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Abstract: Composite materials that consisted of a polymer resin as matrix (PMCs), filled using
construction and demolition (C&D) wastes powder of different grain sizing in micro-scale were
manufactured and studied. Three different kinds of resins were used as the matrix for the purposes
of this study. More specifically, composites made of epoxy and unsaturated polyester resins pur-
chased from the market and phenolic resin (novolac) laboratory synthesized, were produced. The
morphological and elemental analysis of these materials was performed through scanning electron
microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Addi-
tionally, mechanical performance and thermal insulating efficiency of these materials were examined
through bending and shear strength tests according to the three-point method and via determination
of the thermal conductivity coefficient λ. C&D wastes have undergone the appropriate processing in
order to prepare filling products of the required granular size in pulverized form. In this research
study, construction and demolition waste-based thermosetting polymer composites were produced
with flexural strength in the range 20–60 MPa, shear strength in between 1–8 MPa, and thermal
conductivity coefficients in the range of 0.27–1.20 W/mK. The developed materials embedded 30–50%
w/w C&D wastes, depending on the resin used as the matrix.

Keywords: polymer-matrix composites; mechanical properties; thermal properties; materials
characterization; construction and demolition wastes

1. Introduction

Polymer matrix composites (PMCs) are extensively used in numerous applications
nowadays. The low cost, simple manufacturing techniques and the relatively good prop-
erties that these materials exhibit, have placed them in a dominating position in many
technological and scientific aspects [1–13].

Moreover, PMCs are also characterized by significantly good heat insulation effi-
ciencies in comparison to conventional materials. This is attributed to the low thermal
conductivity coefficient of the polymer system that is usually used to form the PMCs’
matrix and has led to their wide utilization in many applications within the construction
sector [14–24].

During the last decades, researchers have focused on the development of materials
with enhanced mechanical properties [25–33]. The high costs of some reinforcing additives,
however, have driven scientific research into the consideration of alternative kinds of filling
(embedding additives) materials in composites’ manufacturing [34].

At the same time, environmental awareness issues created the circumstances under
which byproducts of various human activities were reviewed and exploited as poten-
tial fillers in PMCs’ manufacturing [35–43]. On the other hand, the issue concerning the
treatment of byproducts deriving from construction, demolition, and renovation projects
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combined with the good thermo-mechanical characteristics of these materials, has intrigued
the interest of scientists. A significant number of research papers in which holistic manage-
ment strategic plans were introduced in order to optimize the recycling of construction and
demolition (C&D) waste stream were published [44–48]. Up until now, however, many
countries worldwide have been unable to meet the demands of environmental legislation
and achieve the extremely high (in terms of quantities) targets set for the recycling of waste
produced from the construction sector [49,50]. As a result, environmentally harmful treat-
ment methods such as landfilling and illegal dumping are still in use in the management
of this specific waste stream [51].

The high recovery potential of these materials, which at the moment remains unex-
ploited, has focused the most recent research efforts on the development and study of new
composite materials embedding construction and demolition wastes as filler in the form of
micro-powder [52–56].

In the present study, thermosetting polymer composites of epoxy resin (ER), un-
saturated polyester (UP), and novolac resin (N) embedding pulverized C&D waste in
micro-scale sizes were developed using the manufacturing techniques described in pre-
viously mentioned studies [52,53,56]. The scope of this research is to investigate the
appropriateness of this specific kind of filler in composite materials manufacturing through
the comparative study of the thermo-mechanical performance of these materials.

The degree of novelty and the significance of this research are very high because the
inclusion of C&D micro-particles in thermoset polymers is resulting in the production of
materials with adequately good mechanical properties and thermal insulating capacity.
In addition, through the manufacturing of these new composites, an innovative way
of exploiting the spin-offs of the construction sector, which are produced in very large
quantities worldwide each year, is introduced. In terms of treatment and exploitation, the
optimum scenario for these materials, if not disposed of in landfills or non-authorized
dump sites, is their recovery by means of backfilling. The results of this study will provide
useful conclusions on the exploitation possibilities of the development of new building
materials with fillers made using wastes of similar categories such as marble mining and
processing residues, concrete and cement production industry waste, bricks manufacturing
industry waste, etc.

