V = 3318.92 (4) Å<sup>3</sup>

 $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

24730 measured reflections

6689 independent reflections 6289 reflections with  $I > 2\sigma(I)$ 

Cu Ka radiation

 $\mu = 0.61 \text{ mm}^-$ 

T = 100 K

 $R_{\rm int} = 0.040$ 

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2,13-Dibenzyl-5,16-diethyl-2,6,13,17tetraazatricyclo[16.4.0.0<sup>7,12</sup>]docosan-2ium nitrate

#### Jong-Ha Choi,<sup>a</sup>‡ Md Abdus Subhan,<sup>a</sup> Seik Weng Ng<sup>b,c</sup> and Edward R. T. Tiekink<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea, <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and <sup>c</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 21 July 2011; accepted 22 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.001 Å; *R* factor = 0.039; *wR* factor = 0.120; data-to-parameter ratio = 16.4.

One of the tertiary amine atoms has been protonated in the title salt,  $C_{36}H_{57}N_4^{+}\cdot NO_3^{-}$ . The four N atoms of the macrocycle are almost coplanar (r.m.s. deviation = 0.0053 Å), a result correlated with the formation of intramolecular N-H···N and N-H···(N,N) hydrogen bonds. With respect to this plane, the benzyl groups lie to either side; a similar arrangement pertains for the cyclohexyl rings (each with a chair conformation). Helical supramolecular chains are evident in the crystal, whereby alternating cations and anions are linked by C-H···O interactions. The chains are consolidated into supramolecular arrays in the *ab* plane *via* C-H··· $\pi$  contacts involving both benzene rings.

#### **Related literature**

For the synthesis of the precursor macrocycle, see: Lim *et al.* (2006); For related structures, see: Choi *et al.* (2006, 2010*a*,*b*).



## Experimental

#### Crystal data

 $C_{36}H_{57}N_4^+ NO_3^ M_r = 607.87$ Monoclinic,  $P_{2_1}/n$  a = 10.7882 (1) Å b = 16.2785 (1) Å c = 19.0962 (1) Å  $\beta = 98.2461$  (6)°

#### Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)  $T_{min} = 0.839, T_{max} = 0.942$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.120$ S = 1.066689 reflections 409 parameters 3 restraints

# H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C20–C25 benzene rings, respectively.

| $D - H \cdot \cdot \cdot A$    | D-H                       | $H \cdot \cdot \cdot A$              | $D \cdots A$                             | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------|---------------------------|--------------------------------------|------------------------------------------|--------------------------------------|
| $N1 - H1 \cdots N2$            | 0.90(1)                   | 2.32 (1)                             | 2.7400 (11)                              | 108 (1)                              |
| $N1 - H1 \cdot \cdot \cdot N4$ | 0.90 (1)                  | 2.12 (1)                             | 2.8156 (11)                              | 134 (1)                              |
| $N2 - H2 \cdot \cdot \cdot N3$ | 0.88(1)                   | 2.19(1)                              | 2.9293 (11)                              | 142 (1)                              |
| $N4 - H4 \cdot \cdot \cdot N3$ | 0.88 (1)                  | 2.33 (1)                             | 2.7992 (11)                              | 113 (1)                              |
| C1−H1a···O1                    | 0.99                      | 2.36                                 | 3.2096 (13)                              | 143                                  |
| C9−H9a···O3 <sup>i</sup>       | 0.99                      | 2.40                                 | 3.3620 (12)                              | 165                                  |
| C34-H34a···O3 <sup>i</sup>     | 0.99                      | 2.50                                 | 3.3876 (13)                              | 150                                  |
| $C8-H8a\cdots Cg3^{ii}$        | 0.99                      | 2.53                                 | 3.4008 (11)                              | 146                                  |
| $C26-H26b\cdots Cg1^{iii}$     | 0.99                      | 2.71                                 | 3.5899 (11)                              | 149                                  |
| Symmetry codes: (i             | $) -x + \frac{1}{2}, y +$ | $+\frac{1}{2}, -z + \frac{1}{2};$ (i | ii) $-x + \frac{1}{2}, y - \frac{1}{2},$ | $-z + \frac{1}{2};$ (iii)            |

 $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$ 

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Andong National University and the University of Malaya for supporting this study. MAS thanks the National Research Foundation of Korea for a postdoctoral fellowship grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6328).

#### References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

<sup>‡</sup> Additional correspondence author, e-mail: jhchoi@andong.ac.kr.

- Choi, J.-H., Clegg, W. & Harrington, R. W. (2010a). J. Chem. Crystallogr. 40, 80–84.
- Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). *Acta Cryst.* E62, o644–o646. Choi, J.-H., Clegg, W. & Nichol, G. S. (2010b). Z. Anorg. Allg. Chem. 636,
- 1612–1616.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, o2173-o2174 [doi:10.1107/S1600536811029692]

## 2,13-Dibenzyl-5,16-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.0<sup>7,12</sup>]docosan-2-ium nitrate

#### J.-H. Choi, M. A. Subhan, S. W. Ng and E. R. T. Tiekink

#### Comment

The title salt, (I), was isolated unexpectedly during the course of studies of partially *N*-substituted tetraazamacrocycles of interest owing to their various applications (Choi *et al.*, 2006; Choi *et al.*, 2010*a*; Choi, *et al.*, 2010*b*). As seen in Fig. 1, one of the tertiary amine-N atoms, *i.e.* N1, has been protonated with the charge balance provided by the nitrate anion. The four nitrogen atoms lie in a plane with a r.m.s. deviation = 0.0053 Å; the maximum deviation from the least-squares plane is 0.0055 (4) Å for atom N1. This observation is readily explained in terms of the intramolecular N—H···N hydrogen bonds with the N1—H1 atom being bifurcated, Table 1 and Fig. 2. With reference to this plane, the benzyl groups lie to either side and are twisted with respect to the N<sub>4</sub> plane as seen in the values of the dihedral angles of 63.62 (3) and 66.25 (3) ° formed with rings (C2—C7) and (C20—C25), respectively. Similarly, the cyclohexyl rings, each with a chair conformation, lie to either side of the N<sub>4</sub> plane.

