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Abstract: The rapidly growing global burden of cancer poses a major challenge to public health and
demands a robust approach to access promising anticancer therapeutics. In parallel, nanotechnology
approaches with various pharmacological properties offer efficacious clinical outcomes. The use of
new artificial variants of nanosponges (NS) as a transporter of chemotherapeutic drugs to target
cells has emerged as a very promising tool. Therefore, in this research, ethylcellulose (EC) NS were
prepared using the ultrasonication assisted-emulsion solvent evaporation technique. Withaferin-A
(WFA), an active ingredient in Withania somnifera, has been implanted into the nanospongic framework
with enhanced anticancer properties. Inside the polymeric structure, WFA was efficiently entrapped
(85 ± 11%). The drug (WFA) was found to be stable within polymeric nanosponges, as demon-
strated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC)
studies. The WFA-NS had a diameter of 117 ± 4 nm and zeta potential of −39.02 ± 5.71 mV with a
polydispersity index (PDI) of 0.419 ± 0.073. In addition, scanning electron microscopy (SEM) revealed
the porous surface texture of WFA-NS. In vitro anticancer activity (SRB assay) results showed that
WFA–NS exhibited almost twice the anticancer efficacy against MCF-7 cells (IC50 = 1.57 ± 0.091 µM),
as quantified by flow cytometry and comet tests. Moreover, fluorescence microscopy with DAPI
staining and analysis of DNA fragmentation revealed apoptosis as a mechanism of cancer cell death.
The anticancer activity of WFA-NS was further determined in vivo and results were compared to
cisplatin. The anticancer activity of WFA-NS was further investigated in vivo, and the data were
consistent to those obtained with cisplatin. At Day 10, WFA-NS (10 mg/kg) significantly reduced
tumour volume to 72 ± 6%, which was comparable to cisplatin (10 mg/kg), which reduced tumour
volume to 78 ± 8%. Finally, the outcomes of molecular modeling (in silico) also suggested that WFA
established a stable connection with nanosponges, generating persistent hydrophobic contacts (polar
and nonpolar) and helping with the attractive delayed-release features of the formulation. Collec-
tively, all the findings support the use of WFA in nanosponges as a prototype for cancer treatment,
and opened up new avenues for increasing the efficacy of natural product-derived medications.
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1. Introduction

Natural chemicals produced from plants have historically been a significant source for
medical drug discovery, and have produced numerous leads for the delivery of anticancer
medicines [1]. Natural products or natural compounds obtained directly from plants
account for about half of the chemotherapeutic biomolecules authorized by the Food and
Drug Administration (FDA) [2]. The scientific and research community is increasingly
focused on naturally produced compounds, which are believed to have less harmful side
effects than contemporary therapeutic methods [3].

The plant genus Withania, which belongs to the Solanaceae (nightshade) family, has
been utilized in traditional medicine in Southeast/Southwest Asia for centuries, includ-
ing in the Unani and Ayurvedic systems, among others. Known by many other names,
including Ashwagandha, Indian Winter cherry, and Indian Ginseng, Withania somnifera is
one of the most prominent plants that is widely used to improve both physical and mental
health [4,5]. Among various chemical constituents of the Withania genus, the withanolides
are a group of naturally occurring C28-steroidal lactone triterpenoids, especially Withaferin
A (WFA), the most potent withanolide found in Ashwagandha, and is responsible for a
range of health-promoting actions on the body [6]. The anti-cancer effects of WFA have
been shown in a wide range of cancer cells, including glioblastoma, neuroblastoma, mul-
tiple myeloma, leukemia, as well as breast, colon, ovarian, head and neck cancers [7–10].
The anti-tumor activity of WFA is not completely understood, but it appears to involve
a variety of polypharmaceutical effects, including targeting cytoskeleton structure and
the proteasome system, regulating the activity of heat shock proteins, reactive oxygen
species (ROS)-mediated anticancer activity, inhibition of nuclear factor kappa B (NF-kB)
and oncogenic pathways [11–13].