2. Materials and Methods
2.1. Embedding Substance Preparation

A mixture of C&D waste aggregates generated from the construction, demolition, and
renovation sites was collected and appropriately treated as described in previous research
papers [52,53]. Fine micro-granular additive material was produced in order to be used as
filler. Two different grain size filling powders in flour form were prepared via mechanical
splitting and sieving separation processes according to ASTM C 136.

Analytically, C&D waste was dried in a laboratory oven at a constant temperature
as recommended per the above standard and was then subjected to sieving by means of
manual sieves and a mechanical sieve shaker in order to produce aggregate samples of the
desired grain characteristics for the purposes of this research [57].

2.2. Polymer Resins Used as Matrices-Specimens’ Manufacturing Process

Three different polymer resin systems were used as matrices in PMCs’ manufacturing.
More specifically, composite materials of (i) EPOXOL 2874 two-part epoxy resin (ER) sys-
tem, a bisphenol-based epoxy that comes with selected chemicals as curing agents such as
amines [58,59] (Neotex Co., Attica, Greece); (ii) PE6/TC two-part unsaturated polyester
(UP) system (Neotex Co., Attica, Greece); and (iii) Novolac (N) (in-house synthesized,
NTUA, Athens, Greece) resin were prepared. Epoxy and polyester resins were purchased
from the market. Novolac resin was laboratory-produced through progressive polymer-
ization. The synthesis process of N is based on the poly-condensation reaction of phenol
(Merck, Darmstadt, Germany) under the presence of formaldehyde (Fluka, NC, USA) and
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the appropriate chemical catalyst (acetic acid, Fluka, NC, USA). The resulting polymer
belongs in the category of phenol-formaldehydes. It comes initially in solid-state that
require pulverization, manual sieving, and addition of hexamethylenetetramine (Merck,
Darmstadt, Germany) as a hardener in its curing [60–63]. The technical specifications of
epoxy, unsaturated polyester, and novolac resin systems are presented in Table 1.

Table 1. Epoxy and unsaturated polyester resins technical specifications.

Resin Viscosity
[Pa s] Density [g/cm3] Pot Life [min] Hardening Time

[min]
A:B Mixture

Analogy (w/w)

Epoxol 2874 1.22 1.09 35–45 240 100:58
PE6/TC 0.55–0.65 1.2 20–25 45–55 100:2

Laboratory made
Novolac (powder) - 0.9 - 160 7:2 (HEXA as

hardener)

The manufacturing techniques implemented for ER, UP, and N composites’ prepa-
ration, and the related details (i.e., mixture ingredients, w/w proportions for each resin,
filler-resin w/w proportions, mixing time, thermal curing and post-curing time, etc.),
were presented and analytically discussed in previous research studies [52,53,56]. Table 2
presents the different categories of specimens manufactured and examined within the
scope of this research.

Table 2. Composites manufactured for mechanical and thermal characterization.

PMC Name Filler (% w/w) Resin (% w/w) Comment

ER-100 0 100 Mech./ thermal properties testing
ER–CDW30-500µm 30 70 Mech./ thermal properties testing
ER–CDW40-500µm 40 60 Mech./ thermal properties testing
ER–CDW50-500µm 50 50 Mechanical properties testing
ER–CDW30-300µm 30 70 Mech./ thermal properties testing
ER–CDW40-300µm 40 60 Mech./ thermal properties testing
ER–CDW50-300µm 50 50 Mech./ thermal properties testing

UP-100 0 100 Mech./ thermal properties testing
UP–CDW30-500µm 30 70 Mech./ thermal properties testing
UP–CDW40-500µm 40 60 Mech./ thermal properties testing
UP–CDW50-500µm 50 50 Mechanical properties testing
UP–CDW30-300µm 30 70 Mech./ thermal properties testing
UP-CDW40-300µm 40 60 Mech./ thermal properties testing
UP–CDW50-300µm 50 50 Mechanical properties testing

N-100 0 100 Mech./ thermal properties testing
N–CDW30-500µm 30 70 Mechanical/ thermal properties testing
N–CDW30-300µm 30 70 Mech./ thermal properties testing

2.3. Thermo-Mechanical Properties

Flexural and shear properties tests were carried using a three-point method, in com-
pliance with standards ASTM D 790 and ASTM D 2344, respectively [64,65]. At least five
specimens were prepared and experimentally characterized for each different category of
polymer composites studied as recommended by testing standards. The distance between
the specimen supports of the testing arrangement (Figure 1) was set to 100 mm for bending
strength measurements and 10 mm for shear strength measurements, respectively. All tests
were carried out at room temperature. The different types of developed composites are
presented in Figure 2a–c.
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Figure 1. The three-point method set up used for bending and shears properties measurement.