The anion is associated with the cation *via* C—H···O contacts, Table 1, so that the nitrate-O1 forms a contact with a benzyl-methylene-H, and the nitrate-O3 atom bridges a methylene-H derived from a cyclohexyl ring and a methylene-H from the macrocyclic framework. The result is the formation of a helical supramolecular chain along the *b*-axis, Fig. 2. Chains are consolidated into layers in the *ab*-plane *via* C—H··· $\pi$  interactions involving benzene rings, Table 1 and Fig. 3.

#### **Experimental**

The macrocycle, 5,16-diethyl-2,6,13,17-tetraazatricyclo $[14.4.0^{1,18}.0^{7,12}]$ docosane, was prepared according to a published procedure (Lim *et al.*, 2006). To a solution of this macrocycle (0.61 g, 2.0 mmol) in methanol (10 ml) was added benzyl bromide (0.68 g, 4.0 mmol) and a solution containing sodium carbonate (0.42 g, 4.0 mmol) in water (5 ml). The mixture was refluxed for 24 h. The solution was cooled, the white solid collected and washed with water. The title di-benzyl substituted macrocyclic nitrate was the unexpected colourless by-product that was obtained when copper nitrate trihydrate (0.06 g, 0.25 mmol) and the dibenzyl-substituted macrocycle (0.16 g, 0.29 mmol) was reacted in THF (10 ml). The compound was recrystallized from acetonitrile-water (1:1) in the form of colourless prisms.

#### Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å,  $U_{iso}(H)$  1.2 to 1.5 $U_{eq}(C)$ ] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their  $U_{iso}$  values were refined.

#### Figures



Fig. 1. Molecular structures of the ions in (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2. Helical supramolecular chain aligned along the *b*-axis in (I) mediated by C—H···O interactions shown as orange dashed lines. Intramolecular N—H···N hydrogen bonds are shown as blue dashed lines.

Fig. 3. A view of the crystal packing of (I) in projection down the *a*-axis. The C—H···O and C—H··· $\pi$  interactions shown as orange and purple dashed lines, respectively.

## 2,13-Dibenzyl-5,16-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.0<sup>7,12</sup>]docosan-2- ium nitrate

Crystal data

| $C_{36}H_{57}N_4^+ \cdot NO_3^-$ | F(000) = 1328                                  |
|----------------------------------|------------------------------------------------|
| $M_r = 607.87$                   | $D_{\rm x} = 1.217 {\rm ~Mg} {\rm ~m}^{-3}$    |
| Monoclinic, $P2_1/n$             | Cu K $\alpha$ radiation, $\lambda = 1.54184$ Å |
| Hall symbol: -P 2yn              | Cell parameters from 15422 reflections         |
| a = 10.7882 (1)  Å               | $\theta = 2.7 - 74.2^{\circ}$                  |
| b = 16.2785 (1)  Å               | $\mu = 0.61 \text{ mm}^{-1}$                   |
| c = 19.0962 (1)  Å               | T = 100  K                                     |
| $\beta = 98.2461 \ (6)^{\circ}$  | Prism, colorless                               |
| $V = 3318.92 (4) \text{ Å}^3$    | $0.30 \times 0.20 \times 0.10 \text{ mm}$      |
| Z = 4                            |                                                |
|                                  |                                                |

#### Data collection

| Agilent SuperNova Dual                        | 6689 independent reflections           |
|-----------------------------------------------|----------------------------------------|
| diffractometer with an Atlas detector         |                                        |
| Radiation source: SuperNova (Cu) X-ray Source | 6289 reflections with $I > 2\sigma(I)$ |
| Mirror                                        | $R_{\rm int} = 0.040$                  |

| Detector resolution: 10.4041 pixels mm <sup>-1</sup>               | $\theta_{\text{max}} = 74.4^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| ω scans                                                            | $h = -13 \rightarrow 13$                                                  |
| Absorption correction: multi-scan<br>(CrysAlis PRO; Agilent, 2010) | $k = -20 \rightarrow 20$                                                  |
| $T_{\min} = 0.839, T_{\max} = 0.942$                               | $l = -23 \rightarrow 23$                                                  |
| 24730 measured reflections                                         |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.039$ | Hydrogen site location: inferred from neighbouring sites                                            |
| $wR(F^2) = 0.120$               | H atoms treated by a mixture of independent and constrained refinement                              |
| <i>S</i> = 1.06                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0639P)^{2} + 0.9655P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 6689 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |
| 409 parameters                  | $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$                                                 |
| 3 restraints                    | $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$                                          |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Z           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|-------------|---------------------------|
| 01  | 0.50228 (8)  | 0.10547 (5)  | 0.24392 (5) | 0.0332 (2)                |
| O2  | 0.56328 (8)  | -0.01583 (6) | 0.28070 (5) | 0.0327 (2)                |
| O3  | 0.39115 (8)  | -0.00135 (5) | 0.20754 (4) | 0.02779 (19)              |
| N1  | 0.43505 (7)  | 0.37105 (5)  | 0.22433 (4) | 0.01185 (17)              |
| N2  | 0.57885 (7)  | 0.45766 (5)  | 0.32911 (4) | 0.01289 (18)              |
| N3  | 0.56192 (7)  | 0.62777 (5)  | 0.27861 (4) | 0.01193 (17)              |
| N4  | 0.41868 (7)  | 0.53381 (5)  | 0.17396 (4) | 0.01209 (17)              |
| N5  | 0.48585 (8)  | 0.02911 (6)  | 0.24405 (5) | 0.0209 (2)                |
| C1  | 0.52521 (9)  | 0.30042 (6)  | 0.22417 (5) | 0.0158 (2)                |
| H1A | 0.4785       | 0.2479       | 0.2221      | 0.019*                    |
| H1B | 0.5853       | 0.3011       | 0.2685      | 0.019*                    |
| C2  | 0.59572 (9)  | 0.30616 (6)  | 0.16165 (5) | 0.0148 (2)                |
| C3  | 0.69049 (9)  | 0.36427 (6)  | 0.16127 (5) | 0.0176 (2)                |
| H3A | 0.7107       | 0.4000       | 0.2006      | 0.021*                    |
| C4  | 0.75561 (10) | 0.37032 (7)  | 0.10379 (6) | 0.0207 (2)                |
| H4A | 0.8200       | 0.4101       | 0.1037      | 0.025*                    |

