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A B S T R A C T   

The analysis in this communication addresses the unsteady MHD flow of tangent hyperbolic 
liquid through a vertical plate. The model on mass and heat transport is set up with Joule heating, 
heat generation, viscous dissipation, thermal radiation, chemical reaction and Soret-Dufour in the 
form of partial differential equations (PDEs). The PDEs are simplified into a dimensionless PDEs 
by utilizing a suitable quantities. The simplified equations are solved by utilizing the spectral 
relaxation method (SRM). The outcomes shows that increase in the Weissenberg and the magnetic 
field degenerates the velocity profile. The thermal radiation is found to elevate the velocity and 
temperature profiles as its values increases. The impact of Soret and Dufour on the flow is found 
to alternate each other. The computational outcomes for concentration, temperature and velocity 
are illustrated graphically for all encountered flow parameters. The present outcomes are 
compared with previous outcomes and are found to correlate.   

1. Introduction 

The study of non-Newtonian liquid is more comprehensive when compared with Newtonian liquid. The non-Newtonian liquids 
possesses variable viscosity owning to the presence of an applied force. In analysing non-Newtonian liquid behaviour, many consti-
tutive model equations have been utilized in literature. The tangent hyperbolic liquid is good enough to describe the phenomenon of 
shear thinning. Fluids of this type are blood, paint, ketchup etc. Different physical properties are described in literature to explain 
tangent hyperbolic fluid [1]. elucidate MHD tangent hyperbolic liquid past a nonlinear and stretchable sheet viscous dissipation as well 
as convective boundary constraints [2]. elucidate Soret and radiation effects on an unsteady flow of a casson fluid through porous 
vertical channel with expansion and contraction. [3] elucidate Soret and dufour effects on MHD micropolar fluid flow over a linearly 
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stretching sheet, through a non-darcy porous medium. [4] presents A study on free convective heat and mass transfer flow through a 
highly porous medium with radiation, chemical reaction and soret effects [5]. elucidate Non-linear density variation in micro polar 
fluid on a convectively heated elongated surface with second order slip [6]. inspected the MHD flow of tangent hyperbolic liquid with 
nanoparticles and convective boundary constraints [7]. utilizes spectral relaxation techniques to solve the problem of MHD boundary 
layer flow of tangent hyperbolic liquid past a stretchable cylinder [8]. explored the flow of hyperbolic tangent liquid past a slanting 
exponentially stretchable cylinder. Zakir and Gul [9] did analysis of Lie group on hyperbolic tangent liquid with MHD and slip 
constraints [10]. elucidate the nano liquid flow of dusty hyperbolic in two phase. The peristaltic flow of hyperbolic tangent liquid in 
three dimensional and non-uniform medium have been elucidated by Ref. [11]. 

The MHD flow of non-Newtonian liquids have gained attention in recent time owning to its important in physics and engineering. 
In the problem of heat alongside mass transport, the MHD nature of an electrically conducting liquid produces the Lorentz force. This 
force explain the usefulness of the imposed magnetism in controlling turbulence flow. However, the MHD finds applications in nuclear 
power plants, MHD accelerators, gas turbines, geophysics etc. [12] explored the MHD flow of a chemically reacting liquid by utilizing 
spectral relaxation technique [13]. discussed MHD flow of Casson liquid past a slanting penetrable stretchable surface [14]. presented 
the impact of varying Lorentz force on nanoliquid flow using analytical approach [15]. gives detailed analysis on unsteady MHD 
Eyring-Powell flow in stretchable medium. The flow of Powell-Eyring MHD nano materials have been elucidated by Ref. [16]. [17] 
inspected MHD thin film on radiative Williamson liquid past a penetrable stretching sheet. The recent study of [18] explained the 
behaviour of MHD while varying viscosity alongside thermal conductivity [2]. discussed the unsteady flow of MHD Casson liquid with 
thermal radiation [3]. discussed MHD micropolar liquid flow with Soret-Dufour influence [4]. studied heat and mass transport flow 
with MHD and thermal radiation. 

