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Abstract

Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine

receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial bar-

rier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated

human lung endothelial hyperpermeability is lacking and structure-function correlations are

not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial bar-

rier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands

(CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3

activities of CXCL12 variants (CXCL12α/β, CXCL12(3–68), CXCL121, CXCL122, CXCL12-

S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung

endothelial barrier function in permeability assays. CXCL12α enhanced human primary pul-

monary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin,

AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and

ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC

after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05–0.5nM),

which could be antagonized with AMD3100; ubiquitin (0.03–3μM) was ineffective. In a

human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-

treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3–

68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays;

CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly

reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-

Tango assays were comparable, the efficacy of CXCL12(3–68) to activate ACKR3 was sig-

nificantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function

impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V,

CXCL12-R47E > CXCL122 > CXCL12(3–68). Our findings indicate that CXCR4 activation

attenuates thrombin-induced lung endothelial barrier function impairment and suggest that

protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of

distinct protein moieties with heparan sulfate on the endothelial surface. These data may
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facilitate development of compounds with improved pharmacological properties to attenuate

thrombin-induced vascular leakage in the pulmonary circulation.

Introduction

Acute respiratory distress syndrome (ARDS) remains a major contributor to morbidity and mor-

tality in critically ill patients [1–4]. It is generally accepted that mild ARDS and its progression

into moderate and severe ARDS is caused by local and systemic coagulation and inflammation,

which leads to impaired pulmonary endothelial barrier function, third spacing of fluids into the

lung and formation of lung edema, the hallmark of ARDS [5, 6]. Thrombin plays an important

role in the pathogenesis of ARDS; in addition to functions of thrombin in the clotting cascade,

thrombin fulfills diverse roles in inflammation and is well known to impair endothelial barrier

function through activation of the G protein-coupled receptors (GPCR) protease-activated recep-

tors (PARs) [7–9]. All four members of the PAR family (PAR1-4) can be activated by thrombin

[8–10]. A large body of evidence suggests that PAR-1 is the major mediator of thrombin signaling

in vascular endothelial cells [8, 11–14]. PAR-1 is activated when thrombin cleaves its extracellular

N-terminal domain between residues Arg-41 and Ser-42, which unmasks a new N-terminus that

serves as a tethered ligand [8]. Drugs that limit impairment of the lung endothelial barrier by

thrombin, however, are not available, but desirable for their potential to improve outcomes.

Recently, administration of cognate, non-cognate and synthetic chemokine (C-X-C) motif

receptor (CXCR) 4 agonists has been shown to attenuate lung injury in various experimental

models and CXCL12 (stromal cell-derived factor-1α), the cognate agonist of CXCR4 and atyp-

ical chemokine receptor 3 (ACKR3), has been described to attenuate thrombin-induced

impairment of endothelial cell barrier function [15–22]. A more detailed pharmacological

characterization of these CXCL12-mediated effects, however, is lacking and the effects of other

CXCR4/ACKR3 ligands on lung endothelial cell barrier function are ill defined. Moreover,

information on the structural requirements of CXCL12 to attenuate thrombin-mediated lung

endothelial barrier disruption and the relationship to its CXCR4/ACKR3 agonist activity is not

available. Because such data could guide the development of compounds with improved effi-

cacy to reduce thrombin-mediated vascular leakage, we tested the effects of a panel of CXCR4/

ACKR3 ligands on the barrier function of human lung vascular endothelial cells. We also com-

pared CXCR4 and ACKR3 activities with effects on thrombin-induced lung endothelial barrier

disruption of the wild-type splice variants CXCL12α and CXCL12β, of N-terminal truncated

CXCL12 (3–68), a posttranslational modification that occurs in vivo after cleavage of CXCL12

by CD26/dipeptidyl peptidase 4, and of several engineered CXCL12 variants and mutants.

These proteins have previously been reported to possess distinct affinities for CXCR4/ACKR3

and altered pharmacological properties [23–31]. Thus, we hypothesized that CXCR4 agonists

antagonize thrombin-mediated impairment of lung endothelial cell barrier function and that

the engineered CXCL12 variants and mutants show distinct biological activities.