Cancer is a major public health problem worldwide, and is the second leading cause
of death after ischemic heart diseases worldwide [14]. Due to ongoing demographic and
epidemiological transitions, the global burden of cancer is rapidly increasing [15]. Asia
constitutes roughly 60% of the world’s population (4.5 billion) and is responsible for nearly
one half of new cancer cases and more than one half of cancer deaths worldwide [16]. The
increase in the regional burden of cancer is largely a result of socioeconomic growth and the
increasing size and aging of the population [17,18]. Among all cancer types, breast cancer
is the fourth most common of all cancers, and occurs predominantly in women [19]. The
incidence of breast cancer is increasing not only in developed countries, but this burden is
substantially shifting to vulnerable populations in developing countries as well [20].

Therefore, researchers are confronted with a major challenge: how to deliver drugs to
particular locations with pinpoint accuracy [21]. Recent advancements in nanotechnology
have made it possible to synthesize and manipulate materials on the nanoscale [22]. One
of these cutting-edge nanomaterials is the nanosponge (NS), which has holes of nanoscale
dimensions [23]. The possible applications of nanosponges include medication delivery,
the transport of biocatalysts and gases, the immobilization of enzymes, and the adsorption
of harmful chemicals [24]. Nanosponges may be used to deliver both lipophilic and
hydrophilic medicines [25]. Most drugs have porous exterior surfaces that allow for
a regulated release of the medication [26]. The increased solubility and bioavailability
of the medication lowers the adverse effects and allows for more precise control over
drug distribution [27]. Currently, the utilization of nanosponge drug delivery systems in
chemotherapy has emerged as one of the most promising areas of life science [28].

Therefore, in view of the aforementioned findings, we showcase the formation of WFA-
encapsulated nanosponges exhibiting a strong effect on the suppression of breast cancer
growth in comparison to cisplatin. The WFA nanosponges have been fully characterized
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using various techniques. In vivo and in silico methods have also reinforced the in vitro
results. Collectively, the proposed approach will reduce the dosage requirement of WFA,
resulting in the minimization/elimination of associated side effects.

2. Results and Discussion
2.1. Physical Characterization
2.1.1. Differential Scanning Calorimetric (DSC) Analysis

The DSC thermogram offers useful details about the thermal properties, structural
variability, and interactions (if any) between the therapeutically active agent and excip-
ients [29]. To find compatibility among WFA and excipients (EC and PVA), the DSC
thermogram was registered for pure WFA and WFA-NS. The DSC thermogram of pure
WFA showed three peaks (Figure 1A). The first high corresponded to an endothermic
peak (∆Hg = 17.28 J/g) with a 73 ◦C glass transition temperature (Tg). The second peak
indicated an exothermic reaction (∆Hc = 17.28 J/g) with a crystallization temperature (Tc)
of 148 ◦C. The third peak exhibited an endothermic reaction with a distinct melting point
peak (Tm = 253 ◦C). Due to the absence of a melting point peak for WFA in WFA-NS, it
was hypothesized that WFA will turn from crystalline to the amorphous or disordered
crystalline phase within NS cavities. This circumstance verified the transformation of WFA
from its crystalline to the amorphous state in NS [7]. Because of a rise in internal energy and
a reduction in thermodynamic stability, this conversion may enhance the solubilization of
the medication without affecting its physicochemical or pharmacological properties [30,31].
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2.1.2. Fourier Transform Infra-Red (FTIR) Spectroscopic Analysis

Figure 1B depicts the Fourier transform infrared spectra of WFA, Free NS and WFA-NS.
It was discovered that the unique band produced by O-H stretching in the WFA spectrum
was located at 3387.14 cm−1, and O-H stretching caused a significant peak (3418.21 cm−1)
in the WFA and NS spectra as well. A strong peak was detected in the WFA at 2891.07 cm−1