The thermal radiation and chemical reaction plays a significant role in engineering and applied science. Its industrial applications 
are found in furnace design, and glass production, plasma physics, propulsion system etc. [19] discussed the impact of thermal ra-
diation alongside nanoparticles on heat transport of Casson liquid [20]. recently examined thermal radiation alongside chemically 
reacting MHD fluids in porous channel [21]. studied heat transport of dusty hyperbolic tangent liquid with thermal radiation as well as 
magnetic field [22]. discussed thermal radiation alongside heat sources on MHD flow of viscoelastic liquid. The recent study of [23] 
elucidate unsteady problem of MHD convective flow with thermal radiation and thermophoresis influence [24]. used spectral 
relaxation technique to explain the behaviour of Walters-B liquid with thermal radiation and Soret-Dufour influence. Y. Damodhar 
Reddy et al. [25] elucidate Radiation, velocity and thermal slips effect towards MHD boundary layer flow Through Heat and Mass 
Transport of Williamson Nano fluid with Porous Medium. Souad Marzougui et al. [26] elucidate Entropy generation and heat transport 
of Cu–water nanoliquid in porous lid-driven cavity through magnetic field. 

Motivated by the above literature reviewed, this communication is concentrated on the effects of Lorentz force, Joule heating and 
viscous dissipation on unsteady flow of tangent hyperbolic liquid past a vertical plate. Study of this type has not been considered in 
literature to the best of our knowledge. Hence, we communicate this analysis owning to the practical applications in science and 
engineering such as the use of Lorentz force in MHD accelerators, chemical catalytic reactors, Soret in isotope separation etc. The flow 
PDEs are solved numerically using SRM and effects of encountered parameters are presented in graphs. 

1.1. Flow analysis 

Consider laminar, unsteady, two-dimensional flow of MHD tangent hyperbolic liquid past a semi-infinite vertical penetrable plate 
with viscous dissipation and thermal radiation. The plate is presumed to be infinite in x∗-direction while y∗-direction is normal to it (see 

Fig. 1. Physical geometry.  
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Fig. 1). The movement of the upward plate is presumed only towards the y∗-axis, hence the derivative ∂u∗

∂x∗ is forgone. Initially when the 
fluid is set into motion, the time t∗ ≤ 0 both the plate alongside the fluid maintains uniform temperature. In view of this, thermal 
radiation along with heat generation is taking into account. A magnetism of uniform strength (B0) is transversely imposed to both plate 
and flow direction. The magnetic Reynolds number is assumed to be small such that induced magnetic field is forgone. The level of 
species is assumed to be high such that Soret-Dufour effects are considered. Following [1] and the definition of Cauchy stress tensor T 
as: 

T = − pI + S (1) 

The constitutive analysis of extra tensor S of tangent hyperbolic liquid as described by Ref. [1] gives 

S= [μ∞ +(μ0 + μ∞)tanh (Γγ̇)n
]A1 (2)  

where μ∞ signifies shear rate viscosity, μ0 signifies zero shear rate viscosity, Γ signifies dependent material constant, n signifies the 
power law index, A1 signifies the first tensor Rivlin-Erickson. From the above, γ̇ gives: 

γ̇ =
̅̅̅
1
2

√

tr
(
A2

1

)
(3) 

For the sake of simplicity, consider μ∞ = 0 in equation (2) and since tangent hyperbolic liquid explains shear thinning analysis. 
Therefore, Γ det γ < 1. Utilizing the above simplifications on equation (2) to obtain: 

S= μ0[(Γγ̇)]A1 (4)  

Simplifying the above to obtain 

S= μ0[1+ n(Γγ̇ − 1)]A1 (5) 

Under the assumptions above, the flow equations along with the boundary constraints are: 

∂v∗

∂y∗
= 0 (6)  

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
= ν(1 − n)

∂2u∗

∂y∗2 +
̅̅̅
2

√
νnΓ

∂u∗

∂y∗
∂2u∗

∂y∗2 −
σB2

0

ρ u∗ + gβt(T − T∞) + gβc(C − C∞) (7)  

∂T
∂t∗

+ v∗
∂T
∂y∗

=α ∂2T
∂y∗

+
ν
cp

(
∂u∗

∂y∗

)2

−
1

ρcp

∂qr

∂y∗
+

Q0

rhocp
(T − T∞)+

DkT

cscp

∂2C
∂y∗2 +

σB2
0

ρcp
u2 (8)  

