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Abstract

Purpose: The aim was to develop a novel artificial intelligence (AI)—guided clinical decision support system, to predict radiation doses to
subsites of the mandible using diagnostic computed tomography scans acquired before any planning of head and neck radiation therapy (RT).
Methods and Materials: A dose classifier was trained using RT plans from 86 patients with oropharyngeal cancer; the test set
consisted of an additional 20 plans. The classifier was trained to predict whether mandible subsites would receive a mean dose >50 Gy.
The AI predictions were prospectively evaluated and compared with those of a specialist head and neck radiation oncologist for 9
patients. Positive predictive value (PPV), negative predictive value (NPV), Pearson correlation coefficient, and Lin concordance
correlation coefficient were calculated to compare the Al predictions to those of the physician.

Results: In the test data set, the AI predictions had a PPV of 0.95 and NPV of 0.88. For 9 patients evaluated prospectively, there was a
strong correlation between the predictions of the Al algorithm and physician (P = .72, P < .001). Comparing the AI algorithm versus
the physician, the PPVs were 0.82 versus 0.25, and the NPVs were 0.94 versus 1.0, respectively. Concordance between physician
estimates and final planned doses was 0.62; this was 0.71 between Al-based estimates and final planned doses.

Conclusion: Al-guided decision support increased precision and accuracy of pre-RT dental dose estimates.

© 2021 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Dental decay and osteoradionecrosis (ORN) are major
long-term sequelae of head and neck radiation therapy
(HN RT), but there is very little concrete basis to counsel
patients in advance about their individual risk of potential
complications.' ” Dentists and oral surgeons often base
their pre-RT assessments on the prescription doses that
are anticipated by the consulting radiation oncologist but
are rarely provided with actual dosimetry for specific sub-
sites of the mandible. It is generally advised that in areas
which are to receive a high dose of radiation (eg, >50 Gy),
there should be a lifelong relative contraindication against
dentoalveolar surgery, including procedures such as den-
tal extractions, dental implants, periodontal surgery, and
surgical endodontic therapy.” Thus, prophylactic dental
extractions are frequently performed before RT begins to
remove any teeth that are felt to be compromised and
which lie within a region anticipated to receive a high
dose of radiation or teeth that are assessed to be nonres-
torable by any means. Prophylactic dental extractions
require weeks to heal and have potential to delay RT treat-
ment by multiple weeks; the removal of teeth can also
compromise patient speech and diet and potentially
worsen their nutritional status just before beginning RT.

The utilization of data to drive improved RT treatment
planning is a rapidly maturing field. In one application, a
technique known as “knowledge-based planning” (KBP)
uses historical planning information to very rapidly auto-
mate RT treatment planning of new cases.’” Machine-
learning algorithms, such as logistic regression, linear
models with penalty regularization, decision trees, ran-
dom forest, gradient boosting, and deep learning
approaches, have helped advance KBP.”” However, KBP
approaches require full-scale contouring of clinical cases
and are not able to provide anticipatory clinical decision
support (CDS) before the initiation of contouring and RT
planning processes of a specific case.” Our proposed alter-
native CDS framework is intended to augment expert
opinion before the point of contouring and/or planning
and has been shown to help decision making at the point
of care,” such as at the initial consultation with the
patient, while additionally avoiding some of the known
limitations of artificial intelligence (AI), including lack of
clinical context and unintended bias.”

In this study, we developed an Al-based CDS tool to
predict which subregions of the mandible would receive
Dinean >50 Gy, before initiation of any actual RT planning
activities. This CDS was based on a previously validated
machine-learning algorithm that is capable of generating
organ-specific dose estimates for new patients with oro-
pharyngeal cancer based on historical data mining.'” A
process was developed to predict doses to the mandible
that would result from the eventual RT treatment plan
based on minimal contouring of a diagnostic computed

tomography (CT). The accuracy of this algorithm was
compared with experience-based estimates provided by
radiation oncologists specialized in the treatment of head
and neck cancer. The CDS-based dose estimation was
also evaluated prospectively on 9 patients, compared
against the actual dosimetry that resulted from subse-
quent RT planning.

Methods and Materials

Machine learning model building and
definition of mandible subsites on
diagnostic CTs

The training data set, composed of 86 previously deliv-
ered RT treatment plans, including planning CT data sets
with their associated structure sets and treatment plans
with 3-dimensional dose distributions, was used for train-
ing this machine learning (ML) system (InsightRT v.2.4;
Siris Medical, Burlingame, CA), which was customized
for this application. Planning CTs were acquired with a
Philips Vereos positron emission tomography/CT
(512 x 512 resolution, 0.6-mm pixel spacing, 1.5-mm
slice thickness). The training set also included associated
diagnostic CTs, which were acquired with a GE Discovery
STE (512 x 512 resolution, 1.27-mm pixel spacing, 3-mm
slice thickness). Structure sets included complete target
contour sets as well as subsite-based contouring of the
mandible.

