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Abstract

Different resampling methods for the null hypothesis of no Granger causality are assessed

in the setting of multivariate time series, taking into account that the driving-response cou-

pling is conditioned on the other observed variables. As appropriate test statistic for this set-

ting, the partial transfer entropy (PTE), an information and model-free measure, is used.

Two resampling techniques, time-shifted surrogates and the stationary bootstrap, are

combined with three independence settings (giving a total of six resampling methods), all

approximating the null hypothesis of no Granger causality. In these three settings, the level

of dependence is changed, while the conditioning variables remain intact. The empirical null

distribution of the PTE, as the surrogate and bootstrapped time series become more inde-

pendent, is examined along with the size and power of the respective tests. Additionally, we

consider a seventh resampling method by contemporaneously resampling the driving and

the response time series using the stationary bootstrap. Although this case does not comply

with the no causality hypothesis, one can obtain an accurate sampling distribution for the

mean of the test statistic since its value is zero under H0. Results indicate that as the resam-

pling setting gets more independent, the test becomes more conservative. Finally, we con-

clude with a real application. More specifically, we investigate the causal links among the

growth rates for the US CPI, money supply and crude oil. Based on the PTE and the seven

resampling methods, we consistently find that changes in crude oil cause inflation condition-

ing on money supply in the post-1986 period. However this relationship cannot be explained

on the basis of traditional cost-push mechanisms.

Introduction

Connectivity analysis of multivariate time series is a rapidly growing branch of interest with

applications in different fields, such as economy, climatology and brain dynamics. A variety of

methods have been developed that uncover complex dynamical structures, i.e. analysis of
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complex networks from multivariate time series [1–3] and characterization of the complexity

of multivariate time series using entropy measures [4, 5].

The investigation of the causal relationships between the variables of a multivariate dynam-

ical system or stochastic process allows us to better understand its structure. In the estimation

of direct causality, effects from the remaining variables should be taken into account. We note

that by causality we mean Granger causality, either linear and/or nonlinear.

Various causality measures have been recently developed based on information theory.

Their advantage is that they are model-free and detect both linear and nonlinear causal effects.

The transfer entropy (TE) is the most popular information causality measure, a non-paramet-

ric measure that quantifies the amount of information transferred between two random pro-

cesses [6]. The TE has been proven to be equivalent to the standard linear Granger causality

for Gaussian variables [7]. The TE is extended to the partial transfer entropy (PTE) that esti-

mates direct causal effects in multivariate time series [8, 9], and they both have been modified

to work on symbol or rank vectors derived from the time series measurements [10–14]. The

TE and its variants have been used to investigate the coupling in complex systems [15], also in

combination with other methods [16]. In order to avoid the curse of dimensionality, progres-

sive selection of lagged variables [17, 18] and graphical models [19] have been combined with

information causality measures. Information causality measures are mainly applied to neuro-

science and physiology (e.g. see [20, 21]), as well as finance (e.g. see [22]).

Theoretically, a causality measure should be zero if there are no causal interactions and pos-

itive otherwise. However, its value may deviate from the true value (bias) due to the estimation

method, the selection of parameters, the finite sample size, the level of noise, as well as the sys-

tem complexity. In particular for the TE and PTE, the bias can be large stemming from the

estimation of conditional densities [23]. In the presence of varying bias, a significance test is

more appropriate, than arbitrary thresholding, for deciding the presence of weak coupling.

This issue is particular relevant when constructing causality networks with binary connections

from direct Granger causality on real multivariate time series [24–28]. Different randomiza-

tion and bootstrap methods have been employed to correct the bias of the causality measures

(see e.g. [29]) and more specifically of transfer entropy (see e.g. [14, 30]).

When using linear Granger causality measures, their asymptotic distribution under the null

hypothesis H0 of no causal effect is known [31–33]. For information causality measures,

parametric tests are only developed when the time series are discrete-valued [13, 34]. When

the asymptotic distribution of a test statistic cannot be established, resampling techniques are

employed for the construction of its empirical null distribution. The resampled time series

should satisfy the H0 and also capture the statistical properties of the original time series.

Resampled time series can be generated by bootstrapping and randomization.

Bootstrapping is a statistical technique introduced in [35] that aims to estimate the proper-

ties of a test statistic when sampling from an approximate distribution. The empirical distribu-

tion of the statistic is formed by its values computed on samples drawn with replacement from

the original sample. For time series, bootstraps must be carried out in a way that they suitably

capture the dependence structure of the data generation process consistent to the H0, and be

otherwise random (see e.g. [36–38]). For our hypothesis testing, the bootstraps are used to

form the null distribution of the causality measure. In a bivariate setting, this is done by boot-

strapping the two variables independently or contemporaneously or by only bootstrapping

one of the two variables [39].

Statistical tests based on randomization utilize randomized data, which are shuffled samples

of the original data, to empirically estimate the expected probability distribution of the estima-

tor. The randomization methods are designed to preserve the dependence structure consistent

with H0, when randomly shuffling the time series. The time-shifted surrogates [40], as well as
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other types of surrogates such as the twin surrogates [41], have been extensively suggested in

applications, e.g. see [42–45].

In this work, we make an explorative study on resampling time series for the H0 of no causal

effect and compare seven resampling techniques with regard to the size and power of the sig-

nificance test, using the PTE as test statistic. Specifically, we combine two resampling tech-

niques: 1) the time-shifted surrogates [40] and 2) the stationary bootstrap [38], with three

independence settings of the time series adapted for the non-causality test (giving six resam-

pling methods): A) resampling only the time series of the driving variable, B) resampling inde-

pendently the driving and the response time series, and C) resampling separately the driving

and the response time series, while destroying the dependence of the future and past of the

response variable. To the best of our knowledge, schemes B) and C) in conjunction with ran-

domization or bootstrap have not been considered in any methodological study or application.

We also introduce a new (seventh) method by bootstrapping contemporaneously the driving

and the response time series. In this case, the bootstrap PTE values are centered to zero since

the H0 of no causal effects is not satisfied.

The empirical distribution of PTE, as well as the size and power of the significance test,

for the seven resampling methods are assessed in a simulation study. Some first results on

the aforementioned resampling methods have been already presented in [46] and [47].