∂C
∂t∗

+ v∗
∂C
∂y∗

=D
∂2C
∂y∗2 +

DkT

Tm

∂2T
∂y∗2 − Kr(C − C∞) (9)  

subject to the constraints: 

u=U0,T = Tw +ψ(Tw − T∞)en∗ t∗ ,C=Cw +ψ(Cw − C∞)en∗ t∗ , at y∗ = 0 (10)  

u∗ → 0, T → T∞,C → C∞, as y∗→∞ (11) 

We obtain the suction velocity normal to the plate by integrating both sides of equation (1). Following the analysis presented by 
Ref. [24]; the wall suction velocity is a function of constant and time-dependent given as 

v∗ = − v0
(
1+ εAen∗ t∗) (12)  

In this analysis, the radiative heat flux is assumed to be ∂qr
∂y∗ ≫ ∂qr

∂x∗ since the heat flux diverges only towards y∗-direction. Hence, the heat 

flux ∂qr
∂y∗ dominates the fluid flow. Considering that the difference in temperature throughout the flow is small in a way that T4 is 

evaluated as a linear function of the ambient temperature T∞. Simplifying T4 in Taylor’s approach in T∞ and forgone terms of higher 
order to obtain: 

T4 ≈ 4T3
∞T − 3T4

∞ (13) 

Utilizing Rosse; and approximation, the heat flux in terms of y∗ gives 

qr = −
4σ0

3ke
∂T4

∂y∗
(14)  

here σ0 signifies Stefan-Boltzmann constant and ke signifies mean absorption coefficient. Since the Rosseland approximation is utilized 
in this analysis, the tangent hyperbolic liquid is assumed to be optically thick liquids. Linearizing the (9) above and utilizing the 
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outcome on the energy equation to obtain 

∂T
∂t∗

+ v∗
∂T
∂y∗

=α ∂2T
∂y∗

+
ν
cp

(
∂u∗

∂y∗

)2

+
16σ0

3ρcpke
T3

∞
∂2T
∂y∗2 +

Q0

rhocp
(T − T∞)+

DkT

cscp

∂2C
∂y∗2 +

σB2
0

ρcp
u2 (15) 

To simplify the flow equations in a dimensionless form, the following quantities are introduced 

u=
u∗

u0
, y =

v2
0y∗

ν , t =
v2

0t∗

ν , n =
νn∗

v2
0
, θ =

T − T∞

Tw − T∞
,φ =

C − C∞

Cw − C∞
(16) 

Utilizing the above quantities on the flow equations with the boundary constraints to obtain the following flow PDEs: 

∂u
∂t

− (1+ εAent)
∂u
∂y

=(1 − n)
∂2u
∂y2 + nWe

∂u
∂y

∂2u
∂y2 − M2u+Grθ + Gmφ (17)  

∂θ
∂t

− (1+ εAent)
∂θ
∂y

=

(
1 + R

Pr

)
∂2θ
∂y2 +Ec

(
∂u
∂y

)2

+Du
∂2φ
∂y2 + δxθ + M2Ecu2 (18)  

∂φ
∂t

− (1+ εAent)
∂φ
∂y

=

(
1
Sc

)
∂2φ
∂y2 − Krφ + So

∂2θ
∂y2 (19)  

subject to: 

Fig. 2. Effect of Weissenberg number on velocity, temperature and concentration plots.  
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u= 1, θ = 1 + εent,φ = 1 + εent, at y = 0 (20)  

u → 0, θ → 0,φ → 0, as y→∞ (21)  

where We,Gm,Ec, Sc,M,R,Du,Kr,Gr, Pr, δx and So are Weissenberg number, mass Grahof number, Eckert number, Schmidt number, 
magnetic term, thermal radiation parameter, Dufour term, chemical reaction parameter, thermal Grashof number, Prandtl number, 
heat generation parameter and Soret term. The engineering quantities of curiosity are defined as follows: 

Skin friction (Cf ) = τw
ρv0u0

. 