Materials and methods

Proteins, peptides and reagents

AMD3100 was purchased from Sigma-Aldrich, CXCL12 and CXCL11 from Protein Foundry,

ubiquitin from R&D Systems, TC14012 from Tocris Bioscience and human alpha thrombin

from Enzyme Research Laboratories. Recombinant CXCL12 variant proteins were expressed

in E. coli, refolded, purified and verified by NMR and high-resolution mass spectrometry as

previously described [32]

CXCR4/ACKR3 activation and lung endothelial barrier function

PLOS ONE | https://doi.org/10.1371/journal.pone.0187949 November 10, 2017 2 / 19

The authors declare that they have no conflict of

interest.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187949


Cells and cell lines

Human primary pulmonary artery endothelial cells (hPPAEC) (ATCC, PCS-100-022) and the

human lung microvascular endothelial cell line HULEC-5a (ATCC, CRL-3244) were cultured

in vascular cell basal medium (ATCC, PCS-100-030) with endothelial cell growth kit-VEGF

(ATCC, PCS-100-041). The HTLA cell line, a HEK293 cell line stably expressing a tTA-depen-

dent luciferase reporter and a β-arrestin2-TEV fusion gene [33], was generously provided by

the laboratory of Dr. Bryan Roth and maintained in high glucose Dulbecco’s Modified’s Eagle’s

Medium supplemented with 10% (vol/vol) FBS, 1x non-essential amino acids, 100 U/mL peni-

cillin, 100 μg/mL streptomycin, 50 μg/mL hygromycin B, and 2 μg/mL puromycin. All cells

were cultured at 37˚C, 5% CO2 in a humidified atmosphere.

In vitro vascular permeability assays

Permeability assays were obtained from Millipore (ECM642) and performed as per manufac-

turer’s instructions. In brief, 96-well collagen-coated permeability assay plates were pre-

hydrated for 15 min, 5x105 cells were seeded on each well and grown to a confluent monolayer

for 48 hours. Fluorescein isothiocyanate (FITC)-dextran (20 μg/mL) was then added on top of

the monolayer and the amount of FITC-dextran that permeated through the monolayer was

quantified by measuring fluorescence in a Synergy 2 Multi-mode Microplate Reader (BioTek,

Winooski, VT) at various time points over a 255 min time period.

Proximity ligation assays (PLA)

PLA were performed as described in detail previously [34–36], utilizing mouse anti-ACKR3

(R&D MAB42273) and goat anti-CXCR4 (Abcam Ab1670). The antibodies have been vali-

dated for their receptor target previously [35–37]. PLA signals (λexcitation/emission 598/634 nm))

were identified as red spots under a fluorescence microscope.

Presto-Tango β-arrestin 2 recruitment assay

The PRESTO-Tango (parallel receptorome expression and screening via transcriptional out-

put, with transcriptional activation following arrestin translocation) assay was performed as

recently described [33]. The Tango plasmids were a gift from Dr. Bryan Roth (all from

Addgene). HTLA cells (2.5x105/well) were seeded in a 6-well plate and transfected with 1.5 μg

of the Tango plasmids using Lipofectamine 3000 (ThermoScientific). The following day, trans-

fected HTLA cells (1x105 cells/well) were plated onto Poly-L-Lysine pre-coated 96-well micro-

plates and allowed to attach to the plate surface for at least 4 hours prior to treatment. Proteins

used for treatment were prepared in twice the final concentration in culture media, added at a

1:1 vol/vol ratio and incubated overnight at 37˚C, 5% CO2 in a humidified environment. The

following morning, media was removed from cell culture plates and replaced with a 100 μL 1:5

mixture of Bright-Glo (Promega) and 1x HBSS, 20 mM HEPES solution. Plates were then

incubated at room temperature before measuring luminescence on a Biotek Synergy II plate

reader.

SDS-polyacrylamide gel electrophoresis (PAGE)

SDS-PAGE was performed utilizing pre-cast mini-PROTEAN TGX gels (Bio-Rad). Lanes

were loaded with 1ug of each protein in 25 μL of Laemmli sample buffer with or without 10%

2-mercaptoethanol (SigmaAldich) after boiling for 5 min.

CXCR4/ACKR3 activation and lung endothelial barrier function
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Data analyses

Data are expressed as mean ± SEM from n independent experiments that were performed on

different days. Data were analyzed with unpaired Student’s t test, one- or two-way analyses of

variance with Bonferroni’s multiple comparison post hoc test, as appropriate. Dose–response

curves were generated using nonlinear regression analyses. All analyses were performed with

the GraphPad-Prism 7 software. A two-tailed P< 0.05 was considered significant.