as a result of C–H alkane stretching vibrations, and a similar peak was also seen in the
WFA-NS at 2890.62 cm−1. Further within the functional group region, the WFA spectrum
revealed a peak at 2769.51 cm−1, which was also seen in the WFA-NS spectrum, caused
by C=O stretching (2764.18 cm−1). When the WFA peak (1507.15 cm−1) of C–H alkane
bending vibrations was moved to a higher wavenumber (1581.24 cm−1) in WFA-NS, it
was discovered that a redshift had occurred. In addition to the bending vibration of the
C–H alkane group at 1433.69 cm−1, a bathochromic change was observed in the spectrum
of WFA–NS (1449.7 cm−1). Having an alkoxy group (C–O) in the fingerprint region
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produced a peak at 1145.21 cm−1 in the spectrum of WFA. This peak was also present
with a minor change in the spectrum of WFA-NS at 1131.69 cm−1, indicating that the
alkoxy group was present in the fingerprint area. As a result, the functional groups of WFA
remained unchanged, implying full connection between pure WFA and its NS counterpart
Furthermore, the Free NS (ECNS) spectrum revealed characteristic peaks (3481.32, 3244.96,
and 3217.28 cm−1) that were also observed in the WFA-NS spectrum with a minor shift,
indicating that there was no chemical interaction between the polymer (EC) and the drug
(WFA).

2.1.3. Scanning Electron Microscopic (SEM) Analysis

Other than surfactants, the additives in NS may be critical in enhancing the physical
characteristics of the substance. PVA has been the most extensively studied additive that is
used to enhance the NS porous structure [32]. The porous nanostructure of NS (Figure 2A)
produced through the ultrasonication assisted-emulsion solvent evaporation technique
reinforced the earlier findings [33–35].
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Figure 2. Scanning electron microscopic analysis of WFA-NS (A), WFA release from NS (B), and hydrodynamic diameter of
WFA-NS (C).

2.1.4. Estimation of Nanosponges Hydrodynamic Diameter

In the prepared WFA-NS, a reasonable hydrodynamic diameter of 117 ± 4 nm
(Figure 2C) and a high zeta potential value were found, as well as a credible estimate
of the polydispersibility index (0.419 ± 0.073), as reported in Table 1. The zeta potential
of dispersed particles is controlled by their Brownian motion, and larger zeta potential is
linked with their higher dispersion stability [36]. The electrostatic stabilization on the NS
surface was confirmed by the zeta potential measurements, which revealed a considerably
negative value of −39.02 ± 5.71 mV [37]. A PDI represents particle size distribution within
a sample that may be used to evaluate whether the dispersion is homogenous (≤0.3) or
heterogeneous (>0.3) [38,39]. The produced WFA-NS had a PDI value within an acceptable
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range (0.389 ± 0.091), and if it surpassed 0.7, the DLS research could not be conducted
owing to the high degree of variability in the size distribution [40].

Table 1. WFA-NS physical and kinetic characteristics (Mean ± S.D, n = 3).

Analysis Results

Diameter hydrodynamic 117 ± 4 nm
Entrapment Efficiency (%) 85 ± 11

Zeta Potential (mV) −39.02 ± 5.71
Poly dispersity Index(PDI) 0.389 ± 0.091

Zero-order 0.8734
First-order 0.9867

Higuchi Model 0.9806
Korsemeyer Peppas, n value 0.9713, 0.324

2.1.5. Drug Release Kinetics Studies

Figure 2B illustrates the findings of WFA release from NS in a regulated manner. To
further understand the process of WFA release from NS, the collected data were correlated
into kinetic models using the DDsolver program, which was then evaluated. Table 1
displays the values of the regression coefficients for each model. WFA was shown to
be released over a long period in an in vitro release trial (12 h). Moreover, the evidence
of in vitro release was examined utilizing pharmacokinetic designs [41]. A regression
model (R2) containing 0.9806 indicated that drug particles were equally distributed in
the NS matrix, which was more consistent with the Higuchi model than the previous
findings [42,43]. It was discovered that the regression coefficient (R2) values derived from
first-order (0.9867) and Korsmeyer-Peppas (0.9713, n = 0.324) models demonstrated dose-
dependent release behavior, which was substantiated by the Fickian type of diffusion [44].

2.1.6. Entrapment Efficiency (EE)

According to the findings described in Table 1, WFA demonstrated a good entrapment
efficiency (85 ± 11%), suggesting that the drug was adequately encased in the NS. Typically,
EE of a drug needs adjustment of several formulation parameters to keep the medication
in a sponge-like structure.