| C5   | 0.72593 (10) | 0.31770 (7) | 0.04624 (5) | 0.0212 (2) |
|------|--------------|-------------|-------------|------------|
| Н5   | 0.7700       | 0.3218      | 0.0067      | 0.025*     |
| C6   | 0.63240 (10) | 0.25951 (7) | 0.04648 (5) | 0.0205 (2) |
| H6   | 0.6127       | 0.2236      | 0.0072      | 0.025*     |
| C7   | 0.56721 (9)  | 0.25352 (7) | 0.10399 (5) | 0.0175 (2) |
| H7   | 0.5031       | 0.2135      | 0.1040      | 0.021*     |
| C8   | 0.33318 (9)  | 0.36493 (6) | 0.16142 (5) | 0.0138 (2) |
| H8A  | 0.2848       | 0.3140      | 0.1659      | 0.017*     |
| H8B  | 0.3729       | 0.3601      | 0.1180      | 0.017*     |
| C9   | 0.24291 (9)  | 0.43716 (6) | 0.15289 (5) | 0.0135 (2) |
| H9A  | 0.2132       | 0.4475      | 0.1988      | 0.016*     |
| H9B  | 0.1691       | 0.4220      | 0.1183      | 0.016*     |
| C10  | 0.29874 (9)  | 0.51689 (6) | 0.12824 (5) | 0.0129 (2) |
| H10  | 0.3172       | 0.5080      | 0.0790      | 0.015*     |
| C11  | 0.20492 (9)  | 0.58771 (6) | 0.12639 (5) | 0.0171 (2) |
| H11A | 0.1853       | 0.5968      | 0.1749      | 0.020*     |
| H11B | 0.2448       | 0.6383      | 0.1116      | 0.020*     |
| C12  | 0.08247 (10) | 0.57368 (8) | 0.07684 (6) | 0.0254 (3) |
| H12A | 0.0277       | 0.6215      | 0.0785      | 0.038*     |
| H12B | 0.0407       | 0.5246      | 0.0919      | 0.038*     |
| H12C | 0.1004       | 0.5660      | 0.0284      | 0.038*     |
| C13  | 0.49956 (9)  | 0.59796 (6) | 0.14997 (5) | 0.0125 (2) |
| H13  | 0.4500       | 0.6496      | 0.1400      | 0.015*     |
| C14  | 0.55226 (9)  | 0.57130 (6) | 0.08313 (5) | 0.0162 (2) |
| H14A | 0.4824       | 0.5636      | 0.0440      | 0.019*     |
| H14B | 0.5959       | 0.5180      | 0.0919      | 0.019*     |
| C15  | 0.64389 (10) | 0.63526 (7) | 0.06136 (5) | 0.0192 (2) |
| H15A | 0.6804       | 0.6146      | 0.0201      | 0.023*     |
| H15B | 0.5979       | 0.6866      | 0.0471      | 0.023*     |
| C16  | 0.74889 (9)  | 0.65372 (7) | 0.12163 (5) | 0.0184 (2) |
| H16A | 0.8027       | 0.6979      | 0.1070      | 0.022*     |
| H16B | 0.8013       | 0.6041      | 0.1322      | 0.022*     |
| C17  | 0.69583 (9)  | 0.68032 (6) | 0.18819 (5) | 0.0163 (2) |
| H17A | 0.6492       | 0.7325      | 0.1789      | 0.020*     |
| H17B | 0.7653       | 0.6898      | 0.2272      | 0.020*     |
| C18  | 0.60803 (9)  | 0.61374 (6) | 0.21000 (5) | 0.0120 (2) |
| H18  | 0.6581       | 0.5619      | 0.2156      | 0.014*     |
| C19  | 0.48660 (9)  | 0.70312 (6) | 0.27985 (5) | 0.0147 (2) |
| H19A | 0.4286       | 0.7079      | 0.2349      | 0.018*     |
| H19B | 0.5426       | 0.7516      | 0.2841      | 0.018*     |
| C20  | 0.41211 (9)  | 0.70173 (6) | 0.34134 (5) | 0.0145 (2) |
| C21  | 0.44026 (9)  | 0.75553 (6) | 0.39824 (5) | 0.0171 (2) |
| H21  | 0.5065       | 0.7940      | 0.3984      | 0.020*     |
| C22  | 0.37204 (10) | 0.75333 (7) | 0.45488 (5) | 0.0196 (2) |
| H22  | 0.3917       | 0.7904      | 0.4933      | 0.023*     |
| C23  | 0.27563 (10) | 0.69726 (7) | 0.45545 (5) | 0.0196 (2) |
| H23  | 0.2296       | 0.6956      | 0.4943      | 0.024*     |
| C24  | 0.24625 (10) | 0.64323 (7) | 0.39889 (6) | 0.0197 (2) |
| H24  | 0.1801       | 0.6047      | 0.3990      | 0.024*     |