Nusselt number (Nu) =
− kqw

(Tw − T∞)
. 

Sherwood number (Sh) =
− Dqm

(Cw − C∞)
. 

1.2. Spectral relaxation technique 

The transformed PDEs are solved numerically utilizing SRM. SRM is an iterative approach which uses the relaxation approach of 
Gauss-seidel type to decouple and linearize the coupled equations. The linearized equations will be discretize further and solved by 
employing the Chebyshev pseudo-spectral method. All linear terms in the level of iteration will be simplified at the current iteration 
noted as r + 1 while nonlinear terms is assumed known from the previous iteration noted as r. The basic steps of the spectral approach 
are:  

(i) first decouple the nonlinear equations and linearize using Gauss-siedel techniques;  
(ii) the linearized equations are further discretize; and  

(iii) the discretized equations are solved iteratively by utilizing chebyshev pseudo-spectral technique. 

Fig. 3. Effect of Soret term on the velocity, temperature and concentration plots.  
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using the SRM on the non-linear couple PDEs (12)–(14) leads to: 

∂ur+1

∂t
=(1+ εAent)

∂ur+1

∂y
+(1 − n)

∂2ur+1

∂y2 + nWe
∂ur+1

∂y
∂2ur+1

∂y2 − M2ur+1 +Grθr + Gmφr (22)  

∂θr+1

∂t
=(1+ εAent)

∂θr+1

∂y
+

(
1 + R

Pr

)
∂2θr+1

∂y2 +Ec
(

∂ur+1

∂y

)2

+Du
∂2φr

∂y2 + δxθr=1 + M2Ecu2
r+1 (23)  

Sc
∂φr+1

∂t
=

∂2φr+1

∂y2 + Scβ
∂φr+1

∂y
− Sck2

r φr+1 + ScSr
∂2ϑr+1

∂y2 (24)  

subject to 

ur+1(0, t)= 1, ϑr+1(0, t)= 1+ εent,φr+1(0, t)= 1 + εent (25)  

ur+1(∞, t) = 0, ϑr+1(∞, t)= 0,φr+1(∞, t) = 0 (26)  

defining coefficient parameters from above equations as: 

γ =(1+ εAent), γ0,r = nWe
∂un+1

∂y
, γ1,r =Grθr +Gmφr, γ2,r =

(
1 + R

Pr

)

,

Fig. 4. Effect of Dufour term on velocity, temperature and concentration plots.  
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γ3,r =Ec
(

∂ur+1

∂y

)2

, γ4,r =Du
∂2φr

∂y2 , γ5,r =M2Ecu2
r+1, γ6,r = So

∂2θr+1

∂y2 (27)  

putting the coefficient parameters above into (17)–(19) to obtain 

∂ur+1

∂t
= γ

∂ur+1

∂y
+(1 − n)

∂2ur+1

∂y2 + γ0,r
∂2ur+1

∂y2 − M2ur+1 + γ1,r (28)  

∂θr+1

∂t
= γ

∂θr+1

∂y
+ γ2,r

∂2θr+1

∂y2 + γ3,r + γ4,r + δxθr+1 + γ5,r (29)  

∂φr+1

∂t
= γ

∂φr+1

∂y
+

1
Sc

∂2φr+1

∂y2 − Krφr+1 + γ6,r (30)  

subject to 

ur+1(0, t)= 1, ϑr+1(0, t)= 1+ εent,φr+1(0, t)= 1+ εent at y= 0 (31)  

Fig. 5. Effect of magnetic parameter on the velocity, temperature and concentration plots.  
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ur+1(∞, t) = 0, θr+1(∞, t)= 0,φr+1(∞, t) = 0, at y→∞ (32) 

The Gauss-Lobatto points given as follows is used to define the unknown functions 

ξj = cos
πj
N
, j = 0, 1, 2, ...,N; 1 ≤ ξ ≤ − 1 (33)  

here N signifies collocation points number. The physical region domain [0,∞] is simplified into [ − 1,1]. Thus, the problem is solved on 
[0, L] and not [0,∞). The transformation defined below is used to map the interval 