Results

To confirm that CXCR4 and ACKR3 are expressed in hPPAEC and to assess whether both

receptors form heteromeric complexes, we performed PLA to detect individual receptors and

receptor-receptor interactions at single molecule resolution. As shown in Fig 1A, we observed

positive PLA signals for both receptors individually and for CXCR4:ACKR3 heteromeric com-

plexes. We then tested the effects of a panel of CXCR4 and ACKR3 ligands on hPPAEC mono-

layer permeability in transwell-permeability assays with FITC-dextran (Fig 1B). Ubiquitin, a

non-cognate CXCR4 agonist that does not bind to ACKR3, CXCL11, an ACKR3 and CXCR3

agonist, TC14012, a synthetic CXCR4 antagonist and ACKR3 agonist, and AMD3100, a

CXCR4 antagonist and allosteric ACKR3 agonist, did not affect hPPAEC permeability [26,

38–41]. In contrast, CXCL12 enhanced hPPAEC barrier function.

To be able to assess the effects of CXCL12 on thrombin-induced impairment of hPPAEC

barrier function under optimized conditions, we determined the dose-response characteristics

for thrombin in the permeability assay. The effects of thrombin (10–100 nM) on hPPAEC

monolayer permeability are shown in Fig 2A. Thrombin dose- and time-dependently induced

permeability of the hPPAEC monolayer. The time to reach plateau for the permeability-

Fig 1. Expression of CXCR4, ACKR3 and CXCR4:ACKR3 heteromers on hPPAEC and effects of CXCR4/ACKR3 ligands on hPPAEC

monolayer permeability. (A) Detection of CXCR4, ACKR3 and CXCR4:ACKR3 heteromers on hPPAEC by PLA. Typical PLA images for the

detection of individual receptors and CXCR4:ACKR3 heteromers. Images show merged PLA/40,6-diamidino-2-phenylindole dihydrochloride (DAPI)

signals. Ctrl.: Omission of one secondary antibody. (B) hPPAEC were grown to a confluent monolayer on collagen-coated permeable membranes.

Cells were then exposed to vehicle or 50 nM of CXCR4/ACKR3 ligands for 10 minutes, as indicated, followed by the addition of FITC-dextran.

Endothelial permeability was assessed by measuring the amount of FITC-dextran that permeated through the cell monolayer. N = 3 in

quadruplicate. No cells: 100% permeability, open squares. RFU: Relative fluorescence units. *: p<0.05 vs. vehicle (2-way ANOVA/Bonferroni’s

multiple comparison post hoc test).

https://doi.org/10.1371/journal.pone.0187949.g001
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inducing effects of thrombin increased with increasing thrombin concentrations (20 nM– 55

min; 30 nM– 75 min; 40 nM– 135 min; 50 nM and 100 nM—>255 min). Based on the results

from Fig 2A, we analyzed the dose-effect relationship for thrombin-induced impairment of

lung vascular endothelial cell barrier function at 55 min, 135 min and 255 min (Fig 2B). The

thrombin-mediated effects showed a sigmoidal dose-effect relationship at all time points. The

EC50 for thrombin-induced impairment of hPPAEC barrier function was 30±2 nM after 55

min, 33±2 nM after 135 min and 36±2 nM after 255 min. The maximal impairment of endothe-

lial barrier function (100% permeability = measured permeability in the absence of hPPAEC)

reached 49±3% at 55 min and 59±4% and 72±4% at 135 min and 255 min, respectively.

We then tested whether pre-treatment with CXCL12 and ubiquitin influences hyper-per-

meability of hPPAEC induced by a sub-maximal dose of thrombin. hPPAEC were treated for

10 min with either 100 nM of CXCL12 or ubiquitin, followed by the addition of of thrombin

(Fig 3A). Pre-treatment with both CXCR4 agonists significantly attenuated thrombin-induced

hyper-permeability of hPPAEC. CXCL12 was more efficacious than ubiquitin in this assay. The

effects of CXCL12 and ubiquitin when added after thrombin treatment of hPPAEC are shown

in Fig 3B and 3C. CXCL12 significantly attenuated thrombin-induced permeability of hPPAEC

and this effect could be antagonized with the CXCR4 antagonist AMD3100. AMD3100 treat-

ment alone did not affect thrombin-mediated hyper-permeability of hPPAEC (Fig 3B). In

contrast to CXCL12, ubiquitin-treatment and ubiquitin plus AMD3100-treatment did not mod-

ulate thrombin-induced hyper-permeability when tested in parallel experiments (Fig 3C). To

exclude that the dose-effect relationship for ubiquitin is different from the dose-effect relation-

ship for CXCL12, we tested ubiquitin in various concentrations (30 nM– 3 μM), including con-

centrations above the KD-value of ubiquitin for CXCR4 binding [39]. Ubiquitin treatment,

Fig 2. Impairement of hPPAEC monolayer permeability by thrombin. (A) hPPAEC were grown to a confluent monolayer on collagen-coated

permeable membranes and then exposed to different concentration of thrombin for 10 min, followed by the addition of FITC-dextran. Endothelial

permeability was assessed by measuring the amount of FITC-dextran that permeated through the cell monolayer. No cells: 100% permeability.