| C25  | 0.31418 (9)  | 0.64595 (7) | 0.34239 (5) | 0.0172 (2) |
|------|--------------|-------------|-------------|------------|
| H25  | 0.2936       | 0.6092      | 0.3038      | 0.021*     |
| C26  | 0.66397 (9)  | 0.63019 (6) | 0.33960 (5) | 0.0141 (2) |
| H26A | 0.6256       | 0.6364      | 0.3834      | 0.017*     |
| H26B | 0.7152       | 0.6798      | 0.3350      | 0.017*     |
| C27  | 0.75144 (9)  | 0.55589 (6) | 0.34862 (5) | 0.0141 (2) |
| H27A | 0.8269       | 0.5709      | 0.3820      | 0.017*     |
| H27B | 0.7789       | 0.5439      | 0.3024      | 0.017*     |
| C28  | 0.69645 (9)  | 0.47719 (6) | 0.37546 (5) | 0.0137 (2) |
| H28  | 0.6780       | 0.4864      | 0.4247      | 0.016*     |
| C29  | 0.78903 (9)  | 0.40598 (7) | 0.37584 (5) | 0.0182 (2) |
| H29A | 0.7483       | 0.3551      | 0.3895      | 0.022*     |
| H29B | 0.8088       | 0.3982      | 0.3272      | 0.022*     |
| C30  | 0.91137 (10) | 0.41840 (8) | 0.42597 (6) | 0.0260 (3) |
| H30A | 0.9657       | 0.3706      | 0.4235      | 0.039*     |
| H30B | 0.8931       | 0.4248      | 0.4745      | 0.039*     |
| H30C | 0.9537       | 0.4678      | 0.4121      | 0.039*     |
| C31  | 0.49519 (9)  | 0.39720 (6) | 0.35440 (5) | 0.0128 (2) |
| H31  | 0.5424       | 0.3446      | 0.3638      | 0.015*     |
| C32  | 0.43876 (9)  | 0.42032 (7) | 0.42130 (5) | 0.0171 (2) |
| H32A | 0.5070       | 0.4289      | 0.4611      | 0.021*     |
| H32B | 0.3916       | 0.4724      | 0.4131      | 0.021*     |
| C33  | 0.35099 (10) | 0.35262 (7) | 0.44074 (5) | 0.0196 (2) |
| H33A | 0.4000       | 0.3021      | 0.4536      | 0.023*     |
| H33B | 0.3128       | 0.3701      | 0.4825      | 0.023*     |
| C34  | 0.24755 (9)  | 0.33400 (7) | 0.37957 (5) | 0.0179 (2) |
| H34A | 0.1921       | 0.3824      | 0.3707      | 0.021*     |
| H34B | 0.1965       | 0.2874      | 0.3927      | 0.021*     |
| C35  | 0.30172 (9)  | 0.31249 (6) | 0.31183 (5) | 0.0169 (2) |
| H35A | 0.3502       | 0.2608      | 0.3187      | 0.020*     |
| H35B | 0.2329       | 0.3045      | 0.2722      | 0.020*     |
| C36  | 0.38655 (9)  | 0.38224 (6) | 0.29457 (5) | 0.0123 (2) |
| H36  | 0.3345       | 0.4333      | 0.2903      | 0.015*     |
| H1   | 0.4755 (12)  | 0.4183 (6)  | 0.2191 (7)  | 0.030 (4)* |
| H2   | 0.5374 (12)  | 0.5033 (6)  | 0.3183 (7)  | 0.029 (4)* |
| H4   | 0.4029 (12)  | 0.5486 (8)  | 0.2162 (5)  | 0.023 (3)* |

## Atomic displacement parameters $(\text{\AA}^2)$

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|------------|------------|------------|-------------|------------|-------------|
| 01 | 0.0302 (4) | 0.0194 (4) | 0.0498 (5) | -0.0036 (3) | 0.0049 (4) | 0.0009 (4)  |
| O2 | 0.0298 (5) | 0.0338 (5) | 0.0338 (5) | 0.0102 (4)  | 0.0020 (4) | 0.0097 (4)  |
| O3 | 0.0268 (4) | 0.0291 (4) | 0.0266 (4) | -0.0065 (3) | 0.0007 (3) | -0.0020(3)  |
| N1 | 0.0122 (4) | 0.0118 (4) | 0.0116 (4) | 0.0002 (3)  | 0.0018 (3) | -0.0005 (3) |
| N2 | 0.0117 (4) | 0.0136 (4) | 0.0129 (4) | -0.0015 (3) | 0.0001 (3) | 0.0025 (3)  |
| N3 | 0.0116 (4) | 0.0130 (4) | 0.0110 (4) | 0.0007 (3)  | 0.0010 (3) | -0.0007 (3) |
| N4 | 0.0119 (4) | 0.0143 (4) | 0.0099 (4) | -0.0016 (3) | 0.0010 (3) | 0.0004 (3)  |
| N5 | 0.0194 (4) | 0.0223 (5) | 0.0225 (4) | 0.0007 (3)  | 0.0078 (3) | 0.0010 (3)  |