The 6 subsites of the mandible were manually con-
toured as separate structures for the purposes of training
and testing. These were defined as follows: left posterior
(teeth 17-19), left middle (teeth 20-22), left anterior (teeth
23-24), right anterior (teeth 25-26), right middle (teeth
27-29), and right posterior (teeth 30-32). The posterior
subsites included the entire posterior mandible including
the rami, coronoid processes, and condyloid processes.

The test data set, independent from the training data
set, was created from 20 patients whose cases were chro-
nologically subsequent to the training data set. The test
set included not only planning CTs, structure sets, and
the RT treatment plans, but also the associated diagnostic
CTs for which the mandible was manually contoured for
verification purposes. All of these patients were treated
with curative intent, using intensity modulated radiation
therapy prescribed to a total dose of at least 60 Gy.

Workflow for minimal contouring of
diagnostic imaging

The workflow for contouring diagnostic imaging is
shown in Fig. 1. Diagnostic CT scans were imported from
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Figure 1 Proposed clinical workflow of predicting dental dosimetry using a diagnostic CT and an artificial intelligence
—based clinical decision support system. The contoured structures are listed in the middle box and the predicted doses to dif-
ferent regions of the mandible (A = anterior; P = posterior; R = right; L = left) are listed in the leftward box. This example
shows red highlighted boxes that appear in the dose prediction results when preset quality parameters (in this case, mandible
max, PL mean, 95% coverage of the PTV by prescribed dose) are not met. Abbreviations: CT = computed tomography;

GTV = gross tumor volume; PTV = planning tumor volume.

the Picture and Archiving System (PACS; Agfa Health-
care, Mortsel, Belgium) into a commercial software (MiM
Maestro v.6.9.3; MiM Software, Cleveland, OH) for man-
ual delineation of target volumes. The primary and nodal
gross tumor volumes (GTV) were delineated with neuro-
radiology input."' A 5-mm expansion was added to the
GTYV to create the clinical target volume (CTV) and an
additional 3-mm margin was added to create the planning
tumor volume (PTV); an example is shown in Fig. 2.12
Elective nodal volumes were not delineated. The diagnos-
tic CT associated with this minimal set of associated target
contours (structure set) was then exported to the ML sys-
tem.

Training and testing dose prediction to
mandible subsites

A custom, autocontouring algorithm used the training
data set to segment mandible subsites in the diagnostic
CT scans (Fig. 2). First, a thresholding method (MiM
Maestro) defined the mandible. Then, the following
salient landmarks were identified in the CT and mandible
(head tilt, lateral, anterior, and posterior extent of the
mandible), and the mandible subsites were separated geo-
metrically. Autocontouring accuracy was assessed using 2
methods. First, dosimetric error propagated by

autocontouring was determined using the method pro-
posed by Lim et al'’ on the test data set; this method
assesses contouring performance by comparing the final
delivered dose volume (in units of Gray [Gy]) of the man-
ually created structure to the dose-volume of the autocon-
toured structure. Second, autocontour accuracy on the
submandible regions was evaluated using the Dice simi-
larity coefficient, which is determined by dividing twice
the volume of the intersection of the manual contour and
the autocontour with the sum of the volume of manual
contour and the volume of the autocontour.

An ML dose prediction model was trained using a 5-
fold cross-validation method; for each fold, 80% of the
data were used to train the model, and 20% of the data
(the validation data) were used to validate performance.
Algorithmic performance was subsequently measured on
the test data set. The dose prediction methodology has
previously been described.'’ Briefly, the model uses the
regression ensemble boosting method with regularization
(learning rate of 0.1), which forms a strong learner
through iterative learning of weak learners, to solve for
the mean doses to the subsite mandibular structures inde-
pendently using features derived from the patient. These
features were obtained from CT images, PTVs, organs at
risk (OARs), and the oncology information system
(Mosaiq; Elekta, Sweden).'* Features in this model incor-
porate prior assessment of Digital Imaging and
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A

Figure 2 Example of minimal required contouring on a diagnostic computed tomography scan for dose prediction: (A)
autocontoured mandible subsites; (B) mandible subsites on the diagnostic computed tomography; (C) gross tumor volume
(dark red inner contour) and planning tumor volume (lighter red outer contour) used for dose prediction as contoured on

the diagnostic CT scan.