RFU: Relative fluorescence units. N = 3 in quadruplicate. (B) Dose-response curves for thrombin-induced permeability, data from A. 100%

permeability = permeability in the absence of hPPAEC. Open squares: Permeability at t = 55 min. Light grey squares: Permeability at t = 135 min.

Dark grey squares: Permeability at t = 255 min. Dose-response curves were generated using nonlinear regression analyses.

https://doi.org/10.1371/journal.pone.0187949.g002
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however, did not attenuate thrombin-induced hyper-permeability of the hPPAEC monolayer at

any tested concentration under these experimental conditions (Fig 3D).

As observed in hPPAEC, thrombin also dose- and time-dependently induced permeability

in the human lung microvascular endothelial cell line HULEC-5a (Fig 4A and 4B). When com-

pared with hPPAEC, potency and efficacy of thrombin to induce permeability were reduced in

Fig 3. Effects of CXCL12 and ubiquitin on thrombin-induced impairment of hPPAEC monolayer permeability. hPPAEC were grown to a confluent

monolayer on collagen-coated permeable membranes. (A) hPPAEC were pre-treated with vehicle, 100 nM of CXCL12 or ubiquitin for 10 minutes, as

indicated, and then exposed to thrombin (50 nM), followed by the addition of FITC-dextran. Vehicle: no thrombin. Endothelial permeability was assessed by

measuring the amount of FITC-dextran that permeated through the cell monolayer. No cells: 100% permeability (open circles). RFU: Relative fluorescence

units. N = 3 in quadruplicate. *: p<0.05 vs. vehicle/thrombin. (B-D) hPPAEC were exposed to 35 nM of thrombin or vehicle. After 10 min, thrombin-exposed

cells were treated with vehicle, CXCL12 (50 nM) and/or AMD3100 (10 μM) (B), with vehicle, ubiquitin (50 nM) and/or AMD3100 (10 μM) (C) or with various

concentrations of ubiquitin (D) followed by the addition of FITC-dextran. The experimental conditions are indicated. Endothelial permeability was assessed

by measuring the amount of FITC-dextran that permeated through the cell monolayer. RFU: Relative fluorescence units. N = 3 in quadruplicate. *: p<0.05

vs. thrombin/vehicle (2-way ANOVA/Bonferroni’s multiple comparison post hoc test).

https://doi.org/10.1371/journal.pone.0187949.g003
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HULEC-5a. The EC50 for thrombin-induced impairment of HULEC-5a barrier function was

64±7 nM after 55 min, 64±6 nM after 135 min and 57±5 nM after 255 min. Addition of

CXCL12 and ubiquitin after treatment of HULEC-5a cells with a sub-maximal dose of

Fig 4. Effects of CXCL12 and ubiquitin on thrombin-induced impairment of HULEC-5a monolayer permeability. (A) HULEC-5a were grown to a

confluent monolayer on collagen-coated permeable membranes and then exposed to different concentration of thrombin for 10 min, followed by the addition

of FITC-dextran. Endothelial permeability was assessed by measuring the amount of FITC-dextran that permeated through the cell monolayer. No cells:

100% permeability. RFU: Relative fluorescence units. N = 3 in quadruplicate. (B) Dose-response curves for thrombin-induced permeability, data from A.

100% permeability = permeability in the absence of HULEC-5a. Open squares: Permeability at t = 55 min. Light grey squares: Permeability at t = 135 min.

Dark grey squares: Permeability at t = 255 min. (C/D) HULEC-5a were grown to a confluent monolayer on collagen-coated permeable membranes and then

exposed to 50 nM of thrombin or vehicle. After 10 min, thrombin-exposed cells were treated with vehicle, CXCL12 (50 nM) (C) or ubiquitin (50 nM) (D),

followed by the addition of FITC-dextran. The experimental conditions are indicated. Endothelial permeability was assessed by measuring the amount of

FITC-dextran that permeated through the cell monolayer. RFU: Relative fluorescence units. N = 3 in quadruplicate. *: p<0.05 vs. thrombin/vehicle (2-way

ANOVA/Bonferroni’s multiple comparison post hoc test).

https://doi.org/10.1371/journal.pone.0187949.g004
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thrombin significantly reduced thrombin-mediated impairment of endothelial cell barrier

function (Fig 4C and 4D). The protective effects of both CXCR4 agonists on thrombin-

induced permeability were comparable in HULEC-5a cells; CXCL12, however, was less effica-

cious in HULEC-5a cells than in hPPAEC.