Since WFA is a water-insoluble drug, it exhibits increased drug-polymer interaction
and miscibility in organic solvent (DCM), ensuring maximal entrapment in nanocarriers.
This finding was consistent with the previous report, indicating that EC nanosponges
may be suitable for encapsulating the hydrophobic drug WFA [45]. On the other hand,
boosting the entrapment effectiveness of nanosponges by increasing EC content enhanced
the solution’s viscosity. Increased viscosity led to the creation of a thick polymer network,
which prevented the medication from escaping the matrix [35,46].

2.2. Pharmacological Characterization
2.2.1. Anticancer Activity (SRB Dye Assay)

The total protein generated when cells were treated with putative anticancer drugs
was assessed using a very precise calorimetric technique. A negative charge fluorescent
dye, sulforhodamine B (SRB), is a water-soluble luminous dye that electrostatically binds
to proteins when the pH of the medium is significantly lowered. It can readily connect with
cells that have been fixed with trichloroacetic acid (TCA) [47]. A bright color is produced
by the SRB dye when it binds solely to intracellular proteins, and the color is proportional
to the quantity of protein present in the cell. SRB performance was shown to be dependent
on the concentration, with the weakest activity (less color) observed at higher concentration
levels and the greatest activity (more color) detected at lower inhibitor concentrations [48].

The initial screening revealed that WFA and WFA-NS had an IC50 of 3.41 ± 0.134 µM
and 1.57 ± 0.091 µM, respectively, whereas empty NS was inert (Figure 3A) [49]. Our
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results were consistent with earlier research, emphasizing the importance of medication
delivery through NS in contrast to its pure form [50,51].
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2.2.2. DAPI Staining

In DAPI staining of WFA-NS treated MCF-7 cells, apoptotic bodies with denatured
cell membranes were seen, whereas untreated MCF-7 cells revealed no aberrant signals
(Figure 3B,C respectively). DAPI staining is a qualitative study that identifies morphologi-
cal alterations in the cell nucleus, which can help in the detection of apoptosis [36]. The
nuclei of the untreated MCF-7 cells were consistent in size and shape with smooth edges.
However, DAPI staining revealed fragmented and contracted nuclei in the treated cells.
Our findings were consistent with previous studies [37].

2.2.3. Genotoxicity Assessment

To validate any symptoms of DNA damage in a quantitative manner, single-cell gel
electrophoresis (SCGE) or the comet assay were utilized [29]. A total of 100 cells per
slide were counted and analyzed on comet tail length. The amount of DNA damage was
determined by measuring the difference in genetic material between the nucleus (comet
head) and the tail [30,31]. In the alkaline comet experiment, the percentage of DNA in
the tail of WFA-NS was 56.70%, which was comparable to 61.38% in the tail of the comet
treated with standard H2O2 (Figure 4A,B) [52].
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2.2.4. DNA Fragmentation

The results of DNA fragmentation analysis were used to back up the findings of the
staining procedures. DNA from treated MCF-7 cells was run on a 1% agarose gel and
evaluated using a gel documentation system. The findings revealed that the chemicals
tested produced DNA fragmentation in MCF-7 cells. To assess the degree of fragmentation
with test chemicals, a 1 kb DNA ladder was utilized as a marker, and cisplatin was used as
a benchmark drug.

The pure WFA and WFA-NS revealed a fragmented DNA pattern. WFA-NS induced
DNA fragments that were cleanly separated and showed no evidence of necrosis while
pure WFA did not initially yield obvious fragments, but later on a clear fragment was seen.
The presence of DNA fragments in sample lanes proved that cancer cells died as a result of
WFA-induced apoptosis (Figure 4C).

2.2.5. Flow Cytometry Analysis

Apoptosis is a biological suicide operation that clears the body of unwanted cells.
Membrane modification, chromatin material shortening, and the formation of apoptotic
bodies are all morphological changes seen in apoptotic cells [35].