Communications in Medicine images, medical record
data (eg, International Classification of Diseases-9/10
diagnosis codes), radiation-transport parameters (eg,
beam energy), and the treatment intent (eg, prescription
dose). Of particular importance for this algorithm were
the geometric features of the mandible substructures and
the organs in close proximity to the mandible (eg, oral
cavity); a table of feature importance, as determined by
the features most represented in the boosted decision tree
nodes, is given in Table 1.

Table 1 Top feature classes for mandible subsite dose
prediction
Feature class Description
1 Prescription to PTVs
2 Distance relationship
between PTVs and
mandible substructure
3 Volume of mandible s
ubstructures
4 Volume of PTVs
5 Projection of PTVs to

mandible substructures

6 Geometric relationship of
body to mandible substructures

Abbreviation: PTV = planning tumor volume.

The goal for this specific project was to predict the
mean dose (Dyean) to each of the 6 mandible subsites and
the overall maximum point dose (Djp,y), defined as the
dose to a point of 0.03 cc) to any part of the mandible.
For the mandible subsites, the key dosimetric metric was
Diean >50 Gy, but Dyean >40 Gy and Dypean, >30 Gy
were also evaluated. Additionally, the dosimetric indices
for the GTV, CTV, PTV, and OARs were analyzed and
aggregated to form the treatment plan matrix.

The Al-predicted dosimetric indices were compared
with the actual mandible dosimetry obtained after RT
treatment planning. Positive predictive value (PPV)
and negative predictive value (NPV) were used to eval-
uate the performance of the Al-based CDS in predict-
ing Dyean of >50 Gy, >40 Gy, and >30 Gy to the 6
subsites of the mandible.

Prospective, correlative clinical comparison
of CDS prediction against physician
estimates and dosimetry from actual
treatment plans

The diagnostic CT scans, each with an associated
structure set containing the GTV and expanded CTVs
and PTVs, were sent to the CDS. This was performed in
advance of any treatment planning. Simultaneously, 2
head and neck specialist radiation oncologists provided
estimates, based on their clinical experience, of 9 patients’



Advances in Radiation Oncology: March—April 2022

Al-guided dental dosimetry 5

Table2 Confusion matrix of estimated D,can Versus actual D,,q., delivered to mandibular subsites

D jean actually delivered to mandible subsites

Condition positive

Condition negative

Dppean €stimated Test outcome positive

TP total subsites correctly

by either physi- predicted and actually timated TP/(TP + FP)

cian or CDS to received Dype,n >50 Gy dose prediction (did not

mandibular receive Dyean >50 Gy)

subsites

Test outcome negative ~ FN total subsites with under- TN total subsites correctly NPV

estimated dose prediction predicted and actually did TN/(FN + TN)
(received Dinean not receive Dyean >50 Gy
>50 Gy)

FP total subsites with overes- PPV

value; TN = true negative; TP = true positive.

Abbreviations: CDS = clinical decision support; FN = false negative; FP = false positive; NPV = negative predictive value; PPV = positive predictive

mandible subsite doses to the dental oncology team, as is
our current institutional standard practice.

After the diagnostic CT scans had been sent to the
CDS, the patients underwent standard CT-based simula-
tion and RT treatment planning. Clinically accepted RT
treatment plans were finalized using a commercial treat-
ment planning software (Raystation; Raysearch Laborato-
ries, Stockholm, Sweden); these were plans actually
delivered to the patients. Using Pearson correlation and
Lim concordance analysis, the accuracy of physician-esti-
mated doses was compared with those predicted by the
CDS, using the doses from accepted, deliverable treatment
plans as the ground truth.

From these data, the PPV and NPV were used to eval-
uate the ability to predict whether each mandible subsite
received Dyean >50 Gy, as shown in Table 2.

The research was conducted under institutional review
board—approved quantitative imaging analysis, No. 18-25441.

Table 3 Mean absolute errors in the validation test set
with the use of autocontouring rather than manual con-
touring of the mandible and its subsites

Mandible subsite MAE
Mandible LAM (Gy) 0.96
Mandible RAM (Gy) 1.05
Mandible LMM (Gy) 0.75
Mandible RMM (Gy) 1.38
Mandible LPM (Gy) 3.30
Mandible RPM (Gy) 2.93
Mandible max (Gy) 0.11
Abbreviations: LAM = anterior left mean; LMM = middle left mean;
LPM = posterior left mean, MAE = mean absolute error;
RAM = anterior right mean;, RMM = middle right mean;
RPM = posterior right mean.