Next, we utilized the Presto-Tango β-arrestin 2 recruitment assay to assess CXCR4 and

ACKR3 agonist activities of the natural splice variants CXCL12α and CXCL12β, of truncated

CXCL12 (3–68) and the engineered constitutively monomeric (CXCL121) and dimeric

(CXCL122) CXCL12 variants. To confirm the dimeric and monomeric structure of the

CXCL121 and CXCL122 variants, we performed polyacrylamide gel electrophoresis (PAGE)

under non-reducing and reducing conditions (Fig 5). Consistent with the mono- and dimeric

nature of the CXCL12 variants [27, 29], the migration position of CXCL122 was close to 20

kDa under non-reducing conditions, whereas CXCL12 and CXCL121 migrated to a position

corresponding to a lower molecular mass. It should be noted that a faint band migrating at the

position of CXCL122 was visible in non-reducing SDS-PAGE with CXCL12 (loaded at 4 μM),

which is consistent with its dimerization Kd of 140 μM [42]. Under reducing conditions all

three proteins showed an identical migration position, corresponding to the monomeric

molecular mass of approximately 8 kDa.

In addition, we tested CXCL12 S-S4V, a protease resistant mutant, CXCL12 K27A/R41A/

R47A, which shows significantly reduced heparan sulfate proteoglycan binding properties,

and CXCL12 R47E, which activates CXCR4 with reduced potency, as compared with

CXCL12α. The dose-response curves are shown in Fig 6 and Table 1 summarizes the corre-

sponding EC50 concentrations and top plateau values (efficacy) for each protein.

All proteins except CXCL123-68, which lacked relevant CXCR4 activity, showed comparable

efficacy to recruit β-arrestin 2 to CXCR4. There were no statistically significant differences

between the EC50 concentrations for CXCL12α, CXCL12β, CXCL121 and CXCL122 in the

CXCR4 Presto-Tango assay. The potencies of CXCL12 S-S4V, CXCL12 R47E and CXCL12

K27A/R41A/R47A were significantly lower than the potency of CXCL12α to recruit β-arrestin

2 to CXCR4.

In contrast, all proteins induced β-arrestin 2 recruitment to ACKR3 with an EC50 in the

low nM range (p>0.05 for all vs. CXCL12α). While the efficacy for β-arrestin 2 recruitment to

ACKR3 was significantly reduced for CXCL12 (3–68), the efficacies of all other proteins for β-

arrestin 2 recruitment to ACKR3 were comparable.

Fig 5. Electrophoretic mobility of CXCL12α, CXCL121 and CXCL122. Per lane 1 μg of protein in 25μL sample

buffer (4 μM) were used for SDS-polyacrylamide gel electrophoresis under non-reducing (-) and reducing (+, βME:

0.357 M β-mercaptoethanol) conditions. The position of molecular mass standards is indicated on the left.

https://doi.org/10.1371/journal.pone.0187949.g005
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Fig 6. Presto-Tango β-arrestin 2 recruitment assays for CXCR4 (A-C) and ACKR3 (D-F). RLU%: % of the luminescence signal for 1 μM

CXCL12α. N = 9 for CXCL12α and n = 3 for all other proteins.

https://doi.org/10.1371/journal.pone.0187949.g006

Table 1. CXCR4 and ACKR3 activity of CXCL12/CXCL12 variants–PRESTO-Tango.

Protein CXCR4 ACKR3

EC50 (nM) efficacy % EC50 (nM) efficacy %

CXCL12α 5.18±4.4 100 5.8±8.6 100

CXCL12β 1.4±0.5 73±11 1.5±0.8 103±2

CXCL121 27±11 103±10 5.6±2.1 98±8

CXCL122 2.4±1.3 90±19 8.8±0.8 87±12

CXCL12 S-S4V 75±30 (0.047) 117±27 0.7±1.4 88±12

CXCL12 R47E 127±52 (<0.01) 105±18 0.4±0.02 86±7

CXCL12 K27A R41A R47A 145±95 (<0.01) 111±17 1.2±1.6 83±7

CXCL12 (3–68) >103 nd 13.3±13.5 19±2 (<0.01)

Data are mean±SD. %: Relative efficacy in % of the efficacy of CXCL12α (wild type). N = 9 for CXCL12α, n = 3 for all other proteins. Data were compared

with 1-way ANOVA/Bonferroni post hoc testing. Statistically significant differences vs. CXCL12α are shown in parenthesis. nd: not determined.

https://doi.org/10.1371/journal.pone.0187949.t001
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Figs 7 and 8 show the effects of the proteins on thrombin-mediated impairment of hPPAEC

barrier function when tested in concentrations between 0.05–50 nM in parallel experiments.