Here, we extend the study of the examined resampling methods in order to establish their

performance.

Finally, to demonstrate the performance of PTE in conjunction with the seven resampling

methods using real data, we investigate the possible sources of the US inflation in the post-

Volcker era utilizing two 3-variate systems built on the Consumer Price Index for All Urban

Consumers, the core CPI, the money supply and the price of crude oil. Empirical results sup-

port evidence in favor of a statistically significant direct causal relationship between oil prices

and US inflation obeying dynamics which are not comparable with the oil episodes occurred

in the 1970s.

Materials and methods

Partial transfer entropy

The TE quantifies the amount of information explained in a response variable Y at one time

step ahead from the state of a driving variable X accounting for the concurrent state of Y. Let

{xt, yt}, t = 1, . . ., n be the observed time series of two variables. We define the reconstructed

state space vectors of the variables as xt = (xt, xt − τ, . . ., xt − (m − 1)τ)
0 and yt = (yt, yt − τ, . . ., yt −

(m − 1)τ)
0, where m is the embedding dimension and τ the time delay. The TE from X to Y con-

stitutes the conditional mutual information I(yt+1; xt|yt) given as [6]

TEX!Y ¼ Iðytþ1; xtjytÞ ¼
P

pðytþ1; xt; ytÞ log
pðytþ1jxt; ytÞ

pðytþ1jytÞ

¼ Hðxt; ytÞ � Hðytþ1; xt; ytÞ þHðytþ1; ytÞ � HðytÞ;

ð1Þ

where TE is expressed either based on the probability distributions, p(�) (here being defined

for the discretized variables), or the entropy terms, H(�), where H(x) = −
R

f(x)log f(x)dx is the

differential entropy of the vector variable x with probability density function f(x). We note that

m and τ are set to be similar for both variables as suggested in [29].

The partial transfer entropy (PTE) is the multivariate extension of transfer entropy (TE) in

[8, 9]. The PTE accounts for the direct coupling of X to Y conditioning on the remaining
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variables of a multivariate system, collectively denoted by Z. It is defined as

PTEX!YjZ ¼ Iðytþ1; xtjyt; ztÞ

¼ Hðxt; yt; ztÞ � Hðytþ1; xt; yt; ztÞ þ Hðytþ1; yt; ztÞ � Hðyt; ztÞ:
ð2Þ

The estimation of PTE relies on the estimation of the joint probability density functions in

the expression of the entropies. Different types of estimators for the TE and PTE exist, such as

histogram-based (e.g. by discretizing the variables to equidistant intervals [48]), kernel-based

[49] and using correlation sums [50]. In this paper, we choose the nearest neighbor estimator

[51], which is specifically effective for high-dimensional data [18]. This estimator uses the dis-

tances between the reconstructed state space vectors to estimate the joint and marginal densi-

ties. For each reference point, viewed in the largest state space, the distance length � is defined

as the distance to the k-th nearest neighbor. Then densities, at projected subspaces, are locally

formed by the number of points within � from each reference point. Thus, the free parameter

in the estimation of entropies is the number of neighbors k.

Theoretically, the causality measures including the PTE should be zero in the case of no

causal effects. However, various issues such as the estimation method for the entropies and

subsequently densities, the selection of the embedding parameters, the finite sample size and

the inherent dynamics of each subsystem [29] may introduce bias. In order to determine

whether a PTE value indicates a weak coupling or it is not statistically significant, resampling

methods are employed.

Resampling methods

Our examined null hypothesis H0 is that there is no direct causal effect from X to Y or more

specifically that PTEX! Y|Z = 0, i.e. I(yt+1; xt|yt, zt) = 0. In order to generate resampled time

series representing the H0, we consider two resampling techniques, i.e. 1) the time-shifted sur-

rogates and 2) the stationary bootstrap, and combine them with three independence settings.

Thus six resampling methods (cases 1A to 2C) are formulated to test the H0. In addition, we

introduce a seventh resampling method that is based on the stationary bootstrap and does not

directly comply with the H0.

Resampling techniques. 1) Time-shifted surrogates. Let us consider two variables X and

Y and their corresponding time series {x1, . . ., xn} and {y1, . . ., yn}. The time-shifted surrogates

are generated, so that they preserve the dynamics of the original time series, i.e. {x1, . . ., xn},

while the couplings between X and Y are destroyed [40]. They are formed by cyclically time-

shifting the components of a time series. In more details, for the time series {x1, . . ., xn}, an

integer d is randomly chosen and the d first values of the time series are moved to the end, giv-

ing the time-shifted surrogate time series fx�t g ¼ fxdþ1; . . . ; xn; x1; . . . ; xdg. The random num-

ber, d, is randomly drawn from the discrete uniform distribution in the range [0.05n; 0.95n] in

order to maintain disruption of the time order of the original time series even in the presence

of strong autocorrelation.

2) The stationary bootstrap. The stationary bootstrap was introduced in [38] to adapt

bootstrap on correlated data. By construction, the stationary bootstrap does not destroy the

time dependence of the data. This method tries to replicate the correlations by resampling

blocks of data. The lengths of the resampled blocks have a geometric distribution. For a fixed

probability p, block lengths Li are generated with probability p(Li = k) = (1 − p)(k − 1) p for

k = 1, 2, . . .. The starting time points of the blocks Ii are drawn from the discrete uniform dis-

tribution on {1, . . ., n − k}. A bootstrap time series fx�t g is formed by first starting with a ran-

dom block as defined above BI1, L1 = {xI1
, xI1+1, . . ., xI1+L1 − 1}, and blocks are added until length

n is reached.

Resampling methods for causality testing
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Independence settings. The three independence settings presented below regard both

time-shifted surrogate and stationary bootstrapped time series.

A. The first setting is to resample only the time series of the driving variable X. This consti-

tutes the standard approach for the surrogate test for the significance of causality measures

[18, 40, 52, 53]. The intrinsic dynamics of the variable X is preserved in the resampled time

series fx�t g but the coupling between X� and Y is destroyed. So, H0 is approximated and

PTEX� ! Y|Z = 0. The variables X and Y as well as X and Z are independent, however the pair of

variables (Y, Z) preserves its interdependence.