On the other hand, composites’ thermo-insulating efficiency study was performed via
the evaluation of thermal conductivity coefficient λ within the context of ASTM C 177 [66].
The specimens manufactured for the purposes of thermal efficiency study are shown in
Figure 3.

Calculations of composites’ bending (σb) and shear strength (τb) were performed
using the following equations:

σb =
3× Pmax × Ls

2 × b × d2 (1)

τb =
0.75 × Pmax

b × d
(2)

where Pmax is the maximum load applied at specimen’s failure (N); Ls is test length (m); b
is specimen’s width (m); and d is specimen’s thickness (m).

The error involved in all flexural and shear strength measurements was ±7%.
Similarly, thermal insulating efficiency of produced composites was made by determi-

nation of the thermal conductivity coefficient λ, according to ASTM C 177 standard using
specimens of appropriate shape and dimensions, which was evaluated by the following
equation:

λ =
Φ× Sm

2A(Θwm −Θcm)
(3)

where Φ is the capacity resistance of the heating surface, Sm is the composites’ average
thickness (m), A is the composites’ average surface area (m2), Θwm is the composites’
warm surfaces average temperature (◦K), and Θcm is the composites’ cold surfaces average
temperature (◦K).

The percentage error involved in the measurement of thermal properties was ±5%.
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2.4. Characterization Methods

The surface structural evaluation and elemental analysis were performed via scanning
electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD).
SEM measurements were carried out using a Hitachi’s TM3030 Plus (Hitachi, Tokyo, Japan)
scanning electron microscope equipped with a QUANTAX 70 (Hitachi, Tokyo, Japan)
energy dispersive X-ray spectrometer (EDS). Finally, characterization of the produced
PMCs and the C&D powders used as fillers in the preparation of the resulting specimens
was performed using a Siemens D5000 Diffractometer (Siemens, Karlsruhe, Germany),
equipped with a Cu Ka source (λ = 0.15406 nm). The scanning range was set from 5◦ to
70◦ with a step of 0.04◦ and a time interval of 1 sec per step. The crystalline phase contents
of the powder samples were determined by X-ray diffraction. The crystallite sizes (d) of
the resulting composites as well as for the different filling powders were calculated by
Debye–Scherrer’s [67] equation as follows:

d =
K× λ

β× cos θ
(4)

where K = 1.84 is the Debye–Scherrer’s constant, λ = 0.15406 nm is the wavelength of X-ray
radiation of the equipment used, θ is the Bragg diffraction angle (◦), and β is the full width
half maximum (FHWM) of the highest diffraction peak.

3. Results and Discussion
3.1. Mechanical Characterization

The bending and shear strength of resulting materials were determined using, as
mentioned previously, the three-point method. Test results are presented in Table 3. No-
volac matrix composites loaded with C&D wastes at percentages of 40% and 50% w/w
were not experimentally examined because manufacturing specimens under these specific
resin/ filler proportional characteristics was not possible. All the categories of PMCs
studied exhibited a brittle behavior, as do most thermosetting materials [62,68]. In parallel,
these materials were characterized by a significant reduction in mechanical performance,
remaining though in acceptable levels of mechanical strengths in comparison to common
building materials [69–71]. The lowering of these materials’ mechanical performance came
as a consequence of C&D waste powder inclusion within the polymer matrix. All tested
samples presented identical fracture patterns with clear and abrupt breaking at ultimate
loading (failure point).

Table 3. Comparative analysis of flexural and shear strength of polymer composites under study.