Results

Effect of autocontouring the mandible on
the accuracy of dose prediction to mandible
subsites in the test set

The computation of the dosimetric error propagated by
mandible autocontouring (the error between the manual
contours and the autocontours) demonstrated relatively small
mean absolute errors (MAEs) in the prediction of mean
doses to subsites of the mandible and the maximum dose to
the entire mandible. In comparing results of autocontouring
to manual contouring, the resulting average MAE was 1.5
Gy and all MAEs were within 3.30 Gy (Table 3). The aver-
age Dice coefficient for the mandible subsites was 81.5, where
the anterior region was 724, the middle region was 83.6, and
the posterior region was 88.3. The accuracy of predicting
Dinean >50 Gy to the autocontoured mandible subsites on
diagnostic CT scans in the test set resulted in a PPV of
Dinean >50 Gy of 0.95 and an NPV of 0.88.

Comparison of mandible dose prediction by
CDS versus physician estimates

A strong correlation was observed between the Al-
based CDS- and physician-generated predictions (Pearson
correlation coefficient r = 0.72, P < .001). Using the deliv-
ered treatment plan as the ground truth, the PPVs for the
CDS versus the physician were 0.82 versus 0.25, respec-
tively, for predicting D,yean >50 Gy to the mandible sub-
sites. The NPVs were 0.94 versus 1.0, respectively.
Additional comparisons of PPVs and NPVs for several
other dose thresholds (Dyean >40 Gy, Dipean >30 Gy) are
shown in Table 4. The PPVs of the CDS predictions were
equivalent or superior to the physicians’ estimates at every
dose level. For further detail on predicting Dpean >50 Gy,
the confusion matrix is shown in Table 5.
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Table4 NPVsand PPVs of predicting mean dose (D,,,can) by the specialist radiation oncologist and Al-based clinical deci-

sion support system in 9 patients

Specialist radiation oncologist

Al-based clinical decision support system

NPV PPV NPV PPV
Dnean >50 Gy 1.0 0.25 0.94 0.82
Dinean >40 Gy 0.97 0.62 0.89 0.95
Dinean >30 Gy 0.57 0.85 0.50 0.85

Abbreviations: Al = artificial intelligence; NPV = negative predictive value; PPV = positive predictive value.

Table 5 Confusion matrix for predicting Dy,ean >50 Gy
for both the CDS and the physician

CDS Actual
Positive Negative
Predicted Positive 77.8% 3.1%
Negative 4.8% 14.3%
Physician Actual
Positive Negative
Predicted Positive 77.7% 16.7%
Negative 0% 5.6%
Abbreviation: CDS = clinical decision support.

We compared the ability to accurately predict mandible
subsite dose >50 Gy between the CDS and the physician using
the Wilcoxon rank test of equivalence (testing the null hypothe-
sis that the CDS and the physician predictions are drawn from
the same distribution). The accuracy of the CDS was statisti-
cally similar to the physician estimates (Wilcoxon rank test,
P = 42). Although both the CDS and the physician were accu-
rate for the anterior and posterior submandible structures (P <
.01), when comparing the middle teeth, the CDS was statisti-
cally similar to the final delivered dose (P < .01), whereas the
physician estimates were not (P = .4) (Wilcoxon rank test).
Concordance between the physician’s estimates and the deliv-
ered treatment plan doses was 0.62 and concordance between
the CDS and the delivered treatment plan doses was 0.71.

Discussion

In this study, we established a novel AI CDS system
that improves the accuracy and efficiency of pretreat-
ment dental evaluation in patients scheduled for HN
RT. The process was nested within our standard clini-
cal workflow and concept-tested with the goal of effi-
ciency and real-world clinical implementation. The
CDS produced dose predictions to 6 subsites of the
mandible that more closely approximated the actual

treatment plan dosimetry than our current standard of
care, which relies on physician estimates. The CDS
only required GTV contouring on a diagnostic CT
scan to generate these estimates.

There were multiple phases of this development pro-
cess. First, we established that dose prediction accuracy
could be maintained even if only an extremely limited fea-
ture set was contoured on a diagnostic CT scan and used
for dose prediction; the only necessary contour was the
GTV (auto-expanded to planning volumes). We consid-
ered whether it was more clinically useful to report maxi-
mum dose or mean dose to the mandible substructures.
Ultimately, because the prediction to a point is less reli-
able, especially for such small structures, and less relevant
clinically, we chose to focus on the mean dose to the man-
dible substructures. Second, based on these minimally
contoured diagnostic CT scans, we evaluated the feasibil-
ity of dose prediction using the CDS to predict mean
doses to 6 subsites of the mandible. Finally, we prospec-
tively evaluated the ability of the CDS to predict whether
specific subsites of the mandible would receive a mean
dose >50 Gy. Of note, although our process was focused
on the mandible, this same process could be generalized
to predict doses to other organs of interest.