B. This second scheme resamples both the driving variable X and the response variable Y, i.e.

the resampled time series fx�t g and fy�t g are generated. Again, the intrinsic dynamics of both X
and Y are preserved but the coupling between them is destroyed, so that PTEX� ! Y�|Z = 0. Here,

independence holds for all variable pairs (X, Y), (Y, Z) and (X, Z). Nevertheless, there is still no

complete independence between all arguments in the definition of PTE, as yt+1 preserves by

construction of fy�t g its dependence on yt.

C. The third scheme establishes complete independence of all the terms involved in the def-

inition of PTE, i.e. in addition to the resampling of X and Y, also yt+1 is resampled separately.

Technically, we first form the reconstructed vectors of X and Y and then we randomly shuffle

them independently for each time series. In this way, the time dependence is destroyed

between yt+1, xt and yt and therefore they become independent. Further, zt becomes indepen-

dent of xt, yt but not of yt+1.

The seventh resampling method uses stationary bootstrap to resample contemporane-

ously the driving and the response time series (X, Y). The resampled time series are not

consistent to H0 because the coupling of X and Y is not destroyed. In order to obtain an accu-

rate sampling distribution of the mean of the test statistic one can take into consideration

that the mean value of the test statistic is zero under H0. The idea is that
ffiffiffi
n
p

(PTE—E(PTE)),

where E(PTE) is the mean of PTE, can be distributed similarly for series that comply to

H0 (E(PTE) = 0) and series that do not (E(PTE) >0); it is assumed that
ffiffiffi
n
p

(PTE—E(PTE))

tends to the normal distribution with zero mean and known variance [38]. Since our goal is

to compare the different resampling methods, no results for this approximation of the true

distribution are discussed. By centering the distribution of the bootstrap PTE values around

zero, we get an approximation of the null distribution of PTE. Thus, this resampling method

can be employed to test H0, provided that the null distribution of the bootstrap values of the

test statistic is shifted to have mean zero. It is labelled as 2D to stress that it the fourth setting

for the stationary bootstrap.

Simulation study

We apply the significance test for the PTE with the seven resampling methods to multiple real-

izations of various simulation systems. Specifically, we estimate the PTE from 1000 realizations

per simulation system. For each realization and each resampling method, M = 100 resampled

time series are generated. Let us denote q0 the PTE value from one realization of a system and

q1, q2, . . ., qM the PTE values from the resampled time series for this particular realization and

for a specific resampling method. The rejection of H0 of no causal effects is decided by the

rank ordering of the PTE values computed on the original time series, q0, and the resampled

time series, q1, . . ., qM. For the one-sided test, if r0 is the rank of q0 when ranking the list q0,

q1, . . ., qM in ascending order, the p-value of the test is 1 − [(r0 − 0.326)/(M + 1 + 0.348)], by

applying the correction in [54].

The simulation systems we considered in this study are:

Resampling methods for causality testing
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1. Three coupled Hénon maps, with nonlinear couplings (X1! X2! X3)

x1;t ¼ 1:4 � x2
1;t� 1
þ 0:3x1;t� 2

x2;t ¼ 1:4 � cx1;t� 1x2;t� 1 � ð1 � cÞx2
2;t� 1
þ 0:3x2;t� 2

x3;t ¼ 1:4 � cx2;t� 1x3;t� 1 � ð1 � cÞx2
3;t� 1
þ 0:3x3;t� 2;

with equal coupling strengths c for X1! X2 and X2! X3. We set c = 0 (uncoupled case),

c = 0.3 (moderate coupling) and c = 0.5 (strong coupling). We note that the time series of

this system become completely synchronized for coupling strengths c� 0.7.

2. A vector autoregressive process of 4 variables and order 5, VAR(5), with linear couplings

(X4! X2! X1! X3 and X2! X3)

x1;t ¼ 0:8x1;t� 1 þ 0:65x2;t� 4 þ �1;t

x2;t ¼ 0:6x2;t� 1 þ 0:6x4;t� 5 þ �2;t

x3;t ¼ 0:5x3;t� 3 � 0:6x1;t� 1 þ 0:4x2;t� 4 þ �3;t

x4;t ¼ 1:2x4;t� 1 � 0:7x4;t� 2 þ �4;t;

where �i, t, i = 1, . . ., 4, are independent to each other Gaussian white noise processes with

unit standard deviation (Eq (12) in [55]).

3. Five coupled Hénon maps, with nonlinear couplings (X1! X2! X3! X4! X5) defined

similarly to system 1. We consider again equal coupling strengths c, and set c = 0 (uncou-

pled case), c = 0.2 (moderate coupling) and c = 0.4 (strong coupling).

We consider two time series lengths: n = 512 and 2048. The calculation of the PTE relies on

the phase space reconstruction [56, 57]; specifically for PTE see [8]. Since all the simulation

systems are discrete in time we set the time delay τ equal to one, while the embedding dimen-

sion m is identical for all variables, which is reported to be the best strategy [29], and for each

system it is set according to its complexity, i.e. taking into account the maximum delay in the

equations of each system. The number of nearest neighbors for the estimation of the probabil-

ity distributions equals 10 (the choice of k does not substantially affect the estimation of PTE

[53, 58]).

To investigate the performance of the significance tests for the PTE with the different

resampling methods, we use the sensitivity of the PTE, i.e the percentage of rejection of H0

when there is true direct causality, as well as the specificity of the PTE, i.e. the percentage of no

rejection of H0 when there is no direct causality, at the significance level α = 0.05. The notation

X2! X1|Z denotes the Granger causality from X2 to X1, accounting for the presence of con-

founding variables Z = X3, . . ., XK, where K is the number of observed variables. For brevity,

we use the notation X2! X1 instead of X2! X1|Z, implying the conditioning on the con-

founding variables. The same holds for the remaining pairs of variables.

System 1. The PTE is negatively biased; the mean PTE values from the 1000 realizations

at all directions are negative when c = 0 (Table 1). For c = 0.3 and c = 0.5, it is larger when

direct couplings exist (X1! X2, X2! X3) and raises with n. Regarding the indirect coupling

X1! X3, the PTE slightly increases with n as c increases, reaching the highest mean value for

c = 0.5 (mean PTEX1 ! X3
= 0.0004 for n = 512 and PTEX1 ! X3

= 0.0071 for n = 2048). For the

rest of the couplings, the PTE is negative at the same level regardless of c or n. The occurrence

of many negative values of the PTE indicates the need for a significance test.