PMC Name Filler (% w/w) Resin (% w/w) Flex. Strength (MPa) Shear Strength (MPa)

ER-100 0 100 166.87 13.80
ER–CDW30-300µm 30 70 60.03 7.54
ER–CDW40-300µm 40 60 39.68 3.57
ER–CDW50-300µm 50 50 26.45 2.66
ER–CDW30-500µm 30 70 34.59 3.72
ER–CDW40-500µm 40 60 25.43 3.42
ER–CDW50-500µm 50 50 24.42 2.05

UP-100 0 100 75.30 13.95
UP–CDW30-300µm 30 70 34.59 3.72
UP–CDW40-300µm 40 60 35.61 4.18
UP–CDW50-300µm 50 50 30.25 2.66
UP–CDW30-500µm 30 70 33.58 2.81
UP–CDW40-500µm 40 60 34.61 3.87
UP–CDW50-500µm 50 50 27.47 2.50

N-100 0 100 26.80 1.81
N–CDW30-300µm 30 70 21.79 1.26
N–CDW30-500µm 30 70 21.79 1.21
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As it can be observed, PMCs mechanical strength decreased, in respect to specific
manufacturing characteristics of the resulting materials such as (i) the w/w percentage of
embedding filler, (ii) the embedding filler’s grain size, and (iii) the kind of resin used as
matrix. Analytically, the flexural strength was measured to be approximately three times
lower (60.03 MPa for 30% w/w, 300 µm specimen) to seven times lower (24.42 MPa for
50% w/w, 500 µm specimen) for ERCs in comparison to pure ER materials (166.87 MPa).
Accordingly, flexural strength was two times lower (35.61 MPa for 40% w/w 300 µm
specimen) to three times lower (27.47 MPa for 50% w/w, 500 µm specimen) for UPC
specimens compared to these made of pure UP (75.30 MPa) and relatively lower (21.79 MPa
for 30% w/w for both 300 µm and 500 µm specimens) for N-based composites in comparison
to pure N specimens (26.80 MPa).

Similarly, ERCs’ shear strength was measured to be approximately two times lower
(7.54 MPa for 30% w/w, 300 µm specimen) to seven times lower (2.05 MPa 50% w/w,
500 µm) in comparison to shear values measured for pure ER specimens (13.8 MPa),
approximately four times lower (3.75 MPa 40% w/w, 300 µm) to six times lower (2.50 MPa
for 50% w/w, 500 µm specimen) for UP composites compared to these measured for pure
UP specimens (13.95 MPa) and slightly lower in magnitude for NCs’ (1.26 MPa for 30%
w/w, 300 µm and 1.21 MPa for 30% w/w 500 µm, respectively) in relation to these made
using neat novolac (1.81 MPa). UP specimens that were filled using C&D waste at 40%
w/w presented slightly improved flexural (35.61 MPa for 300 µm and 34.6 MPa for 500 µm
specimen) and shear (4.18 MPa for 300 µm and 3.87 MPa for 500 µm specimen) strengths
compared to those containing 30%, in contradiction to ERC and NC in which the increase
of embedding substance in the composite from 30% w/w to 40% w/w, resulted in materials
of lower mechanical strength as shown from the results.

Generally, according to the test results, ERCs were the optimum materials in terms
of mechanical properties, followed by UPCs and NCs, respectively. More specifically,
300 µm 30% w/w containing ERCs, demonstrated better mechanical performance, in terms
of flexural and shear strength amongst all others, followed by 300 µm 40% w/w filler
containing UPCs and NCs, exhibiting approximately two times higher flexural strength
(60.03 MPa) compared to UPCs (35.61 MPa) and three times higher compared to NCs
(21.79 MPa), respectively. In the same way, the above-discussed composite materials
exhibited two times higher shear strength (7.54 MPa) compared to UPCs (3.72 MPa) and
six times higher shear strength in comparison to NCs (1.26 MPa), respectively.

Encapsulation of larger grain size filler and maintaining filler w/w concentration
constant (i.e., 30%) resulted in materials with differentiated mechanical characteristics.
More specifically, 500 µm ERCs were characterized by flexural properties that were almost
identical (34.59 MPa) to those of 500 µm UPCs (33.58 MPa) and approximately 1.5 times
higher compared to 500 µm NCs (21.79 MPa), while their shear strength was measured to
be approximately two times higher (4.18 MPa) compared to that of 500 µm UPCs (2.81 MPa)
and three times higher in comparison to 500 µm NCs (1.21 MPa). As shown in Table 3,
epoxy and polyester composites were characterized by flexural strengths that were found
to be almost six and up to twelve times higher compared to their corresponding shear
strengths.