| C1  | 0.0175 (5) | 0.0145 (5) | 0.0156 (5) | 0.0049 (4)  | 0.0037 (4)  | 0.0013 (4)  |
|-----|------------|------------|------------|-------------|-------------|-------------|
| C2  | 0.0135 (4) | 0.0169 (5) | 0.0140 (4) | 0.0048 (4)  | 0.0014 (3)  | 0.0009 (4)  |
| C3  | 0.0174 (5) | 0.0174 (5) | 0.0176 (5) | 0.0029 (4)  | 0.0013 (4)  | -0.0021 (4) |
| C4  | 0.0170 (5) | 0.0209 (5) | 0.0249 (5) | 0.0017 (4)  | 0.0054 (4)  | 0.0034 (4)  |
| C5  | 0.0194 (5) | 0.0294 (6) | 0.0158 (5) | 0.0079 (4)  | 0.0059 (4)  | 0.0038 (4)  |
| C6  | 0.0179 (5) | 0.0285 (6) | 0.0142 (5) | 0.0060 (4)  | -0.0006 (4) | -0.0040 (4) |
| C7  | 0.0132 (4) | 0.0206 (5) | 0.0180 (5) | 0.0031 (4)  | 0.0005 (4)  | -0.0026 (4) |
| C8  | 0.0137 (4) | 0.0142 (5) | 0.0127 (4) | -0.0004 (4) | -0.0004 (3) | -0.0015 (3) |
| C9  | 0.0118 (4) | 0.0142 (5) | 0.0142 (4) | -0.0002 (3) | 0.0003 (3)  | 0.0001 (3)  |
| C10 | 0.0122 (4) | 0.0149 (5) | 0.0109 (4) | -0.0008 (4) | -0.0003 (3) | 0.0004 (3)  |
| C11 | 0.0149 (5) | 0.0163 (5) | 0.0193 (5) | 0.0017 (4)  | 0.0005 (4)  | 0.0029 (4)  |
| C12 | 0.0156 (5) | 0.0270 (6) | 0.0316 (6) | 0.0006 (4)  | -0.0037 (4) | 0.0086 (5)  |
| C13 | 0.0125 (4) | 0.0125 (5) | 0.0124 (4) | -0.0008 (3) | 0.0017 (3)  | 0.0013 (3)  |
| C14 | 0.0171 (5) | 0.0196 (5) | 0.0122 (4) | -0.0008 (4) | 0.0034 (4)  | -0.0003 (4) |
| C15 | 0.0193 (5) | 0.0249 (6) | 0.0145 (5) | -0.0019 (4) | 0.0059 (4)  | 0.0031 (4)  |
| C16 | 0.0154 (5) | 0.0223 (5) | 0.0186 (5) | -0.0024 (4) | 0.0064 (4)  | 0.0015 (4)  |
| C17 | 0.0149 (5) | 0.0173 (5) | 0.0172 (5) | -0.0039 (4) | 0.0044 (4)  | -0.0002 (4) |
| C18 | 0.0113 (4) | 0.0133 (5) | 0.0116 (4) | -0.0002 (3) | 0.0024 (3)  | 0.0002 (3)  |
| C19 | 0.0156 (4) | 0.0136 (5) | 0.0150 (5) | 0.0020 (4)  | 0.0030 (4)  | 0.0006 (3)  |
| C20 | 0.0138 (4) | 0.0158 (5) | 0.0138 (4) | 0.0041 (4)  | 0.0012 (3)  | 0.0006 (4)  |
| C21 | 0.0133 (4) | 0.0195 (5) | 0.0178 (5) | 0.0018 (4)  | 0.0001 (4)  | -0.0022 (4) |
| C22 | 0.0189 (5) | 0.0253 (6) | 0.0134 (5) | 0.0056 (4)  | -0.0014 (4) | -0.0043 (4) |
| C23 | 0.0194 (5) | 0.0258 (6) | 0.0145 (5) | 0.0067 (4)  | 0.0052 (4)  | 0.0035 (4)  |
| C24 | 0.0181 (5) | 0.0194 (5) | 0.0223 (5) | 0.0015 (4)  | 0.0057 (4)  | 0.0021 (4)  |
| C25 | 0.0171 (5) | 0.0176 (5) | 0.0172 (5) | 0.0014 (4)  | 0.0028 (4)  | -0.0020 (4) |
| C26 | 0.0134 (4) | 0.0147 (5) | 0.0135 (4) | -0.0012 (4) | -0.0004 (4) | -0.0011 (3) |
| C27 | 0.0115 (4) | 0.0159 (5) | 0.0145 (4) | -0.0012 (4) | -0.0001 (3) | 0.0009 (4)  |
| C28 | 0.0125 (4) | 0.0167 (5) | 0.0111 (4) | -0.0004 (4) | -0.0004 (3) | 0.0006 (3)  |
| C29 | 0.0163 (5) | 0.0186 (5) | 0.0191 (5) | 0.0024 (4)  | 0.0004 (4)  | 0.0033 (4)  |
| C30 | 0.0157 (5) | 0.0284 (6) | 0.0322 (6) | 0.0014 (4)  | -0.0028 (4) | 0.0095 (5)  |
| C31 | 0.0130 (4) | 0.0134 (5) | 0.0120 (4) | -0.0008 (3) | 0.0018 (3)  | 0.0009 (3)  |
| C32 | 0.0187 (5) | 0.0204 (5) | 0.0125 (4) | -0.0027 (4) | 0.0036 (4)  | -0.0008 (4) |
| C33 | 0.0206 (5) | 0.0249 (5) | 0.0141 (5) | -0.0022 (4) | 0.0056 (4)  | 0.0031 (4)  |
| C34 | 0.0165 (5) | 0.0203 (5) | 0.0182 (5) | -0.0025 (4) | 0.0069 (4)  | 0.0022 (4)  |
| C35 | 0.0171 (5) | 0.0173 (5) | 0.0168 (5) | -0.0052 (4) | 0.0046 (4)  | -0.0011 (4) |
| C36 | 0.0124 (4) | 0.0138 (5) | 0.0112 (4) | -0.0004 (3) | 0.0030 (3)  | 0.0001 (3)  |

### Geometric parameters (Å, °)

| O1—N5  | 1.2557 (13) | C15—H15B | 0.9900      |
|--------|-------------|----------|-------------|
| O2—N5  | 1.2470 (13) | C16—C17  | 1.5297 (13) |
| O3—N5  | 1.2536 (12) | C16—H16A | 0.9900      |
| N1—C1  | 1.5063 (12) | C16—H16B | 0.9900      |
| N1—C8  | 1.5107 (12) | C17—C18  | 1.5357 (13) |
| N1—C36 | 1.5189 (11) | С17—Н17А | 0.9900      |
| N1—H1  | 0.896 (9)   | С17—Н17В | 0.9900      |
| N2—C31 | 1.4634 (12) | C18—H18  | 1.0000      |
| N2—C28 | 1.4737 (12) | C19—C20  | 1.5152 (13) |
| N2—H2  | 0.877 (9)   | C19—H19A | 0.9900      |