We evaluate how the null distribution of the PTE from the seven resampling methods dif-

fers with respect to the original PTE values. For c = 0, all of them correctly indicate the absence

Resampling methods for causality testing
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of couplings as the percentage of rejection at a = 0.05 is not larger than 5% (Table 2). Consider-

ing c = 0.3, the true couplings are identified again. However, spurious and indirect couplings

are indicated as well for the setting A and less for B. Additionally, similar performance is

observed when the coupling strength is strong (c = 0.5) and large percentages are obtained for

the indirect coupling X1! X3 in all schemes.

The sensitivity of PTE is assessed from the two true causal links, i.e. X1! X2 and X2! X3

since we calculate the proportion of ‘positives’ (true causal links) that are correctly identified.

A high sensitivity is established by a high percentage of significant PTE values over the 1000

realizations for these two couplings, which means that the PTE correctly detects the true causal

effects. Similarly, the specificity of PTE is decided by the percentage of the significant PTE for

Table 1. Mean PTE values from 1000 realizations of system 1 for n = 512 and 2048, highlighted at the directions of the true couplings.

n = 512 X1! X2 X2! X1 X2! X3 X3! X2 X1! X3 X3! X1

c = 0 -0.0059 -0.0062 -0.0062 -0.0061 -0.0058 -0.0056

c = 0.3 0.0802 -0.0042 0.0885 -0.0064 -0.0045 -0.0074

c = 0.5 0.2324 -0.0071 0.1557 -0.0044 0.0004 -0.0079

n = 2048 X1! X2 X2! X1 X2! X3 X3! X2 X1! X3 X3! X1

c = 0 -0.0086 -0.0088 -0.0087 -0.0085 -0.0087 -0.0088

c = 0.3 0.1736 -0.0024 0.1725 -0.0059 -0.0039 -0.0094

c = 0.5 0.3649 -0.0026 0.2601 -0.0049 0.0071 -0.0078

https://doi.org/10.1371/journal.pone.0180852.t001

Table 2. Percentage of significant PTE values for system 1 for n = 512 / 2048, for all resampling methods. A single number is displayed when the same

percentage corresponds to both n. The true couplings are highlighted.

c = 0 X1! X2 X2! X1 X2! X3 X3! X2 X1! X3 X3! X1

1A 5.7 / 4.2 5.6 / 5.2 4.7 / 4.9 5.3 / 5.6 5.8 / 5.5 5.5 / 5.2

1B 5.2 / 4.8 4.6 / 5.6 4 / 5.2 4.3 / 6.6 4.6 / 5 5.8 / 5.5

1C 0.7 / 0 0.8 / 0 0.4 / 0 0.7 / 0 0.3 / 0 0.5 / 0

2A 4.4 / 3.8 3.1 / 3.9 3.4 / 4.1 4.5 / 4.5 4.5 / 4.3 4.1 / 5.1

2B 1.9 / 0.4 1.9 / 0.7 1.8 / 0.6 2.1 / 0.3 1.9 / 0.5 2.4 / 1

2C 0.6 / 0 0.6 / 0 0.3 / 0 0.5 / 0 0.4 / 0 0.1 / 0

2D 0.6 / 0 0.7 / 0 0.3 / 0 0.7 / 0 0.2 / 0 0.2 / 0

c = 0.3 X1! X2 X2! X1 X2! X3 X3! X2 X1! X3 X3! X1

1A 100 11.8/ 40.1 100 9.5 / 17.2 12.8/ 34 6.1 / 5.5

1B 100 9 / 37.2 100 2.7 / 1.8 5.4 / 6.7 5 / 4.3

1C 100 0.9 / 0.5 86.3 / 100 0 0.2 / 0 0.4 / 0.1

2A 100 8.7 / 32.8 100 6.9 / 13.5 8.9 / 28 4.7 / 4.1

2B 100 2.9 / 13.7 100 0.9 / 0.3 1.2 / 1.7 1.2 / 0.5

2C 100 0.8 / 0.6 99.9 / 100 0 0 / 0.1 0.3 / 0.1

2D 100 1.2 / 0.9 100 0.1 / 0 0.2 / 0.3 0.4 / 0.1

c = 0.5 X1! X2 X2! X1 X2! X3 X3! X2 X1! X3 X3! X1

1A 100 8.1 / 33.8 100 10.2 / 21.5 31 / 96.3 6.2 / 8.3

1B 100 4.3 / 30.4 100 1.7 / 1.4 9.1 / 67.3 4.5 / 4.8

1C 100 0.7 / 0.4 100 0 1.9 / 25.4 0.1

2A 100 5.1 / 29.2 100 7.7 / 17 24.1 / 94.7 4 / 7.1

2B 100 2 / 11 100 0.8 / 0.2 5.2 / 53.3 1.3 / 0.8

2C 100 0 / 0.2 100 0 1.2 / 24.3 0 / 0.1

2D 100 0.2 / 0.6 100 0 / 0.1 1.4 / 11.6 0.1

https://doi.org/10.1371/journal.pone.0180852.t002
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the remaining couples, for which there is no true causal effect. A low percentage of significant

PTE values signifies a large proportion of ‘negatives’ (no causal links) correctly identified.

Concerning the first six resampling methods, the percentage of erroneously rejected H0 for

non-existing or indirect couplings tends to increase with c and the time series length n, the

most robust being 1C and 2C. It turns out that when the resampled time series become more

independent (from A to C), the percentage of spurious couplings decreases. This is so because

the null distribution for the test is somewhat more spread and displaced to the right as the

resampling changes from the least independent scheme (setting A) to the most independent

one (setting C) (Fig 1).

The resampling method 2D seems to be the most effective one as it attains the same highest

percentage of rejection for true direct couplings and the lowest percentage of rejection for no

direct coupling. We note that the green dots are not displayed in Fig 1a because they exceed

the axis and we kept the same range of PTE values (y-axis) in all subfigures in order to be able

to straightforwardly compare the different cases.