η
L
=

ξ + 1
2

, − 1 ≤ ξ ≤ 1 (34)  

here L signifies scaling term utilized in simplifying the boundary constraint at infinity. The initial simplification for solving equations 
23–25 are gotten at y = 0 and are considered subject to the boundary constraints (20) and (21). Hence, u0(y, t), θ0(y, t) and φ0(y, t) are 
chosen as; 

u0(y, t)= e− y, θ0(y, t) =φ0(y, t)= e− y + εent (35) 

The systematic equations 28–30 would be solved using iterative technique for unknown functions right from the initial approxi-
mations in (35). Schemes (28), (29), and (30) are iteratively solved for ur+1(y, t), θr+1(y, t) and φr+1(y, t) as r = 0,1, 2. In equations 
28–30, we discretized by utilizing Chebyshev spectral collocation approach in the direction of y while implicit finite difference 
technique is utilized in the direction of t. The finite difference scheme is employed at mid-point between tn+1 and tn. The mid-point is 
given as 

tn+1
2 =

tn+1 + tn

2
(36)  

Thus utilizing the centering about tn+1
2 to the functions, say u(y, t), θ(y, t) and φ(y, t) alongside associated derivative to obtain: 

u
(

yj, tn+1
2

)
= un+1

2
j =

un+1
j + un

j

2
,

(
∂u
∂t

)n+1
2

=
un+1

j − un
j

Δt
(37)  

θ
(

yj, tn+1
2

)
= θn+1

2
j =

θn+1
j + θn

j

2
,

(
∂θ
∂t

)n+1
2

=
θn+1

j − θn
j

Δt
(38)  

φ
(

yj, tn+1
2

)
=φn+1

2
j =

φn+1
j + φn

j

2
,

(
∂φ
∂t

)n+1
2

=
φn+1

j − φn
j

Δt
(39) 

Fig. 6. Effect of thermal radiation term on the velocity, temperature and concentration plots.  
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The spectral collocation approach requires the implementation of differentiation matrix D to evaluate the derivatives of variables 
unknown given as 

dru
dyr =

∑N

k=0
Dr

iku(ξk)=Dru, i= 0, 1, ...N (40)  

drθ
dyr =

∑N

k=0
Dr

ikθ(ξk)=Drθ, i= 0, 1, ...N (41)  

drφ
dyr =

∑N

k=0
Dr

ikφ(ξk)=Drφ, i= 0, 1, ...N (42) 

The Chebyshev spectral collocation approach is first used on (28)-(30) followed by the finite differences. 

dur+1

dt
=
[
γD+(1 − n)D2 + γ0,rD2 − M2]ur+1 + γ1,r (43)  

dθr+1

dt
=
[
γD+ γ2,rD

2 + δx
]
θr+1 + γ3,r + γ4,r + γ5,r (44) 

Fig. 7. Effect of Schmidt number on the velocity, temperature and concentration plots.  
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dφr+1

dt
=

[

γD+
1
Sc

D2 − Kr
]

φr+1 + γ6,r (45) 

subject to (20) and (21) where 

ur+1 =

⎡

⎢
⎢
⎢
⎢
⎣

ur+1(x0, t)
ur+1(x1, t)

⋮
ur+1(xNx− 1 , t)
ur+1(xNx , t)

⎤

⎥
⎥
⎥
⎥
⎦
, γ0,r =

⎡

⎢
⎢
⎢
⎢
⎣

γ0,r(x0, t)
γ0,r(x1, t)

⋱
⋱

γ0,r(xNx , t)

⎤

⎥
⎥
⎥
⎥
⎦

(46)  

θr+1 =

⎡

⎢
⎢
⎢
⎢
⎣

θr+1(x0, t)
θr+1(x1, t)

⋮
θr+1(xNx− 1 , t)
θr+1(xNx , t)

⎤

⎥
⎥
⎥
⎥
⎦
, phir+1 =

⎡

⎢
⎢
⎢
⎢
⎣

φr+1(x0, t)
φr+1(x1, t)

⋮
φr+1(xNx− 1 , t)
φr+1(xNx , t)

⎤

⎥
⎥
⎥
⎥
⎦

(47) 

From equation 40–42, the following scheme is obtained 

M1un+1
r+1 =M2un

r+1 + K1 (48)  