CXCL12 (3–68) did not attenuate thrombin-induced impairment of hPPAEC barrier function.

All other proteins inhibited thrombin-mediated impairment of hPPEAC barrier function with

a similar time-dependency of their effects.

Fig 7. Dose-dependent effects of CXCL12α/β, CXCL12 (3–68) and CXCL12 mutants K27A/R41A/R47A, R47E and S-S4V on thrombin-induced

impairment of hPPAEC monolayer permeability. hPPAEC cells were grown to a confluent monolayer on collagen-coated permeable membranes.

hPPAEC were then exposed to 35 nM of thrombin. After 10 min, thrombin-exposed cells were treated with vehicle or 50 nM (A), 5 nM (B), 0.5 nM (C) or

0.05 nM (D) of the various proteins, as indicated. In (D) 5 nM CXCL12αwas used as a positive control. N = 3 in quadruplicate.

https://doi.org/10.1371/journal.pone.0187949.g007
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Fig 9 shows the comparison of their end-point (t = 255 min) dose-response profiles.

Except for CXCL12 (3–68), the efficacies of all other proteins to inhibit thrombin-induced

impairment of hPPAEC barrier function were comparable. CXCL12α, CXCL12β, CXCL121

and CXCL12 K27A/R41A/R47A showed similar potencies to inhibit thrombin-mediated

hyper-permeability of hPPAEC with EC50 concentrations between 0.05–0.5 nM. The potencies

of CXCL12 R47E and CXCL12 S-S4V were one order of magnitude lower (EC50 between 0.5–

Fig 8. Dose-dependent effects of CXCL12α, CXCL121 and CXCL122 on thrombin-induced impairment of hPPAEC monolayer permeability.

hPPAEC cells were grown to a confluent monolayer on collagen-coated permeable membranes. hPPAEC were then exposed to 35 nM of thrombin. After

10 min, thrombin-exposed cells were treated with vehicle or 50 nM (A), 5 nM (B), 0.5 nM (C) or 0.05 nM (D) of the various proteins, as indicated. In (D) 5

nM CXCL12αwas used as a positive control. N = 3 in quadruplicate.

https://doi.org/10.1371/journal.pone.0187949.g008
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50 nM). CXCL122 affected thrombin-mediated hPPAEC barrier impairment only at a concen-

tration of 50 nM.

Discussion

In the present study, we evaluated the effects of CXCR4 and ACKR3 ligands on the barrier

function of human lung endothelial cells. CXCL12 has previously been described to enhance

transendothelial electrical resistance, a surrogate marker of endothelial barrier function, of

bovine aortic, human pulmonary artery and umbilical vein endothelial cells [22]. Furthermore,

pre-treatment of bovine aortic endothelial cells with CXCL12 has been reported to attenuate

thrombin-induced FITC-dextran transfer in transwell permeability assays. Likewise, co-treat-

ment of human microvascular endothelial cells with CXCL12 or CTCE-0214, a synthetic

CXCL12 analogue, plus thrombin attenuated the reduction of transendothelial resistance that

was detectable with thrombin alone [15, 22]. Our observations from the present study are in

Fig 9. Inhibition of thrombin-induced hyper-permeability of hPPAEC by CXCL12/CXCL12 variants. % inhibiton: % inhibiton of thrombin-induced

hyperpermeability. Data from Figs 7 and 8 at t = 255 min. N = 3 inquadruplicate. *: p<0.05 vs. CXCL12α (2-way ANOVA/Bonferroni’s multiple comparison

post hoc test).

https://doi.org/10.1371/journal.pone.0187949.g009
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agreement with previous reports and now provide direct evidence that CXCL12 enhances bar-

rier function of hPPAEC in the absence of permeability-inducing agents. In addition, we dem-

onstrate that pre-treatment of hPPAEC with CXCL12 and with the non-cognate CXCR4

agonist ubiquitin, which does not bind to ACKR3 [38], attenuates thrombin-mediated

hPPAEC barrier function impairment. These findings provide a possible mechanism underly-

ing lung protective effects of intravenous CXCL12 pre-treatment in an oleate-induced lung

injury model in rabbits and of ubiquitin pre-treatment in an endotoxic shock model in pigs

[17, 20].