We are interested in the spread of the resulting surrogate null distribution. Thus, we display

some indicative results for the mean value of the means and standard deviations of the

Fig 1. Boxplots of surrogate/bootstrap PTE values and original PTE value from one realization of system 1 for c = 0.3 and n = 2048,

for the directions (a) X1! X2 (direct coupling), (b) X2! X1 (no coupling) and (c) X1! X3 (indirect coupling). The dots at the same

level denote the PTE value on the original data, and in (a) the value is 0.19 and not displayed. The central mark, the bottom and top edges on

each box indicate the median, the 25th and 75th percentile, respectively. Outliers are denoted with the ‘+’.

https://doi.org/10.1371/journal.pone.0180852.g001
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surrogate PTE values over all the realizations for the direction X1! X2 and for time series

length n = 512 in Table 3. The more independent setting we consider (from A to B to C), the

greater the median and the mean (as shown in Fig 1 and Table 3, respectively) and the larger

the spread of the distribution of the surrogate PTE values, while case 2D features one of the

greatest spreads.

System 2. The mean PTE values from 1000 realizations of the second system are all positive

and the PTE for the directions of the true couplings is larger, with the exception of X2! X3

being at the level of no direct coupling and not significantly increasing with n (Table 4). The

level of the PTE for the uncoupled directions varies from 0.0014 to 0.0097 and decreases

with n.

The true couplings X2! X1, X1! X3, X4! X2 are well established by the significance test

(Table 5). The weak coupling X2! X3 is detected only by the setting A (1A and 2A), with the

power of the test increasing with n. No spurious causalities are identified by the first six

resampling methods (percentage of significant PTE varies from 0% to 6% at the uncoupled

directions), however method 2D identifies wrongly the couplings X2! X4 and X3! X4,

giving much higher percentage than the nominal size 5%. The surrogate/bootstrap PTE val-

ues seem to increase as the resampled time series become more independent. This can be

clearly observed when comparing settings A and B, as shown in Fig 2 for the strong coupling

X2! X1 and Fig 3 for the weak coupling X2! X3. The bootstrap PTE values for method 2D

are centered around zero by construction, while the surrogate/bootstrap PTE values for the

other six resampling methods are positively biased. Their distribution becomes wider as the

resampling method gets more independent (A to C), with method 2D having the wider one.

The latter performs poorly because the distribution of the bootstrap PTE values is much

wider compared to the other ones and the original PTE value falls within the tail of this distri-

bution (Fig 3, case 2D).

System 3. The mean PTE values from 1000 realizations of the third system are presented in

Table 6. Slightly negative PTE values are obtained at the uncoupled directions, while some

Table 3. Mean value of all means and standard deviations (std) over all realizations of system 1 of the surrogate PTE values for the direction X1!

X2 and time series length n = 512 for each resampling case.

c = 0 mean std c = 0.3 mean std c = 0.5 mean std

1A -0.0059 0.0085 1A -0.0056 0.0075 1A -0.0037 0.0087

1B -0.0059 0.0086 1B -0.0042 0.0100 1B -0.0009 0.0190

1C 0.0009 0.0107 1C 0.0000 0.0115 1C 0.0008 0.0115

2A -0.0049 0.0086 2A -0.0043 0.0076 2A -0.0025 0.0086

2B -0.0019 0.0087 2B -0.0013 0.0079 2B 0.0003 0.0087

2C 0.0022 0.0104 2C 0.0023 0.0113 2C 0.0023 0.0112

2D 0.0000 0.0103 2D 0.0000 0.0135 2D 0.0000 0.0182

https://doi.org/10.1371/journal.pone.0180852.t003

Table 4. As Table 1 but for system 2.

X1! X2 X2! X1 X1! X3 X3! X1 X1! X4 X4! X1

n = 512 0.0044 0.0914 0.0757 0.0032 0.0057 0.0038

n = 2048 0.0026 0.1232 0.0960 0.0014 0.0038 0.0021

X2! X3 X3! X2 X2! X4 X4! X2 X3! X4 X4! X3

n = 512 0.0056 0.0052 0.0097 0.1002 0.0069 0.0033

n = 2048 0.0058 0.0029 0.0064 0.1348 0.0045 0.0014

https://doi.org/10.1371/journal.pone.0180852.t004
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positive ones come up for the directions of the true couplings. Positive values are estimated for

large coupling strength and indirect causal effects (e.g. X2! X4), but they are much smaller

compared to those for direct causal effects.

No couplings are found in the uncoupled case (c = 0) for system 3 (Table 7). A Table includ-

ing the percentage of significant PTE values for system 3 for all the directions is available as a

Supporting file (S1 Table). The percentage of significant PTE values range from 0% to 5.6% for

all the resampling methods and both time series lengths. The PTE is also effective when cou-

plings are present. When c = 0.2, its sensitivity increases with n, and when c = 0.4 the highest

sensitivity tends to be obtained even for small n.

The results for method 2D are similar to methods 1C and 2C. All the true couplings are well

identified, while spurious couplings are found at a percentage higher to 5% only in three

instances for c = 0.4 and n = 2048: X1! X3 (5.8%), X2! X4 (9.4%) and X3! X5 (15.4%).

As resampled time series become less dependent, we observe a loss in the power of the test

for n = 512, especially when couplings are not very strong. Regarding the size of the test, for

c = 0.2 the percentage of rejections for indirect (e.g. X2! X4) or no coupling (e.g. X5! X4) is

modestly above the 5% level only for 1A and 2A, while for c = 0.4 is substantially higher for 1A

and 2A and lower for 1B and 2B. For example, we obtain for scheme 1A and n = 2048: 50.5%

for X1! X3 (indirect coupling), 22.2% for X2! X1 (no coupling), 56.8% for X2! X4 (indirect

coupling), 19.7% for X3! X2 (no coupling), 62.2% for X3! X5 (indirect coupling), 22.9% for

X4! X3 (no coupling) and 14.1% for X5! X4 (no coupling). Respective results are indicated

by the scheme 2A. When considering more independent resampled time series, the corre-

sponding percentages of indirect and no couplings decrease, e.g. for method 1B and n = 2048:

27.5% for X1! X3, 20% for X2! X1, 21.4% for X2! X4, 3.7% for X3! X2, 28% for X3! X5,

4.1% for X4! X3 and 4.7% for X5! X4. Similar results are observed for 2A. The correct test

size, i.e. the probability of falsely rejecting the null hypothesis being close to α = 0.05, is

attained only with the resampling methods of type C; the percentage of the significant PTE val-

ues for the uncoupled cases varies from 0% to 4.7% for both 1C and 2C and both n, while spu-

rious causality is detected for cases A and B. As n and c increase, the percentage of those

spurious indications increases.