Fig. 8. Effect of Prandtl number on velocity, temperature and concentration plots.  
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M3θn+1
r+1 =M4θn

r+1 + K2 (49)  

M5φn+1
r+1 =M6φn

r+1 + K3 (50)  

subject to the following initial and boundary conditions: 

ur+1(xNx, tn)= θr+1(xNx, tn)=φr+1(xNx, tn)= 0 (51)  

ur+1(x0, tn)= 1, θr+1(x0, tn)=φr+1(x0, tn)= 1+ εent, n= 1, 2, ... (52)  

ur+1
(
yj, 0

)
= e− yj , θr+1

(
yj, 0

)
=φr+1

(
yj, 0

)
= e− yj + εent (53) 

The above matrices are defined as; 

M1 =
1
2
−

(
γD + (1 − n)D2 + γ0,rD2 − M2

)

2
,M2 =

1
2
+

(
γD + (1 − n)D2 + γ0,rD2 − M2

)

2  

M3 =
1
2
−

(
γD + γ2,rD2 + δx

)

2
,M4 =

1
2
+

(
γD + γ2,rD2 + δx

)

2  

Fig. 9. Effect of thermal Grashof number on the velocity, temperature and concentration plots.  
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M5 =
1
2
−

γD + 1
ScD

2 − Kr
2

,M6 =
1
2
+

γD + 1
ScD

2 − Kr
2  

2. Results and discussions 

The equations that govern the fluid model are solved numerically via SRM. The effects of physical flow parameters on dimen-
sionless concentration, velocity and temperature are presented in graphs and table. The default values of parameters are set to be We =
M = 1,So = 0.6,Du = 0.9,R = 0.5,Sc = 0.61,Pr = 7.0,Gr = 2 Gm = 2,kr = 0.3 and Ec = 0.1. 

Fig. 2 depicts the effect of Weissenberg number (We) on velocity, temperature and concentration respectively. It is noted in Fig. 2 
that, an increase in We lowers the fluid motion by decelerating the velocity profile. The Weissenberg number is equivalent relaxation 
time. Therefore, a large values of We will bring enhancement to the relaxation time to allow greater resistance to the motion of the fluid 
by reducing the momentum layer thickness. The effect of We on temperature and concentration are found to be negligible with no 
effect on the profiles. The effect of the Soret term (So) on the temperature, velocity and concentration is depicted in Fig. 3. An increase 
in the values of So is observed to enhance the velocity alongside the concentration plot. This is owning to greater thermal diffusion as 
the values of So is raised. It worth noting that a positive Soret term leads to a stabilized effect. The moment So > 0, a hike in tem-
perature will lead to degeneration in density as well as mass fraction of specie concentration. It is refers to as cooperative solutal and 
thermal gradient as the solute spreads to coled regions. On the other hand, when So < 0 a hike in temperature results to as competitive 
solutal and thermal gradient as the solute spreads to warmer regions. Hence, an elevation is noticed on the noticed on the velocity and 
concentration plot while the effect of So is negligible on the temperature plot. The outcomes in Fig. 3 is in good agreement with the 
outcome of [24]. 

Fig. 10. Effect of mass Grashof number on the velocity, temperature and concentration plots.  
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The impact of Dufour term (Du) on the temperature, velocity and concentration plot is illustrated in Fig. 4. The Dufour term 
portrays the impact of concentration gradients on the temperature as noted in equation (8). It assist the flow and also have the ten-
dency of boosting thermal energy within the layers. As depicted in Fig. 4, a large value of Du is detected to elevate the momentum as 
well as the thermal layer thickness. Hence, an increase in velocity and temperature plot is noticeable for a large value of Du. The effect 
of Du on concentration plot is negligible as shown in Fig. 4. Fig. 5 depicts the impact of the magnetic term (M) on the concentration, 
velocity and temperature plots. A degeneration in the velocity profile is noticeable for a large value of M while the effect of M is 
neglected on the temperature and concentration plots. This brings the existence of Lorentz force as the magnetic field is subjected in the 
direction of flow. This force acts not in favor of liquid velocity and thereby degenerate the velocity as well as the momentum layer 
thickness. Fig. 6 portrays the impact of the thermal radiation parameter (R) on the velocity, concentration and temperature plot. An 
increase in velocity and temperature is detected as the values of R increases. Physically, the thermal energy has great effect on the flow 
due to increase in R. As a result of this fact, the radiation has important on the flow when R ∕= 0 and R→∞. Hence, an increase in the 
thermal condition, temperature and thermal layer is noticeable for a large value of R. 