| N3—C19     | 1.4734 (12) | С19—Н19В      | 0.9900      |
|------------|-------------|---------------|-------------|
| N3—C26     | 1.4840 (12) | C20—C21       | 1.3947 (14) |
| N3—C18     | 1.4842 (11) | C20—C25       | 1.3954 (14) |
| N4—C13     | 1.4753 (12) | C21—C22       | 1.3933 (14) |
| N4—C10     | 1.4793 (11) | C21—H21       | 0.9500      |
| N4—H4      | 0.881 (8)   | C22—C23       | 1.3850 (16) |
| C1—C2      | 1.5077 (13) | С22—Н22       | 0.9500      |
| C1—H1A     | 0.9900      | C23—C24       | 1.3937 (15) |
| C1—H1B     | 0.9900      | С23—Н23       | 0.9500      |
| C2—C3      | 1.3935 (14) | C24—C25       | 1.3892 (14) |
| C2—C7      | 1.3943 (14) | C24—H24       | 0.9500      |
| C3—C4      | 1.3890 (14) | С25—Н25       | 0.9500      |
| С3—НЗА     | 0.9500      | C26—C27       | 1.5286 (13) |
| C4—C5      | 1.3940 (16) | С26—Н26А      | 0.9900      |
| C4—H4A     | 0.9500      | С26—Н26В      | 0.9900      |
| C5—C6      | 1.3844 (16) | C27—C28       | 1.5308 (13) |
| С5—Н5      | 0.9500      | С27—Н27А      | 0.9900      |
| C6—C7      | 1.3898 (14) | С27—Н27В      | 0.9900      |
| С6—Н6      | 0.9500      | C28—C29       | 1.5295 (14) |
| С7—Н7      | 0.9500      | C28—H28       | 1.0000      |
| C8—C9      | 1.5204 (13) | C29—C30       | 1.5287 (14) |
| C8—H8A     | 0.9900      | С29—Н29А      | 0.9900      |
| C8—H8B     | 0.9900      | С29—Н29В      | 0.9900      |
| C9—C10     | 1.5331 (13) | С30—Н30А      | 0.9800      |
| С9—Н9А     | 0.9900      | С30—Н30В      | 0.9800      |
| С9—Н9В     | 0.9900      | C30—H30C      | 0.9800      |
| C10-C11    | 1.5312 (13) | C31—C36       | 1.5344 (12) |
| C10—H10    | 1.0000      | C31—C32       | 1.5387 (13) |
| C11—C12    | 1.5277 (14) | C31—H31       | 1.0000      |
| C11—H11A   | 0.9900      | C32—C33       | 1.5328 (14) |
| C11—H11B   | 0.9900      | C32—H32A      | 0.9900      |
| C12—H12A   | 0.9800      | С32—Н32В      | 0.9900      |
| C12—H12B   | 0.9800      | C33—C34       | 1.5256 (14) |
| C12—H12C   | 0.9800      | С33—Н33А      | 0.9900      |
| C13—C14    | 1.5326 (13) | С33—Н33В      | 0.9900      |
| C13—C18    | 1.5378 (12) | C34—C35       | 1.5344 (13) |
| C13—H13    | 1.0000      | С34—Н34А      | 0.9900      |
| C14—C15    | 1.5336 (14) | С34—Н34В      | 0.9900      |
| C14—H14A   | 0.9900      | C35—C36       | 1.5238 (13) |
| C14—H14B   | 0.9900      | С35—Н35А      | 0.9900      |
| C15—C16    | 1.5245 (14) | С35—Н35В      | 0.9900      |
| С15—Н15А   | 0.9900      | С36—Н36       | 1.0000      |
| C1—N1—C8   | 110.14 (7)  | C16—C17—H17B  | 109.6       |
| C1—N1—C36  | 113.44 (7)  | С18—С17—Н17В  | 109.6       |
| C8—N1—C36  | 114.00 (7)  | H17A—C17—H17B | 108.1       |
| C1—N1—H1   | 109.2 (9)   | N3—C18—C17    | 115.38 (8)  |
| C8—N1—H1   | 106.1 (9)   | N3—C18—C13    | 111.61 (7)  |
| C36—N1—H1  | 103.4 (9)   | C17—C18—C13   | 110.41 (8)  |
| C31—N2—C28 | 117.74 (7)  | N3—C18—H18    | 106.3       |

| C31—N2—H2  | 109.3 (9)   | C17—C18—H18   | 106.3       |
|------------|-------------|---------------|-------------|
| C28—N2—H2  | 108.9 (9)   | C13—C18—H18   | 106.3       |
| C19—N3—C26 | 108.30 (7)  | N3—C19—C20    | 110.80 (8)  |
| C19—N3—C18 | 113.43 (7)  | N3—C19—H19A   | 109.5       |
| C26—N3—C18 | 113.09 (7)  | С20—С19—Н19А  | 109.5       |
| C13—N4—C10 | 117.05 (7)  | N3—C19—H19B   | 109.5       |
| C13—N4—H4  | 106.9 (9)   | C20—C19—H19B  | 109.5       |
| C10—N4—H4  | 108.9 (9)   | H19A—C19—H19B | 108.1       |
| O2—N5—O3   | 120.46 (10) | C21—C20—C25   | 118.57 (9)  |
| O2—N5—O1   | 119.90 (9)  | C21—C20—C19   | 120.93 (9)  |
| O3—N5—O1   | 119.64 (9)  | C25—C20—C19   | 120.51 (9)  |
| N1—C1—C2   | 110.71 (8)  | C22—C21—C20   | 120.56 (10) |
| N1—C1—H1A  | 109.5       | C22—C21—H21   | 119.7       |
| C2—C1—H1A  | 109.5       | C20—C21—H21   | 119.7       |
| N1—C1—H1B  | 109.5       | C23—C22—C21   | 120.26 (9)  |
| C2—C1—H1B  | 109.5       | С23—С22—Н22   | 119.9       |
| H1A—C1—H1B | 108.1       | C21—C22—H22   | 119.9       |
| C3—C2—C7   | 119.47 (9)  | C22—C23—C24   | 119.83 (9)  |
| C3—C2—C1   | 120.00 (9)  | С22—С23—Н23   | 120.1       |
| C7—C2—C1   | 120.53 (9)  | С24—С23—Н23   | 120.1       |
| C4—C3—C2   | 120.45 (9)  | C25—C24—C23   | 119.68 (10) |
| С4—С3—НЗА  | 119.8       | C25—C24—H24   | 120.2       |
| С2—С3—НЗА  | 119.8       | C23—C24—H24   | 120.2       |
| C3—C4—C5   | 119.63 (10) | C24—C25—C20   | 121.11 (9)  |
| C3—C4—H4A  | 120.2       | C24—C25—H25   | 119.4       |
| C5—C4—H4A  | 120.2       | С20—С25—Н25   | 119.4       |
| C6—C5—C4   | 120.20 (9)  | N3—C26—C27    | 116.35 (8)  |
| С6—С5—Н5   | 119.9       | N3—C26—H26A   | 108.2       |
| С4—С5—Н5   | 119.9       | С27—С26—Н26А  | 108.2       |
| C5—C6—C7   | 120.15 (10) | N3—C26—H26B   | 108.2       |
| С5—С6—Н6   | 119.9       | С27—С26—Н26В  | 108.2       |
| С7—С6—Н6   | 119.9       | H26A—C26—H26B | 107.4       |
| C6—C7—C2   | 120.10 (10) | C26—C27—C28   | 115.93 (8)  |
| С6—С7—Н7   | 120.0       | С26—С27—Н27А  | 108.3       |
| С2—С7—Н7   | 120.0       | C28—C27—H27A  | 108.3       |
| N1—C8—C9   | 114.58 (8)  | С26—С27—Н27В  | 108.3       |
| N1—C8—H8A  | 108.6       | С28—С27—Н27В  | 108.3       |
| С9—С8—Н8А  | 108.6       | H27A—C27—H27B | 107.4       |
| N1—C8—H8B  | 108.6       | N2-C28-C29    | 110.17 (8)  |
| С9—С8—Н8В  | 108.6       | N2—C28—C27    | 108.73 (7)  |
| H8A—C8—H8B | 107.6       | C29—C28—C27   | 110.59 (8)  |
| C8—C9—C10  | 114.44 (8)  | N2-C28-H28    | 109.1       |
| С8—С9—Н9А  | 108.7       | С29—С28—Н28   | 109.1       |
| С10—С9—Н9А | 108.7       | C27—C28—H28   | 109.1       |
| С8—С9—Н9В  | 108.7       | C30—C29—C28   | 114.03 (9)  |
| С10—С9—Н9В | 108.7       | С30—С29—Н29А  | 108.7       |
| Н9А—С9—Н9В | 107.6       | С28—С29—Н29А  | 108.7       |
| N4—C10—C11 | 113.13 (8)  | С30—С29—Н29В  | 108.7       |
| N4—C10—C9  | 108.99 (7)  | С28—С29—Н29В  | 108.7       |