Table 5. As Table 2 but for system 2.

X1! X2 X2! X1 X1! X3 X3! X1 X1! X4 X4! X1

1A 0.4 / 0 100 100 0.6 / 0.3 0.1 / 0 4.6 / 3.2

1B 0 100 99.4 / 100 0 0 0

1C 0 100 100 0 0 0

2A 0.4 / 0 100 100 0.5 0.1 / 0 2.8 / 3.7

2B 0 100 100 0 0.2 / 0 0 / 0

2C 0 100 99.7 / 100 0 0 0

2D 2.3 / 3.8 100 100 0.8 / 0.5 8.2 / 15.7 1.9 / 1.8

X2! X3 X3! X2 X2! X4 X4! X2 X3! X4 X4! X3

1A 18.8 / 62.4 1.1 / 0.2 3.5 / 2 100 0.8 / 0 6 / 4.2

1B 0 / 0.1 0 2.1 / 1.3 99.9 / 100 0.4 / 0 0

1C 3.7 / 10.1 0 0 100 0 0.9 / 0

2A 11.7 / 60.1 0.6 / 0.1 2.6 / 3.2 100 0.4 / 0 3.1

2B 0 / 0.2 0 3.1 100 0.8 / 0.1 0

2C 3.4 / 18.5 0 0 100 0 0.2 / 0

2D 2.7 / 24 4.7 / 6.7 21.6 / 37.8 100 15.7 / 24.2 0.8 / 0.6

https://doi.org/10.1371/journal.pone.0180852.t005
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Application

In the effort to provide further evidence on the possible sources of US inflation in the post-

Volcker era, we will try to gain insights from the application of the PTE by employing the

aforementioned resampling methods. For this reason, we create two 3-variate systems of real

economic variables, the first one consisting of monthly observations for the US Consumer

Price Index for All Urban Consumers (CPI), the money supply (M2, Billions of Dollars) and

the crude oil prices (West Texas Intermediate—Cushing, Oklahoma, Dollars per Barrel) while

the second one is obtained by replacing CPI with the core CPI (Fig 4). The data are not season-

ally adjusted and the sample spans from 01-01-1986 to 01-02-2014. We used the longer avail-

able sample at the time the application is implemented in order to ensure PTE accuracy. Since

in the post-2009 period, US inflation reached very low values in association with the QE strat-

egy of the Federal Reserve, we strongly believe that our findings over the period of interest (i.e.

before the crisis of 2007–2009) are not qualitatively affected. To assess the impact of restricting

the sample until 2009, we re-estimated the PTE for both systems. In the first case, we observe a

Fig 2. Distribution of surrogate/bootstrap PTE values and original PTE value (vertical dotted line) from one realization of system 2

with n = 2048, for the direction X2! X1.

https://doi.org/10.1371/journal.pone.0180852.g002
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feedback between CPI inflation and crude oil changes, while for the 2nd system identical

causal relationships appear. Prices are transformed into growth rates by using their first loga-

rithmic differences to give inflation (Y1) in the case of CPI, core inflation (Y11), M2 returns

(Y2) and oil price changes (Y3).

For the assessment of the statistical significance of the PTE we look back at the seven resam-

pling methods mentioned above. The embedding dimension m for the estimation of the PTE

is set equal to one (m = 1), often used in log differenced data expecting to have very short

memory [59] and the number of nearest neighbors is ten (k = 10).

The empirical findings from the application of the PTE on the 1st 3-variate system consis-

tently reveal the coupling oil (Y3)! inflation (Y1). The fact that this linkage becomes statisti-

cally insignificant when the core CPI inflation is taken into account, is an indication that the

observed inflation in the post-1986 period cannot be interpreted with means of traditional

cost-push mechanisms. Table 8 displays the connectivity results based on each of the seven

resampling methods, where statistically significant probabilities are given in bold (when p-

value <0.05). Aside from the link Y3! Y1, few additional links also appear. Since we do not

obtain any consistency, these sparse links may be due to estimation biases, the method of

Fig 3. As Fig 2 but for the direction X2! X3.

https://doi.org/10.1371/journal.pone.0180852.g003
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Table 6. As Table 1 but for system 3.