The effect of the Schmidt number (Sc) on velocity, temperature and concentration plot is depicted in Fig. 7. A large value of Sc 
causes both velocity and concentration plot to degenerate. Sc portrays the quotient of kinematic viscosity to fluid mass diffusivity; 
meaning Sc = ν/D. Practically, ν > D signifies higher Sc and vice versa. The rate of mass transport degenerates owning to the effects of 
concentration buoyancy and lead to decrease in concentration plot. Hence, the outcomes in Fig. 7 shows higher viscosity compared to 
mass diffusivity. A large value of Sc shows no impact on the temperature plot. Fig. 8 illustrate the impact of the Prandtl number (Pr) on 
the velocity, temperature and concentration plot. An increase in Pr is noticed to degenerate the velocity and temperature plot. The 
Prandtl number explains the relationship with kinematic viscosity and thermal conductivity. Pr is very useful in coordinating the 

Fig. 11. Effect of chemical reaction term on the velocity, temperature and concentration plots.  
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Fig. 12. Effect of Eckert number on the velocity, temperature and concentration plots.  

Table 1 
Numerical values for skin friction coefficient (Cf ), Nusselt number (Nu), and sherwood number (Sh) for different values of We,M,Gr,Gm,R, Pr and Ec.  

We M Gr Gm R Pr Ec Cf Nh Sh 

0.1       0.8242 0.6935 0.8633 
0.3       1.7939 0.6935 0.8633 
0.5       1.8345 0.6935 0.8633  

0.0      1.7682 0.5829 0.6335  
0.5      1.4328 0.5829 0.6335  
1.0      0.6530 0.5829 0.6335   

1.0     0.7499 0.6935 0.8100   
2.0     1.4328 0.6935 0.8100   
3.0     2.1156 0.6935 0.8100    

1.0    0.2285 0.6812 0.5179    
2.0    0.5296 0.6812 0.5179    
3.0    0.8306 0.6812 0.5179     

0.5   1.4228 0.6282 0.8335     
1.0   1.5399 0.6299 0.8335     
2.0   1.6906 0.7459 0.8335      

0.71  1.4328 0.6935 0.8633      
1.00  1.3073 0.8038 0.8633      
3.00  0.9461 1.5919 0.8633       

0.3 1.5316 0.5651 0.7968       
0.6 1.6306 0.4365 0.7968       
0.9 1.7295 0.3079 0.7968  
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thickening of momentum alongside thermal layers in heat transport analysis. Physically, any fluid with higher Pr possesses much 
viscosity which helps to lessens the hydrodynamics and thermal layer thickness by reducing the velocity and temperature plot. Thus, Pr 
is a good parameter for increasing the liquid flow rate of cooling. However, if Pr < 1 the liquid is highly conducive. The effect of Pr on 
concentration is detected to be negligible. 

Fig. 9 illustrate the impact of thermal Grashof number (Gr) on concentration, temperature and velocity plots. An upward increment 
in the velocity plot is detected as the value of Gr increases. In view of this, the thermal Grashof number acted like a buoyancy force on 
the fluid velocity alongside the hydrodynamic layer thickness. Buoyancy force portrays the upward liquid force exerted on the liquids. 
Experimentally, pressure hike the depth. Furthermore, the bottom pressure of the displaced object becomes very much than the force 
posses at the top. This implies that a net vertical force which elevate the velocity along with entire hydrodynamic layer thickness. The 
effect of Gr on temperature and concentration is negligible as shown in Fig. 9. The impact of the mass Grashof number (Gm) on the 
velocity, concentration and temperature plots is illustrated in Fig. 10. A large value of Gm is detected to hike the velocity plot and 
negligible on the temperature as well as concentration plot. This indicate that the mass Grashof number behaves like a mass buoyancy 
effect. In Fig. 11, an incremental value of chemical reaction parameter (kr) is discovered to degenerate the velocity alongside the 
concentration plot. Practically, the chemical reaction term alters the specie concentration by degenerating the solutal layer thickness. 
This indicate a destructive reaction on the fluids flow regime. The impact of Eckert number (Ec) is detected to elevate the velocity 
alongside the temperature plot in Fig. 12. Physically, the Eckert number is derived from the viscous dissipation added to the energy 
equation (8). Eckert number portrays the relationship between the enthapy in the flow and its kinetic energy. A high values of Ec 
elevate the shear forces in the liquids. Experimentally, heat energy is stored in the fluids owning to frictional heating and brings 
elevation to the thermal and hydrodynamic layer. 