| C11—C10—C9    | 110.91 (8)   | H29A—C29—H29B   | 107.6       |
|---------------|--------------|-----------------|-------------|
| N4—C10—H10    | 107.9        | С29—С30—Н30А    | 109.5       |
| C11-C10-H10   | 107.9        | С29—С30—Н30В    | 109.5       |
| C9—C10—H10    | 107.9        | H30A—C30—H30B   | 109.5       |
| C12—C11—C10   | 114.31 (9)   | С29—С30—Н30С    | 109.5       |
| C12—C11—H11A  | 108.7        | H30A-C30-H30C   | 109.5       |
| C10-C11-H11A  | 108.7        | H30B-C30-H30C   | 109.5       |
| C12—C11—H11B  | 108.7        | N2-C31-C36      | 107.60 (7)  |
| C10-C11-H11B  | 108.7        | N2-C31-C32      | 116.47 (8)  |
| H11A—C11—H11B | 107.6        | C36—C31—C32     | 107.83 (8)  |
| C11—C12—H12A  | 109.5        | N2—C31—H31      | 108.2       |
| C11—C12—H12B  | 109.5        | С36—С31—Н31     | 108.2       |
| H12A—C12—H12B | 109.5        | C32—C31—H31     | 108.2       |
| C11—C12—H12C  | 109.5        | C33—C32—C31     | 110.91 (8)  |
| H12A—C12—H12C | 109.5        | С33—С32—Н32А    | 109.5       |
| H12B-C12-H12C | 109.5        | C31—C32—H32A    | 109.5       |
| N4—C13—C14    | 111.39 (8)   | С33—С32—Н32В    | 109.5       |
| N4            | 107.91 (7)   | C31—C32—H32B    | 109.5       |
| C14—C13—C18   | 109.56 (8)   | H32A—C32—H32B   | 108.0       |
| N4—C13—H13    | 109.3        | C34—C33—C32     | 111.53 (8)  |
| C14—C13—H13   | 109.3        | С34—С33—Н33А    | 109.3       |
| C18—C13—H13   | 109.3        | С32—С33—Н33А    | 109.3       |
| C13—C14—C15   | 111.35 (8)   | С34—С33—Н33В    | 109.3       |
| C13—C14—H14A  | 109.4        | С32—С33—Н33В    | 109.3       |
| C15—C14—H14A  | 109.4        | H33A—C33—H33B   | 108.0       |
| C13—C14—H14B  | 109.4        | C33—C34—C35     | 111.45 (8)  |
| C15-C14-H14B  | 109.4        | С33—С34—Н34А    | 109.3       |
| H14A—C14—H14B | 108.0        | С35—С34—Н34А    | 109.3       |
| C16—C15—C14   | 111.55 (8)   | С33—С34—Н34В    | 109.3       |
| C16-C15-H15A  | 109.3        | C35—C34—H34B    | 109.3       |
| C14—C15—H15A  | 109.3        | H34A—C34—H34B   | 108.0       |
| C16—C15—H15B  | 109.3        | C36—C35—C34     | 109.00 (8)  |
| C14—C15—H15B  | 109.3        | С36—С35—Н35А    | 109.9       |
| H15A—C15—H15B | 108.0        | С34—С35—Н35А    | 109.9       |
| C15-C16-C17   | 110.92 (8)   | С36—С35—Н35В    | 109.9       |
| C15—C16—H16A  | 109.5        | С34—С35—Н35В    | 109.9       |
| C17—C16—H16A  | 109.5        | H35A—C35—H35B   | 108.3       |
| C15—C16—H16B  | 109.5        | N1—C36—C35      | 113.28 (8)  |
| C17—C16—H16B  | 109.5        | N1—C36—C31      | 110.70 (7)  |
| H16A—C16—H16B | 108.0        | C35—C36—C31     | 112.06 (8)  |
| C16—C17—C18   | 110.15 (8)   | N1—C36—H36      | 106.8       |
| C16—C17—H17A  | 109.6        | С35—С36—Н36     | 106.8       |
| C18—C17—H17A  | 109.6        | C31—C36—H36     | 106.8       |
| C8—N1—C1—C2   | 66.13 (10)   | C26—N3—C19—C20  | -70.03 (9)  |
| C36—N1—C1—C2  | -164.73 (8)  | C18—N3—C19—C20  | 163.57 (8)  |
| N1—C1—C2—C3   | 74.22 (11)   | N3—C19—C20—C21  | 111.49 (10) |
| N1—C1—C2—C7   | -105.98 (10) | N3—C19—C20—C25  | -68.03 (11) |
| C7—C2—C3—C4   | 0.50 (15)    | C25—C20—C21—C22 | 0.13 (15)   |
| C1—C2—C3—C4   | -179.69 (9)  | C19—C20—C21—C22 | -179.40 (9) |