n = 512 n = 2048

c = 0 c = 0.2 c = 0.4 c = 0 c = 0.2 c = 0.4

X1! X2 -0.0012 0.0104 0.0510 -0.0027 0.0274 0.1096

X2! X1 -0.0014 -0.0009 -0.0042 -0.0028 -0.0009 -0.0003

X1! X3 -0.0010 -0.0019 -0.0011 -0.0028 -0.0033 0.0014

X3! X1 -0.0016 -0.0016 -0.0031 -0.0028 -0.0035 -0.0034

X1! X4 -0.0013 -0.0023 -0.0023 -0.0027 -0.0037 -0.0043

X4! X1 -0.0012 -0.0015 -0.0023 -0.0027 -0.0036 -0.0043

X1! X5 -0.0009 -0.0022 -0.0030 -0.0030 -0.0039 -0.0046

X5! X1 -0.0015 -0.0012 -0.0025 -0.0027 -0.0036 -0.0039

X2! X3 -0.0012 0.0123 0.0576 -0.0027 0.0286 0.1079

X3! X2 -0.0012 -0.0002 0.0003 -0.0028 -0.0025 -0.0014

X2! X4 -0.0011 -0.0001 0.0028 -0.0027 -0.0027 0.0028

X4! X2 -0.0015 -0.0011 -0.0020 -0.0029 -0.0034 -0.0036

X2! X5 -0.0008 -0.0009 -0.0003 -0.0029 -0.0035 -0.0026

X5! X2 -0.0012 -0.0010 -0.0017 -0.0029 -0.0035 -0.0039

X3! X4 -0.0009 0.0135 0.0510 -0.0026 0.0300 0.1015

X4! X3 -0.0011 0.0004 0.0015 -0.0025 -0.0020 -0.0006

X3! X5 -0.0012 -0.0000 0.0028 -0.0029 -0.0028 0.0034

X5! X3 -0.0010 -0.0005 -0.0002 -0.0027 -0.0032 -0.0026

X4! X5 -0.0009 0.0122 0.0446 -0.0029 0.0284 0.0928

X5! X4 -0.0014 0.0002 0.0025 -0.0028 -0.0020 -0.0007

https://doi.org/10.1371/journal.pone.0180852.t006

Table 7. As Table 2 but for system 3 for the true couplings, an indirect coupling (X2! X4) and an uncoupled case (X5! X4).

c = 0 X1! X2 X2! X3 X3! X4 X4! X5 X2! X4 X5! X4

1A 4.5 / 5.1 5.8 / 5.6 5.6 / 5.4 5.4 / 4.1 4.9 / 4.6 3.8 / 4.8

1B 4.5 / 4.3 5.8 / 5.6 5.9 / 5.5 5.2 / 4.8 4.9 / 4.5 3.9 / 4.4

1C 1.9 / 0.6 2 / 0.5 2.2 / 0.5 2.1 / 0.5 2.2 / 0.4 1.5 / 0.6

2A 4.4 / 4.3 4.8 / 5.5 5.1 / 4.8 4.9 / 4.2 4.7 / 4.4 4.3

2B 3.3 / 2.6 3.6 / 3.3 3.7 / 2.9 3 / 2.9 2.9 / 2.3 3.2 / 3

2C 1 / 0.7 1.4 / 0.3 1.5 / 0.5 1.3 / 0.2 2.1 / 0.6 0.9 / 0.4

2D 1.9 / 0.8 2.4 / 0.9 2.3 / 0.9 1.6 / 0.8 1.7 / 0.6 1.4 / 0.7

c = 0.2 X1! X2 X2! X3 X3! X4 X4! X5 X2! X4 X5! X4

1A 58 / 100 51.8 / 100 57 / 100 52.7 / 100 6.5 / 6.6 8.1 / 10.8

1B 57.5 / 100 50.6 / 100 54.5 / 100 49.2 / 100 4.9 5.6 / 7

1C 34.3 / 100 17.5 / 100 18.9 / 100 16.6 / 100 0.5 / 0 0.5 / 0

2A 57.1 / 100 56.9 / 100 62.1 / 100 57 / 100 7.7 / 7.1 8.7 / 11.3

2B 49.8 / 100 52.1 / 100 58.1 / 100 52.2 / 100 4.9 / 2.4 6.2 / 4.2

2C 30.6 / 100 24.2 / 99.8 26 / 99.9 24.3 / 99.8 0.5 / 0 1 / 0.1

2D 31.3 / 100 34.4 / 100 38.9 / 100 33.5 / 100 3.2 / 0.8 3.4 / 0.8

c = 0.4 X1! X2 X2! X3 X3! X4 X4! X5 X2! X4 X5! X4

1A 100 99.7 / 100 99.8 / 100 99.4 / 100 14 / 56.8 14.1 / 23

1B 100 99.8 / 100 99.6 / 100 99.1 / 100 5.9 / 21.4 5 / 4.7

1C 100 85.2 / 100 87.7 / 100 84 / 100 0.4 / 0.6 0.8 / 0.2

2A 100 99.9 / 100 100 99.8 / 100 18.2 / 59.5 16.9 / 25

2B 100 99.9 / 100 99.9 / 100 99.8 / 100 11 / 26.3 9.6 / 6.4

2C 99.8 / 100 97.1 / 100 97.6 / 100 95.1 / 100 1.5 / 2.7 2.4 / 0.3

2D 99.8 / 100 99.1 / 100 99.1 / 100 98.5 / 100 5.1 / 9.4 5.1 / 2.2

https://doi.org/10.1371/journal.pone.0180852.t007
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assessing its statistical significance or existence of high noise in the data. Table 9 presents the

results for the 2nd 3-variate system, where the CPI inflation has been replaced by the core CPI

inflation. As it can been seen, the influence of crude oil to core inflation is not statistically sig-

nificant and new relationships emerge. We detect a persistent causal feedback between core

Fig 4. Monthly observations of the (a) CPI, (b) core CPI, (c) money supply and (d) oil prices, respectively.

https://doi.org/10.1371/journal.pone.0180852.g004

Table 8. The p-values from PTE based on the seven resampling methods for the 1st 3-variate system including the CPI inflation. Conditioning on the

third variable is implied. Significant causal effects are denoted in bold.

p-value Y1! Y2 Y2! Y1 Y2! X3 Y3! Y2 Y1! X3 Y3! Y1

1A 0.4211 0.3323 0.2533 0.0560 0.0363 0.0067

1B 0.0757 0.0165 0.3816 0.0165 0.9933 0.0165

1C 0.5296 0.2928 0.2435 0.2139 0.0363 0.0067

2A 0.1744 0.1152 0.2040 0.2435 0.0856 0.0067

2B 0.2928 0.2237 0.2336 0.3323 0.1053 0.0165

2C 0.1645 0.1053 0.3224 0.3224 0.0659 0.0067

2D 0.2237 0.1349 0.1843 0.2435 0.0757 0.0461

https://doi.org/10.1371/journal.pone.0180852.t008
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inflation (Y11) and money supply (Y2), while oil (Y3) causes money supply (Y2). The former

bidirectional causality underscores the role of US monetary policy in controlling inflation dur-

ing Great Moderation. This has been achieved through changes in the policy rate and mone-

tary authority open market operations. Thus, via buying and selling bonds in the market, the

Federal Reserve adjusted monetary base that in turns affected accordingly the monetary aggre-

gates, such as M2. The latter unidirectional link from oil to money supply is in line with [60]

conclusion that the demand-fuelled oil price rises in the 2000s have been accommodated by

economic policy.