On the other hand, those manufactured using N resin demonstrated about 20 times
higher flexural strength values compared to the corresponding shear strength values of
these materials. Finally, another important remark was that the flexural and shear perfor-
mances of ERCs loaded in proportions of 30% and 40% were significantly reduced, once
larger granular size filler was used, whereas all other PMCs examined were characterized
by small and, in some cases, insignificant changes in mechanical properties.

3.2. Thermal Insulation Efficiency

PMCs’ thermal insulation performance results are presented in Table 4. As it can be
observed, the inclusion of C&D wastes micro-powder resulted in materials with improved
thermo-insulating efficiency compared to that exhibited by pure resin specimens. The
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increase of encapsulated filler’s (w/w) quantity and the utilization of lower granular size
pulverized filler within the composites’ matrix led to further improvement of the thermal
conductivity coefficient λ and therefore enhancement of these materials’ thermal insulation
performance. N and UP composites exhibited better thermal insulation properties com-
pared to these manufactured using ER. This came as a result of the structural peculiarity of
these specimens, which has been developed during the thermal processing stage (curing)
as indicated via SEM analysis and discussed in Section 3.3. However, the advantage of
UPC and NC in terms of thermo-insulating properties is also associated with the good
insulating characteristics of polyester and novolac resins in general. As it is observed
from the following results, UP composites’ thermal conductivity coefficient λwas slightly
increased, remaining, however, in a close range of λ values to these exhibited by neat UP
materials.

Table 4. Epoxy, unsaturated polyester, and novolac resin composites thermal conductivity coeffi-
cient λ.

Composite C&D (% w/w) Resin (% w/w) Thermal Conductivity
Coefficient, λ [W/m·K]

ER-100 0 100 1.20
ER–CDW30-500µm 30 70 0.70
ER–CDW40-500µm 40 60 0.64
ER–CDW30-300µm 30 70 1.02
ER–CDW40-300µm 40 60 0.53

UP-100 0 100 0.27
UP–CDW30-500µm 30 70 0.59
UP–CDW40-500µm 40 60 0.46
UP–CDW30-300µm 30 70 0.63
UP–CDW40-300µm 40 60 0.39

N-100 0 100 0.72
N–CDW30-500µm 30 70 0.42
N–CDW30-300µm 30 70 0.36

3.3. SEM, EDX, and XRD Characterization

SEM characterization results are presented in Figures 4–6. According to these, the
dispersion of filling powder in ER composites (Figure 4a,b) was quite satisfactory with
sparse agglomerations within the specimens’ matrix. The dispersion of embedded additive
was improved, while smaller size embedding filler was used, resulting in the production
of PMCs with upgraded mechanical strength.

On the other hand, UPCs, (Figure 5a,b) exhibited better dispersion and minimal
agglomerate formations in comparison to ERCs. The use of smaller size filler resulted
again in the improvement of its distribution in the polymer matrix leading in parallel to the
enhancement of these materials’ mechanical properties. The improved level of dispersion
of filler exhibited in UPCs is a result of the reduced time required for the hardening process
of the unsaturated polyester matrix to take place (approximately 45–55 min according to
Table 1). As far as the improvement in the dispersion of embedded substance of NCs is
concerned, this is strongly related to the granular nature that characterizes both novolac
resin and filling material used, which enabled their better mixing during the preparation
of the composite specimens.
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As shown in the SEM images, UP and N specimens (Figures 5 and 6) were character-
ized by voids shaped within the matrix. These came as a result of volatile gas evolution that
occurred during the composites curing process [72]. The presence of these voids affected
the structural coherence of specimens and is in fact responsible for the lower flexural and
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shear performance of these materials. The entrapment of air produced (i.e., voids) during
PMCs thermal processing stage in the form of bubbles led to the enhancement of their
thermo-insulating properties. This thermal insulation efficiency was further improved
in composite specimens that embedded filler of smaller grain size. Due to the lower size
of filling powder, its distribution within the polymer matrix was improved, allowing the
further improvement of these materials’ thermo-insulating performance.

EDX analysis indicated as expected the presence of carbon and oxygen, the main
constituents of the matrix of manufactured composites, with carbon holding the highest
proportion amongst all detected elements (Table 5). Carbonate acids of silicon (Si) and
calcium (Ca) were also detected within the composites. In addition, carbonate acids of
magnesium (Mg) were detected through the EDX analysis conducted on samples of the
filling powders.

Table 5. Polymer matrix composites and embedded fillers elemental analysis.