Although pre- and co-treatment experiments provide information on possible preventive

properties of CXCR4 agonists, such experiments are unable to address therapeutic potential.

Thus, we performed post-treatment experiments and detected that activation of CXCR4

after thrombin-exposure of hPPAEC and HULEC5a cells attenuates thrombin-mediated

impairment of lung endothelial barrier function. These findings support the concept that

CXCR4 agonists have therapeutic potential to limit thrombin-mediated pulmonary vascular

leakage, which likely contributed to lung protective effects of CXCR4 agonists that have been

observed in various models when administered after the insult [15, 17, 18, 21, 43].

In contrast to CXCL12, the non-cognate CXCR4 agonist ubiquitin did not enhance

hPPAEC barrier function in the absence of thrombin. As compared with CXCL12, ubiquitin

was less efficacious to reduce thrombin-mediated barrier function impairment in pre-treat-

ment experiments with hPPAEC, showed similar efficacy to protect barrier function after

thrombin exposure of HUELC5a and failed to protect barrier function after thrombin expo-

sure of hPPAEC. These findings could be explained by ubiquitin’s lower affinity for and

weaker agonist activity at CXCR4, as compared with CXCL12 [38, 39, 44–46].

Recently, we provided evidence that ubiquitin functions as a biased CXCR4 agonist, which

does not recruit β-arrestin 2 to CXCR4 [47]. Thus, it appears also possible that the differences

between CXCL12 and ubiquitin that we observed in the present study reflect differences in

functional outcomes of balanced and biased CXCR4 signaling in lung endothelial cells.

Because none of the ACKR3 agonists affected hPPAEC barrier function and AMD3100

abolished protective effects of CXCL12 on thrombin-mediated barrier function impairment,

activation of ACKR3 alone appears not to contribute to the observed effects.

Previously, CXCR4 has been shown to form heteromeric complexes with ACKR3 in expres-

sion systems and in human vascular smooth muscle cells [34–36, 48, 49]. Our present finding

that PLA signals for CXCR4 and ACKR3 interactions are also detectable in hPPAEC suggests

the existence of such endogenous receptor heteromers in the lung endothelium. Thus, another

explanation for the observed differences between CXCL12 and ubiquitin could be that simulta-

neous activation of CXCR4 and ACKR3 within the heteromeric complex is more efficacious to

reduce thrombin-mediated endothelial barrier impairment than activation of CXCR4 alone.

To address this possibility, detailed mechanistic studies to elucidate the roles of the CXCR4:

ACKR3 heteromer will be required in the future. Such experiments, however, are beyond the

scope of the present study.

Among the CXCL12 variants that we tested, only CXCL12 (3–68) lacked relevant CXCR4

activity, showed significantly reduced efficacy to activate ACKR3 in Presto-Tango assays and

did not attenuate thrombin-induced hPPAEC barrier function impairment. This loss of func-

tion is consistent with the loss of function of N-terminal truncated CXCL12 that has been

reported previously in other assay systems [23–25].

As expected, both natural CXCL12 splice variants, CXCL12α and CXCL12α, showed com-

parable properties in Presto-Tango and permeability assays [26]. CXCL12 exists as a monomer

at low concentrations and forms dimers at high concentrations or when bound to heparan sul-

fate on the endothelial surface [31, 50, 51]. Consistent with previous reports, the constitutive
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monomeric CXCL12 variant (CXCL121) showed a behavior similar to wild type proteins in

CXCR4/ACKR3 β-arrestin 2 recruitment assays and in permeability assays [27, 28].

Despite activities of the disulfide-locked dimeric CXCL12 variant CXCL122 in β-arrestin 2

recruitment assays for CXCR4 and ACKR3 that were comparable with CXCL12α/β, CXCL122

showed significantly reduced potency to attenuate thrombin-induced permeability of

hPPEAC. The previous finding that CXCL122 binds to ACKR3 with very low affinity is not

contradictive to our findings in ACKR3 β-arrestin 2 recruitment assays because maximal bio-

logical responses of other GPCRs have been observed at ligand occupancies of only a small

fraction of receptors [28, 52, 53] and a large receptor reserve is likely in expression systems,

such as the Presto-Tango assay. The effects of CXC122 in CXCR4 β-arrestin 2 recruitment

assays that we observed using the Presto-Tango cell system, however, are conflicting with pre-

vious measurements in intermolecular bioluminescence resonance energy transfer (BRET)

assays [28]. The Presto-Tango assay utilizes a transcriptional read-out that is measured several

hours after the actual signaling event. Thus, it appears possible that few β-arrestin recruitment

events upon ligand binding, which may not generate a significant intermolecular BRET signal,

can lead to transcription of luciferase in the Presto-Tango system. Furthermore, as compared

to previous intermolecular BRET assays in which cells were exposed to CXCL122 for 30 min