Table 1 shows the computational values for skin friction coefficient (Cf ), Nusselt number (Nu) and Sherwood number (Sh) for 
encountered flow parameters. Increase in We is found to enhance the local skin friction and negligible on Sherwood and Nusselt 
number. A higher values of M is detected to degenerate the local skin friction. An incremental values of Gr and Gm is detected to hike 
the skin friction and negligible on the Nusselt and Sherwood number. An increase in R enhances the hydrodynamic and thermal layer 
thickness by enhancing skin friction and Nusselt number. A higher value of Pr is found to lessens the skin friction and elevate the 
Nusselt number. On the other hand, a higher value of Ec is found to hike the skin friction and lessens the Nusselt number. An increase in 
the values of Du and So is found to accelerate the skin friction while both effects are alternate on the Nusselt and Sherwood number. An 
increase in the values of Sc and kr is found to decelerate the skin friction and elevate the Sherwood number. The skin friction and 
Nusselt number is noticed to grow drastically with an increase in the heat generation parameter (see Table 2). 

3. Conclusion 

Analysis of unsteady MHD tangent hyperbolic liquid flow past a semi-infinite upward plate with Joule heating and influences of 
Soret-Dufour, viscous dissipation and thermal radiation has been scrutinized numerically. The Rosseland diffusion model has been 
employed on the simplified coupled nonlinear PDEs to check the behaviour of radiative heat flux. The outcomes to the present analysis 
is gotten by utilizing SRM. SRM is expressed in term of Lagrange polynimials interpolation employed to decouple systems of PDEs by 
employing relaxation approach. The following final remarks are drawn from the outcomes:  

(i) An incremental values of Weissenberg number is found to degenerate the velocity profile;  
(ii) An increase in Soret term is found to elevate the velocity alongside the concentration profile;  

(iii) The velocity alongside the temperature plot is found to increase as a result of increasing the Dufour term;  
(iv) The transverse magnetism is found to increase the strength of the Lorentz force as the velocity profile degenerates; and  
(v) The velocity alongside the concentration plot is found to degenerate owning to increase in the Schmidt number. 

Table 2 
Numerical values for skin friction coefficient (Cf ), Nusselt number (Nu), and sherwood number (Sh) for different values of Du, Sc, kr, So and δx.  

Du δx Sc kr So Cf Nh Sh 

0.2     1.4028 0.8299 0.5179 
0.4     1.5532 0.5559 0.5179 
0.6     1.6736 0.4183 0.5179  

1.0    0.2051 2.4531 0.4121  
2.0    0.5934 3.1412 0.4121  
3.0    1.0241 3.5617 0.4121   

0.5   1.6072 0.3582 0.7169   
1.0   1.4265 0.3582 0.8701   
2.0   1.2463 0.3582 1.1372    

0.1  1.2533 0.9918 1.0904    
0.3  0.6173 0.9918 1.6939    
0.5  0.3992 0.9918 1.7030     

0.0 1.5606 0.9358 0.6993     
0.5 1.6885 0.9358 0.5353     
1.0 1.9443 0.9358 0.2074  
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The outcomes of this study would be useful in drilling operations, polymer engineering and bioengineering. Owning to the MHD 
nature of the liquid, this outcomes is of interest in controlling magnetized metal welding and coating of metals. The outcomes of this 
study would also be useful in separating isotopes. 
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