PMC Name C
(wt.%)

O
(wt.%)

Ca
(wt.%)

Si
(wt.%)

Al
(wt.%)

Mg
(wt.%) Total

ER–CDW30-500µm 77.27 18.18 3.73 0.81 - - 100.00
ER–CDW30-300µm 73.75 19.03 5.55 1.66 - - 100.00
UP–CDW40-50 µm 69.08 26.24 3.69 0.99 - - 100.00
UP–CDW40-300µm 60.57 31.21 7.01 1.21 - - 100.00
N–CDW30-500µm 72.01 23.75 3.62 0.62 - - 100.00
N–CDW30-300µm 81.94 16.12 1.60 0.35 - - 100.00

Type of filler
500 µm CDW filler 11.09 46.75 35.27 4.53 2.08 0.37 100.00
300 µm CDW filler 12.60 51.73 26.81 5.55 2.75 0.57 100.00

Additionally, X-ray diffraction indicated calcite (CaCO3) and quartz (SiO2) corre-
sponding to database patterns PDF 72-1937, PDF 047-1144, and PDF 083-2187 [73–75],
respectively, as the characteristic crystalline phases contained in the 300 µm and 500 µm
fillers (Table 6). Both the embedding powders exhibited similar behavior and therefore
identical XRD spectra.

Table 6. Identified crystalline patterns contained in the filling powders of 500 µm and 300 µm used
in composites manufacturing.

Composite Crystalline Name Formula Pattern PDF

500 µm CDW filler Calcite CaCO3 72-1937
- Quartz SiO2 01-083-2187

300 µm CDW filler Calcite CaCO3 72-1937
- Quartz SiO2 01-047-1144

The XRD peaks of the above samples were observed within the range (2θ) of 20◦ and
66◦, as can be observed through the diffractograms shown in Figure 7. The characteristic
peak value of 2θ = 29.1◦, which is marked with a black square-shape in the previously
mentioned diagram, was assigned to the calcite phase plane (104), and it appears to be
dominant for both the powder samples examined via the X-ray diffraction process.
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Figures 8–10 depict XRD spectra of the dominating (in terms of flexural and shear
strength) epoxy, unsaturated polyester, and novolac matrix composites, respectively. Each
one of these figures is characterized by the presence of two distinct phases—the crystal
phase, which is attributed to the crystallinity of the embedded (C&D waste) powder, and
the amorphous phase, which is related to the polymer resin used as matrix.
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(b) 500 µm composites.

The sharp peaks appearing in the graphs are assigned to the crystal phase of the
composite, whereas the low peaks are assigned to the amorphous phase appearing in low
2θ value ranges usually under 30◦. More precisely, the 2θ peak value of the amorphous
phase in ER–CDW30-500 µm composites is approximated at 17.74◦, while in ER–CDW30-
300 µm the amorphous phase practically “disappears” as a result of the increased intensity
of the crystal phase peaks (Figure 8a,b). Novolac composites exhibited similar behavior
with the amorphous phase of N–CDW30-300 µm located approximately at 17.71◦, while
in N–CDW30-500 µm, the increased intensity of the crystal phase peaks characterizing
this material led again to the disappearance of the low-intensity amorphous phase peaks
(Figure 10a,b).

Finally, the amorphous phase peaks of UP–CDW40-500 µm and UP–CDW40-300 µm
were approximated at 2θ = 19.95◦ (Figure 9a,b). The amorphous phase 2θ values measured
for ER, UP, and N composites fall within a corresponding range of values that are recorded
and referred to in the literature [76–85].

The crystallite sizes (d) of the resulting composites and the filling powders at the
highest diffraction peak angles, recorded through the XRD characterization, are presented
in Table 7. As shown below, the crystallites of 500 µm and 300 µm fillers were found to be
identical in size. On the other hand, the crystallites that were shaped within the ER, UP,
and N composites under study exhibited size variations in respect to the polymer resin
used to form the matrix. Changes in the size of crystallites were also observed between the
composites made using the same type of polymer as matrix when different size filler was
used, with that magnitude (crystallite size) being reduced once 500 µm powder was used
as filler instead of 300 µm in all the PMC categories examined.
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Table 7. Crystallite sizes of fillers and resulting composites.