The relationship between crude oil and consumer price index has been determined dynam-

ically over the past 50 years. The strength of the linkage seems to vary conditionally to several

factors including the nature of oil shocks, the response of monetary policy and the rigidities in

the labor market. In the 1970s the oil price shocks of 1973 and 1979 were associated with sig-

nificant reductions in OPEC supply. In the early of middle 1980s starts a phase of stability for

the US economy, known as The Great Moderation, characterized by low volatility in inflation

and output. Oil prices however become more volatile again from the second half of the 1990s

until mid-2008. While the oil shock episodes in 1973 and 1979 coincide with an increase in the

US inflation and the beginning of rising unemployment, the variation of these two variables

becomes smaller in size during the episodes of 1999–2000 and 2002–2007.

Whereas the stable core CPI in the post-1984 period, [61] show that the relative contribu-

tion of oil shocks to CPI inflation has increased since oil price changes have passed through

the energy component of CPI. This lack of significant second-round effects on core inflation

via cost-push mechanisms puts forward the difference in the effects of oil prices in the 1970s

and the 2000s. Oil prices are not only affected by disturbances in supply. Oil shocks can be the

consequence of technological changes or financial innovation able to affect consumers’

demand for oil. According to [62] the oil price increase between 2009 and mid-2008 was

driven by global demand shocks and as such it was not associated with recessionary dynamics

of the US economy. Going further, [63] defines oil price fluctuations as symptoms of the

underlying oil demand and oil supply shocks and conclude that disentangling between these

two sources can prevent from unnecessary monetary policy interventions.

Conclusion

This study stems from the necessity to derive an effective causality test for the investigation of

the connectivity structure of a multivariate complex system. Specifically, we investigate how

the performance of a (direct) causality test is affected by the scheme generating the resampled

data [29, 39, 47]. Our contribution is two-fold, with respect to the methodology and the appli-

cation. Regarding the methodology, we introduce new resampling methods for the non-cau-

sality test. Regarding the application, we obtain coherent results based on the partial transfer

Table 9. As Table 8 but for the 2nd 3-variate system including the core CPI inflation.

p-value Y11! Y2 Y2! Y11 Y2! X3 Y3! Y2 Y11! X3 Y3! Y11

1A 0.0363 0.0067 0.3816 0.0461 0.4507 0.3816

1B 0.9933 0.0067 0.0067 0.0067 0.0067 0.0067

1C 0.2040 0.0659 0.4803 0.0264 0.5888 0.3915

2A 0.0165 0.0067 0.4013 0.0067 0.6776 0.3816

2B 0.0067 0.0067 0.6480 0.0461 0.7171 0.6184

2C 0.0067 0.0067 0.5592 0.0165 0.6381 0.5000

2D 0.0363 0.0067 0.3816 0.3816 0.4507 0.3816

https://doi.org/10.1371/journal.pone.0180852.t009
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entropy (PTE) and all the aforementioned resampling methods, highlighting the complex

nature of oil shocks through their impact on inflation.

The importance of assessing the statistical significance for the partial transfer entropy (PTE)

has been explored via a simulation study. In the absence of direct coupling X! Y|Z, by defini-

tion, the mutual information of X and Y conditioned on Z should be theoretically zero, i.e. I(Y;

X|Z) = 0. The formulation of more independent resampled data (settings B and C) compared

to the standard technique (setting A), all consistent to the null hypothesis I(Y;X|Z) = 0, seems

to account better for the bias of the test statistic and helps prevent false detection of coupling in

the case of the nonlinear coupled systems. The size and the power of the test are improved with

settings B and C, especially if the direct couplings are strong. However, for large n and c, set-

tings B and C may also give spurious couplings, such as for X2! X4 for System 3. We should

also underline that the performance of PTE is affected by the number of observed variables

[53]. On the other hand, when the coupled system is linear, independence setting A seems to

be more efficient in identifying weak couplings. The method 2D is also effective for the nonlin-

ear simulation systems and less effective for the linear coupled system, detecting spurious

couplings.

It turns out that the PTE estimated on resampled time series increases with increasing level

of randomness; i.e. the surrogate PTE values increase going from setting A to C. In addition,

the spread of the surrogate PTE distribution gets larger, implying that smaller PTE values on

the original time series are likely to be found statistically not significant and consequently less

spurious couplings are detected. Figs 1–3 display the distribution of the surrogate PTE values

for systems 1 and 2 with respect to each resampling scheme in order to visualize these findings.

When we detect the true causality with high probability, we may also get spurious couplings.

In order to avoid the detection of false connectivity, we may have a loss in sensitivity. This

higher specificity comes at the cost of lower sensitivity, and vice versa. Thus, optimality is not

achieved for any of the first six resampling methods, but it becomes clear that the significance

test for the PTE gets more conservative as resampling is more random. Regarding method 2D,

the bootstrap PTE values are centered by construction around zero and therefore it focuses on

the spread of the distribution of the PTE on the bootstrapped data rather than the bias. For lin-

ear systems, the bias is larger and method 2D performs worse.

We note that the seven resampling methods have comparable computational cost as ran-

domization procedures are involved at all cases in the same way. Further, they can be utilized

for any test statistic in order to examine the null hypothesis of no causal effects. Ongoing

research aims at further investigating the performance of various causality measures, gaining

insight from the significant impact that the selection of alternative resampling techniques may

have.

In the context of the application, using the PTE with all examined statistical significance

tests, we confirm the stability of core inflation over the post-Volcker era including the period

of Great Moderation. The strong causal influence of crude oil on the total CPI inflation and

the absence of link with the core CPI inflation clearly highlight the contribution of oil demand

shocks as opposite to the oil supply shocks in the 2000s that the US economy experienced in

the 1970s.

Supporting information

S1 Table. Percentage of significant PTE values for system 3 for n = 512/2048, for all resam-

pling methods. A single number is displayed when the same percentage corresponds to both

n. The true couplings are highlighted.
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S1 Dataset. The matlab codes for generating the corresponding simulation time series of

the manuscript are provided as a Supplementary File. The financial time series from the real

applications can be downloaded from the Federal Reserve Bank of Saint Louis at the following

link: https://fred.stlouisfed.org/categories.
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