 1.2 [43] to optimize 
a design into four PCR multiplexes (4–6 loci) using four 
different ABI fluorescent dyes (Table 1). PCR amplifica-
tions for each multiplex were carried out in 20 μL reac-
tion mixture containing approximately 20 ng of genomic 
DNA, 1 × Multiplex PCR Master Mix (QIAGEN Multiplex 
PCR Plus Kit; Qiagen, Courtaboeuf, France) and 0.2 μM 
of each primer pair. PCR thermoprofiles included an ini-
tial denaturation step (95 °C for 5 min), followed by 32 
cycles of denaturation (95 °C for 30 s)–annealing (60 °C for 
90 s)–elongation (72 °C for 30 s), and a final elongation step 
(60 °C for 30 min).

The PCR products were run on an ABI 3730 DNA Ana-
lyser (Thermo Fisher Scientific) at GeT-PlaGe (Génotoul, 
Institut National de Recherche Agronomique, Castanet-
Tolosan, France; https ://get.genot oul.fr/). Allele scoring and 
final extraction of genotypes were performed in Geneious 
9.0.5 [44] with the Microsatellites plugin (https ://www.genei 
ous.com/featu res/micro satel lite-genot yping /).

As a geographically coherent population, Ebo (N = 24) 
was used for the validation of our 20 microsatellite loci. 
We ran the detection of potential scoring errors and null 
alleles in MICROCHECKER 2.2.3 [45]. Deviations from 
the Hardy–Weinberg equilibrium were tested for each locus 
with GenAlEx 6.503 [46]. We used a permutation test under 
GENETIX 4.05.2 [47] to estimate linkage disequilibrium 
(LD) between each pair of loci (1000 permutations). The 
Bonferroni correction was applied to each of those statisti-
cal procedures.

The number of alleles per loci (Na) and the observed 
(Ho) and expected heterozygosities (He) were estimated in 
GenAlEx. Allelic richness  (AR) was calculated in FSTAT 
2.9.3.2 [48].

We used the whole sample set (Ebo + altEbo; N = 37) 
to conduct a Principal Coordinates Analysis (PCoA) in 
GenAlEx with pairwise population matrix unbiased genetic 
distances [49] in order to explore genetic variance among 
individuals sold in the Douala markets.

Values of unbiased probability of identity and probability 
of identity among siblings (uPI and PIsibs) were calculated 
in Gimlet 1.3.3 [50]. We used the Multilocus tagging option 
in GenAlex to detect identical genotypes in our dataset (sub-
option ‘Matches’).

Results and discussion

The 20 loci were successfully amplified (with 100% PCR 
success rate), with only 0.84% missing data in our final mul-
tilocus dataset (Table 1). Null alleles were detected in five 
loci (PT_338821, PT_796077, PT_839522, PT_1453906, 
PT_1594892). Two of those loci significantly deviated 
from the Hardy–Weinberg equilibrium (Table 1). Two loci 
were subjected to linkage disequilibrium (PT_353755, 
PT_1225378). Deviation from Hardy–Weinberg equilibrium 
and linkage disequilibrium among loci can be due to genetic 
differentiation [51, 52], as was also suspected from loci 
developed for other pangolin species [24, 25]. Our results 
may suggest that we genotyped several populations from 
the Ebo forest, the latter covering > 1500  km2, although we 
cannot totally discard the possibility that the Ebo sample 
set was not as accurately circumscribed as expected from 
our interviews.

The mean number of alleles per locus was 6.95 (from 4 
to 12 alleles) and mean  AR was 6.74. Mean He was 0.671 
(0.469–0.836) and mean Ho was 0.592 (0.208–0.875). The 
number of alleles and levels of genetic diversity were higher 
than in previous cross-amplification studies (mean number 
of alleles = 2.61–4; [24, 25]). Those results were expected 
given the reduced sample set (N = 2–10) used in the previous 
studies and the bias related to cross-amplification among 
phylogenetically divergent species of pangolins [18].

The 20 newly developed microsatellite loci represent the 
first markers isolated from the genome of P. tricuspis and 
may prove useful in tracing the local-to-global trade of the 
species. Each of the 37 individuals had a unique multilocus 
genotype. The unbiased probability of identity (uPI) and the 
probability of identity among siblings (PIsibs), that is, the 
probability that two individuals drawn at random from a 
population, including or not including siblings, will have 
the same genotype, were both very low (uPI = 8.443 e−21; 
PIsibs = 1.011 e−07; Fig. S1). Only five microsatellite loci 
were needed to reach the conservative value of PIsibs < 0.01 
[53], overall indicating a powerful discriminating power of 
our combined loci. This could have important conserva-
tion implications, as notably regarding the individual-based 
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management of in situ and ex situ populations [54, 55] and 
the accurate assessment of the number of individuals con-
tained in large seizures of scales [29]. Although China has 
temporarily banned the wildlife trade, the durable effect and 
efficiency of law enforcement on this illegal market remains 
questionable [56] and accurate tools will be needed to trace 
the consumption of pangolins.

Genetic variance was increased through the addition 
of pangolins with unknown origin (altEbo), involving the 
potential presence of ‘outliers’ along the axes 1 and 2 of 
the PCoA (14.88% cumulated variation; Fig. 1), in agree-
ment with the interviewees’ answers regarding the origin of 
pangolins. Although our results are preliminary, this may 
suggest that the Douala market network is fed from differ-
entiated source populations of white-bellied pangolins, but 
this working hypothesis will have to be tested further with an 
accurate geographic representation of pangolin populations. 
The set of microsatellite loci that we have developed signifi-
cantly adds to the molecular toolbox available for the spe-
cies, and will hopefully contribute to the fine-scale imple-
mentation of future conservation strategies at reasonable 
costs. Because the previously published, cross-amplified loci 
were not validated on a sufficient number of geographically 
traceable samples, we recommend the use of our 20 newly 
developed microsatellite loci for population genetic studies 
on the white-bellied pangolin and related conservation and 
forensic applications.
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