Composite Crystallite Size (nm)

300µm CDW filler 116.65
500 µm CDW filler 116.65

ER–CDW30-500 µm 107.71
ER–CDW30-300 µm 114.43
UP–CDW40-500 µm 107.70
UP–CDW40-300 µm 110.44
N–CDW30-50 0µm 99.96
N–CDW30-300 µm 122.54

4. Conclusions

Thermoset polymer composites of epoxy and unsaturated polyester that were pur-
chased from the market and laboratory synthesized phenol-formaldehyde (novolac), em-
bedding pulverized C&D waste were developed and studied. The mechanical, thermal,
and structural characterizations of these materials were made by means of bending and
shear testing, SEM, EDX, and XRD, respectively. The presence of C&D waste limited down
the mechanical performance, which was maintained however, in adequate levels. On the
contrary, the thermal insulation efficiency was improved after the incorporation of C&D
filler in most of the PMCs examined.

Author Contributions: Conceptualization, design and supervision by L.Z.; writing—original draft
preparation, C.B.; formal analysis, C.B.; resources, C.B.; writing/ review and editing, C.B.; investiga-
tion, C.B.; both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to express their gratitude to the laboratory teaching
staff of the Department of Materials Science and Engineering in the School of Chemical Engineering,
NTUA, and in particular Pantelitsa Georgiou for her invaluable support in carrying out the XRD
measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K.W. Biomedical applications of polymer-composite materials: A review.

Compos. Sci. Technol. 2001, 61, 1189–1224. [CrossRef]
2. Mangalgiri, P. Composite materials for aerospace applications. Bull. Mater. Sci. 1999, 22, 657–664. [CrossRef]
3. Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A. Advanced ceramic matrix composite materials for current

and future propulsion technology applications. Acta Astronaut. 2004, 55, 409–420. [CrossRef]
4. Fillip, P.; Weiss, Z.; Rafaja, D. On friction layer formation in polymer matrix composite materials for brake applications. Wear

2002, 252, 189–198. [CrossRef]
5. Kong, L.B.; Li, Z.W.; Liu, L.; Huang, R.; Abshinova, M.A.; Yang, Z.H.; Tang, C.B.; Tan, P.K.; Deng, C.R.; Matitsine, S. Recent

progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 2013, 58, 203–259.
[CrossRef]

6. Salernitano, E.; Migliaresi, C. Composite Materials for Biomedical Applications: A Review. J. Appl. Biomater. Biomech. 2003, 1,
3–18.

7. Foo, K.Y.; Hameed, B.H. The environmental applications of activated carbon/zeolite composite materials. Adv. Colloid Interface
Sci. 2011, 162, 22–28. [CrossRef] [PubMed]

8. Bader, M.G. Selection of composite materials and manufacturing routes for cost-effective performance. Compos. Part A 2002, 33,
913–934. [CrossRef]

9. Fuchs, E.R.; Field, F.R.; Roth, R.; Kirchain, R.E. Strategic materials selection in the automobile body: Economic opportunities for
polymer composite design. Compos. Sci. Technol. 2008, 68, 1989–2002. [CrossRef]

http://doi.org/10.1016/S0266-3538(00)00241-4
http://doi.org/10.1007/BF02749982
http://doi.org/10.1016/j.actaastro.2004.05.052
http://doi.org/10.1016/S0043-1648(01)00873-0
http://doi.org/10.1179/1743280412Y.0000000011
http://doi.org/10.1016/j.cis.2010.09.003
http://www.ncbi.nlm.nih.gov/pubmed/21035101
http://doi.org/10.1016/S1359-835X(02)00044-1
http://doi.org/10.1016/j.compscitech.2008.01.015


Polymers 2021, 13, 737 17 of 19

10. Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of
composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [CrossRef]

11. Egbo, M.K. A fundamental review on composite materials and some of their applications in biomedical engineering. J. King Saud
Univ. Eng. Sci. 2020, in press. [CrossRef]

12. Ali, A.; Andriyana, A. Properties of multifunctional composite materials based on nanomaterials: A review. RSC Adv. 2020, 10,
16390–16403. [CrossRef]

13. Beecroft, L.L.; Ober, C.K. Nanocomposite Materials for Optical Applications. Chem. Mater. 1997, 9, 1302–1317. [CrossRef]
14. Simitzis, J. Science and Technology of Polymer and Composite Materials; National Technical University: Athens, Greece, 2017.
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