The CDS produced a similar NPV compared with a
physician’s estimate (0.94 and 1.0, respectively), but had a
superior PPV of 0.82 compared with 0.25. Hence, the
CDS was much less likely than the physician to overesti-
mate high doses to the mandible, typically seen in the
most posterior mandible. Thus, by reducing these overes-
timates, the CDS could prevent unneeded extraction pro-
cedures, reducing delays and potentially enabling more
stable nutritional status before starting radiation. Further-
more, the CDS appeared to produce improved accuracy
that was superior to the physicians’ estimates in the mid-
dle segments of the mandible, where lower radiation doses
are typically delivered; improved accuracy to these lower-
dose regions would allow for more nuanced and accurate
preradiation therapy evaluation of teeth at an intermedi-
ate level of risk.

Qualified dental evaluation is an important prepara-
tory step for all patients who are planning to undergo
HN RT. The decision to perform extractions before RT
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is not entirely dependent on dental dosimetry,'” but in
general, the expectation of a high radiation dose to an
already compromised tooth will prompt a recommenda-
tion for prophylactic extraction. Extractions in the pos-
terior mandible where high doses often occur usually
involve molar teeth that are frequently deep-rooted or
impacted; removal procedures are painful and some-
times risk lengthy or permanent nonhealing and/or alve-
olar nerve damage. After extractions, the initiation of RT
may be delayed by a few to several weeks to allow for
healing; this comes at the expense of delays in all
patients and increasing the total treatment package time
in postoperative patients, potentially compromising
tumor control.'®'” Thus, by improving the specificity
and accuracy of pre-RT dose estimation, our Al-based
CDS

has the potential to increase the overall efficiency of
treatment.

The incidence of ORN after head and neck radiation
treatment varies widely in the literature from 0.4% to up to
56%,” and retrospective studies suggest an increased risk of
ORN associated with higher doses of radiation to the
mandible."®*’ Tsai et al’' reviewed 402 patients with oro-
pharyngeal cancer and found that the incidence of ORN
was 7.5% at a median time to development of 8 months.
After adjustment for dental status (dentate vs postextrac-
tion), patients who developed ORN had larger volumes of
the mandible exposed to high doses of radiation (>50 Gy).
Another prospective study confirmed that >50 Gy to indi-
vidual teeth increased the risk for ORN.”” Thus, a thresh-
old of 50 Gy remains as a commonly used clinical
reference point driving the decision on whether to enact
pre-RT prophylactic extractions.” The CDS in this project
was more accurate than physicians in identifying situations
above and below this standard threshold and would allow
for more detailed discussion with patients about their indi-
vidual level of risk.

One potential limitation of this CDS is the reliance
on low-dimensional features that are delineated based
on patient geometry. However, these types of features
are often less affected by factors such as image noise
and unintended correlations than other algorithms
with higher dimensional features, such as those pro-
duced by neural nets. Additionally, from an efficiency
standpoint, it was necessary to establish a process that
could be implemented in the short window of time
before actual RT treatment planning and which would
not overburden physicians with excessive additional
contouring. We were able to establish that by manually
delineating only the GTV, the compromise in terms of
dose-prediction accuracy was small, and in turn, a
report could be produced in roughly 15 minutes from
the start of contouring. Therefore, in a proposed clini-
cal workflow, the only manual contouring truly
required on the diagnostic CT scan would be the
GTV, which would then be autoexpanded to the PTV,

and the mandible subsites can be reliably
autocontoured.”'’ This would likely be acceptable and
feasible in the real-world setting of a busy clinical
practice. Including more features, such as elective
nodal volumes, likely would have resulted in more
accurate prediction of mandibular doses below 50 Gy
and would be an additional advancement of this work.
Importantly, there is evidence supporting that doses
below 50 Gy could contribute to ORN,” and future
refinements to the CDS should thus aim to improve
the prediction of these lower mandibular doses.
Finally, this CDS’s application is currently limited to
patients with oropharynx cancer and has yet to be
tested for other head and neck cancer sites.

Conclusion

A novel Al-based CDS system can predict doses to
high-risk OARs using only gross tumor volume contour-
ing on a diagnostic CT obtained before initiation of actual
radiation treatment planning. Development and imple-
mentation of Al-guided dose prediction would facilitate
more precise estimations of dosimetrically-based risks to
specific OARs.
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