Following prior qualitative studies that confirmed cancer cell death because of apop-
tosis, a flow cytometry study was performed to quantitatively validate the earlier results.
Pure WFA and WFA-NS produced a significant amount of apoptotic cell death in treated
MCF-7 cells (31.19%), while pure WFA caused only 20.96% apoptosis (Figure 4E,F) (p < 0.05).
In MCF-7 cells treated with WFA-NS, the higher proportion of necrotic cells may be ascribed
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to better drug penetration or a longer duration of action induced by the controlled-release
of NS formulation [53,54].

2.3. Animal Studies
In Vivo Studies

Thus far, we have shown that WFA-NS may substantially enhance the cytotoxicity
of WFA against tumour cells in vitro. To support our findings, an in vivo experimental
methodology was developed using Swiss Webster female albino mice, and the results
were compared to cisplatin, a standard anticancer drug (Figure 5E). Table 2 reports the
data related to the growth of tumor mass in experimental and comparison groups, which
includes pure WFA, WFA-NS, and cisplatin (positive control) [55].
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Figure 5. Molecular details of nanosponges assembly (A,B). The single polyvinyl alcohol (yellow stick) molecule mediates
hydrogen bonding with the ethylcellulose (magenta sticks) (A). The results of molecular modeling studies, the bottom
panels showed the MS–MS surface view of nanosponges (C,D). In vivo anticancer studies conducted on mice (E) with
10 mg/kg of Cisplatin (•) 10 mg/kg of pure WFA (�), 2 mg/kg of WFA-NS (N), 5 mg/kg of WFA-NS (H), and 10 mg/kg of
WFA-NS (�). The WFA-NS formulation exhibited a substantially lower relative tumor volume than free WFA (p < 0.05).

Table 2. The numerical data provides percent reduction in tumor volume after giving doses (mg/kg
of a mouse).

Percent Reduction in Tumor Volume

Cisplatin (C)
10 mg/kg

WFA (D)
10 mg/kg

WFA-NS (E)
2 mg/kg

WFA-NS (F)
5 mg/kg

WFA-NS (G)
10 mg/kg

DAY0 9 ± 3 6 ± 1 1 ± 1 3 ± 1 4 ± 1
DAY2 12 ± 5 7 ± 2 5 ± 3 8 ± 2 14 ± 2
DAY4 17 ± 3 13 ± 8 10 ± 6 12 ± 3 21 ± 7
DAY6 41 ± 2 32 ± 11 16 ± 7 19 ± 6 45 ± 11
DAY8 59 ± 10 48 ± 7 22 ± 11 35 ± 7 61 ± 8

DAY10 78 ± 8 57 ± 12 31 ± 9 48 ± 11 72 ± 6

As anticipated before, groups A and B of the tumor-bearing mice administered WFA
and free NS failed to inhibit tumor development. Treatment groups C and D, which
contained cisplatin and pure WFA, respectively, showed a 78 ± 8 and 57 ± 12% reduction
in tumor volume. These did not contradict the previously published data comparing the
anticancer potential of WFA to that of cisplatin [56–58]. Several dilutions of WFA-NS were
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prepared with WFA concentrations that corresponded to 2, 5, and 10 (mg/kg) of mice
in each of the E, F, and G treatment groups in order to assess the efficacy of a delivery
mechanism in comparison with pure medicine (WFA). At Day 10, the intervention group G
had a decrease in tumor volume to 72 ± 6%, which was 15% greater than the pure WFA
therapy group (57.12%) at the same time. Our findings support prior research efforts that
explain the importance of using a nano-drug delivery method to provide a rapid treatment
response in a variety of disorders [59–61].