| C2—C3—C4—C5     | -0.15 (15)  | C20-C21-C22-C23 | 0.30 (15)   |
|-----------------|-------------|-----------------|-------------|
| C3—C4—C5—C6     | -0.24 (16)  | C21—C22—C23—C24 | -0.43 (15)  |
| C4—C5—C6—C7     | 0.29 (16)   | C22—C23—C24—C25 | 0.12 (15)   |
| C5—C6—C7—C2     | 0.05 (15)   | C23—C24—C25—C20 | 0.32 (15)   |
| C3—C2—C7—C6     | -0.45 (15)  | C21—C20—C25—C24 | -0.44 (15)  |
| C1—C2—C7—C6     | 179.74 (9)  | C19—C20—C25—C24 | 179.09 (9)  |
| C1—N1—C8—C9     | -175.10 (8) | C19—N3—C26—C27  | 178.66 (8)  |
| C36—N1—C8—C9    | 56.07 (10)  | C18—N3—C26—C27  | -54.73 (11) |
| N1-C8-C9-C10    | 71.93 (10)  | N3-C26-C27-C28  | -73.19 (10) |
| C13—N4—C10—C11  | -68.49 (10) | C31—N2—C28—C29  | 73.32 (10)  |
| C13—N4—C10—C9   | 167.63 (8)  | C31—N2—C28—C27  | -165.34 (8) |
| C8—C9—C10—N4    | -50.59 (10) | C26-C27-C28-N2  | 53.90 (10)  |
| C8—C9—C10—C11   | -175.77 (8) | C26—C27—C28—C29 | 174.98 (8)  |
| N4-C10-C11-C12  | 177.23 (8)  | N2-C28-C29-C30  | -176.58 (8) |
| C9—C10—C11—C12  | -59.95 (11) | C27—C28—C29—C30 | 63.19 (11)  |
| C10-N4-C13-C14  | -67.86 (10) | C28—N2—C31—C36  | -175.09 (8) |
| C10-N4-C13-C18  | 171.85 (7)  | C28—N2—C31—C32  | 63.80 (11)  |
| N4-C13-C14-C15  | -175.82 (8) | N2-C31-C32-C33  | 178.67 (8)  |
| C18-C13-C14-C15 | -56.50 (10) | C36—C31—C32—C33 | 57.68 (10)  |
| C13-C14-C15-C16 | 55.23 (11)  | C31—C32—C33—C34 | -56.30 (11) |
| C14—C15—C16—C17 | -55.12 (12) | C32—C33—C34—C35 | 54.94 (12)  |
| C15-C16-C17-C18 | 56.98 (11)  | C33—C34—C35—C36 | -55.57 (11) |
| C19—N3—C18—C17  | 61.89 (10)  | C1—N1—C36—C35   | -67.88 (10) |
| C26—N3—C18—C17  | -61.94 (10) | C8—N1—C36—C35   | 59.27 (10)  |
| C19—N3—C18—C13  | -65.20 (10) | C1—N1—C36—C31   | 58.97 (10)  |
| C26—N3—C18—C13  | 170.97 (8)  | C8—N1—C36—C31   | -173.89 (8) |
| C16-C17-C18-N3  | 173.18 (8)  | C34—C35—C36—N1  | -174.29 (8) |
| C16-C17-C18-C13 | -59.12 (10) | C34—C35—C36—C31 | 59.58 (10)  |
| N4—C13—C18—N3   | -50.19 (10) | N2-C31-C36-N1   | 45.54 (10)  |
| C14—C13—C18—N3  | -171.62 (8) | C32—C31—C36—N1  | 171.92 (8)  |
| N4—C13—C18—C17  | -179.93 (7) | N2-C31-C36-C35  | 173.06 (7)  |
| C14—C13—C18—C17 | 58.63 (10)  | C32—C31—C36—C35 | -60.55 (10) |

#### *Hydrogen-bond geometry (Å, °)*

| Cg1 and Cg2 are the centroids of the C2–C7 and C20–C25 benzene rings respectively. |  |
|------------------------------------------------------------------------------------|--|
| $C_2 = C_1$ and $C_2 = C_2$ and $C_2 = C_2$ benzene rings, respectively.           |  |

| D—H···A                       | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-------------------------------|-------------|--------------|--------------|---------|
| N1—H1…N2                      | 0.90(1)     | 2.32 (1)     | 2.7400 (11)  | 108.(1) |
| N1—H1…N4                      | 0.90(1)     | 2.12(1)      | 2.8156 (11)  | 134.(1) |
| N2—H2…N3                      | 0.88 (1)    | 2.19(1)      | 2.9293 (11)  | 142.(1) |
| N4—H4…N3                      | 0.88 (1)    | 2.33 (1)     | 2.7992 (11)  | 113.(1) |
| C1—H1a…O1                     | 0.99        | 2.36         | 3.2096 (13)  | 143     |
| C9—H9a···O3 <sup>i</sup>      | 0.99        | 2.40         | 3.3620 (12)  | 165     |
| C34—H34a···O3 <sup>i</sup>    | 0.99        | 2.50         | 3.3876 (13)  | 150     |
| C8—H8a····Cg3 <sup>ii</sup>   | 0.99        | 2.53         | 3.4008 (11)  | 146     |
| C26—H26b···Cg1 <sup>iii</sup> | 0.99        | 2.71         | 3.5899 (11)  | 149     |
|                               |             |              |              |         |

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x+3/2, y+1/2, -z+1/2.