[28], cells were exposed to CXCL122 in our Presto-Tango assays for longer time periods,

which may contribute to the observed effects. Irrespective of this discrepancy, the low potency

of CXCL122 to inhibit thrombin-mediated barrier function impairment in the present study in

combination with the previously described lack of chemotactic activity of CXCL122 [28, 29]

demonstrate that this variant does not induce the complete spectrum of biological effects that

are mediated via CXCR4 and/or ACKR3 upon activation with the wild type proteins and the

constitutively monomeric variant.

In agreement with the low potency of CXCL12 R47E to activate Ca2+ signaling via CXCR4

[29], we observed that this mutant also induces β-arrestin 2 recruitment to CXCR4 and antag-

onizes thrombin-mediated hyperpermeability of hPPAEC with reduced potency, but retains

ACKR3 activity comparable to wild type proteins. Similarly, the protease resistant mutant

CXCL12 S-S4V showed reduced CXCR4 activity in Presto-Tango and permeability assays but

retained ACKR3 activity. These findings are in agreement with previous effects of this mutant

in CXCR4/ACKR3 β-arrestin recruitment and chemotaxis assays [30]. The observations that

CXCL12 R47E and CXCL12 S-S4V showed reduced CXCR4 activity but retained ACKR3

activity further supports the assumption that protection from thrombin-mediated hPPAEC

barrier impairment is mediated via CXCR4.

CXCL12 is known to bind to heparin oligosaccharides, which promotes dimerization, inter-

feres with CXCL12 binding to CXCR4 and immobilizes CXCL12 on the endothelial surface to

establish a concentration gradient required for cell trafficking [31, 54–56]. CXCL12 K27A/

R41A/R47A, which binds heparan sulfates with significantly reduced affinity [31], was the

only mutant protein that inhibited thrombin-mediated impairment of hPPAEC barrier func-

tion with that same potency as wild type proteins and CXCL121. This mutant, however,

showed the lowest potency to activate CXCR4 in β-arrestin 2 recruitment assays and retained

high potency to activate ACKR3. These data suggest that the K27, R41 and R47 mutations

reduced the binding affinity for CXCR4 or the efficacy to induce signaling events at lower con-

centrations. The high potency of this mutant to reduce thrombin-induced barrier function

impairment, however, can be explained by its reduced heparan sulfate binding properties,

which reduces the proportion of protein that is immobilized on the surface of hPPAEC and

thus, is not available for receptor activation [57]. The latter suggests that CXCL12 binding to

heparan sulfate on HTLA cells, which were used in Presto-Tango assays, does not significantly

affect CXCR4 binding and signaling. This implies that distinct cell surface heparan sulfate
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proteoglycan expression patterns between various cell types modulate CXCL12-mediated bio-

logical functions.

In conclusion, our findings suggest CXCR4 as a possible drug target to attenuate thrombin-

mediated impairment of lung endothelial barrier function, demonstrate that stimulation of

human lung endothelial cells with cognate and non-cognate CXCR4 agonists results in func-

tional differences and provide initial information on the structure-function relationship for

CXCL12-mediated protection from thrombin-induced barrier function impairment in primary

human lung endothelial cells. Our findings indicate that the protective effects of CXCL12 are

dictated by its CXCR4 agonist activity and by interactions of distinct protein moieties with

heparan sulfate proteoglycans on the endothelial cell surface. Interestingly, in disease conditions

that are likely associated with thrombin-induced endothelial permeability impairment, such as

sepsis or trauma, systemic CXCL12 concentrations have been reported to increase to levels

within the range of the EC50 for CXCL12 to attenuate thrombin-induced barrier function

impairment in our permeability assays [58–60]. This may suggest that activation of CXCR4 by

its endogenous agonists constitutes a protective mechanism to attenuate endothelial barrier

function impairment by thrombin in disease conditions and implies that treatment with exoge-

nous CXCR4 agonists augments this protective response. Our findings are expected to facilitate

the development of engineered compounds with improved pharmacological properties to atten-

uate thrombin-induced vascular leakage in the pulmonary circulation, which may have the

potential to attenuate development of lung injury and ARDS.
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