2.4. In Silico Studies
Molecular Docking Studies

Molecular docking studies were carried out to illustrate the structure of the WFA-NS
by utilizing the default docking protocol in MOE [62]. Initially, the structure of WFA
was developed. The lowest energy models were analyzed visually to comprehend the
molecular basis of interaction between constituents of nanosponge assembly. Figure 5C,D
demonstrated an MS–MS surface diagram of the WFA-NS complex. The hydrophilic
contribution by the hydroxyl group of WFA and the polar head of ethylcellulose was laid
at the poles of the nanosponges. Figure 5A,B exhibited the details of molecular interactions
stabilizing the complex. A hydrogen bond was seen between polyvinyl alcohol and
ethylcellulose. The hydroxyl groups of the polyvinyl alcohol molecule depicted hydrogen
bonds with ethylcellulose that had a long aliphatic chain draped against the steroid ring
system. This observation was in line with the previous report [63]. WFA embedded in
the nanosponges has disclosed anticancer and cytotoxic activity for an extended period
in comparison to pure WFA. Molecular modeling revealed that the WFA created a stable
assembly with the nanosponges. It is speculated that in an aqueous environment, these
interactions between drugs and polymeric surfactants lead to sustained hydrophobic
contacts and delayed the release of the drug.

3. Materials and Methods
3.1. Preparation of Withaferin-A Loaded Nanosponges

WFA-loaded nanosponges were prepared by ultrasonication assisted-emulsion sol-
vent evaporation technique (ESE-Tech) [64,65]. Briefly, 200 mM ethyl cellulose (EC) and
100 mM WFA were dissolved in dichloromethane (20 ML) to make the organic phase. An
aqueous phase containing 2 mM PVA was prepared separately in 50 mL of deionized water.
Subsequently, the organic phase was emulsified in a dropwise manner into the aqueous
phase over 15 min (50 s on-off cycles) using sonication at an elevated frequency (>2.5 kHz).
PVA was employed to prevent the NS from clumping. Furthermore, the dispersion was
stirred at 1000 rpm for 24 h using a thermostatically controlled magnetic stirrer. The
WFA-NS were then rinsed three times with ultra-pure water to eliminate any adsorbed
PVA. Finally, the WFA-loaded NS were extracted by centrifugation (40,000× g, 20 min) and
stored at 4 ◦C until further use.

3.2. Characterization of Withaferin-A Loaded Nanosponges
3.2.1. Differential Scanning Calorimetric (DSC) Analysis

Thermal testing of the pure WFA, free NS and WFA-NS was performed to show the
physical stability of the WFA in NS. The sample was heated at a rate of 10 ◦C/min with
a constant nitrogen supply (2 mL/min) to avoid oxidation. After heating each sample
to 300 ◦C, the DSC scan was performed on each sample and tested against an empty
aluminum pan on DSC 214 Polyma (NETZSCH Instruments, Burlington, VT, USA).

3.2.2. Fourier Transform Infra-Red (FTIR) Spectroscopic Analysis

FTIR spectra of WFA, free NS and WFA-NS were obtained using KBr disk technique.
The test sample was mixed with KBr powder to generate the KBr disc. The IRTracer-100
FTIR spectrophotometer ((Shimadzu IRPrestige-21, Tokyo, Japan) was used to measure the
FTIR spectra (4000 to 400 cm–1).
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3.2.3. Scanning Electron Microscopic (SEM) Analysis

The SEM analysis was performed on a Hitachi S-4700 (Houghton, MI, USA) with
10–20 kV acceleration voltage. Using ethanol, the sample was rapidly disseminated and
applied on freshly cleaned silicon wafers to dry. Likewise, the specimens were gold-sputter-
coated in order to improve the conductivity of the material.

3.2.4. Estimation of Nanosponges Hydrodynamic Diameter

The size distribution of NS was determined by using dynamic light scattering. For
DLA investigation, 5 mg of every lyophilized formula was suspended in ultra-pure water.
The zeta potential was measured using the Malvern Zetasizer Nano ZS90 (Cambridge, UK).

3.2.5. Study of Drug Release Kinetics

A diluted WFA-NS (100 mM WFA) in PBS (10 mL, pH 7.4) was transferred to a dialysis
bag, which was submerged in PBS (500 mL) with lysozyme (1.2 µg/mL) to emulate the
in vivo environment. The trial included a magnetic stirrer (75 rpm, 37 ◦C). The spectropho-
tometer detected the release of WFA at a predetermined time and the collected data were
analyzed using release kinetic models to ascertain the inside mechanics of WFA release
from NS with the help of the DDsolver tool.

3.2.6. Entrapment Efficiency

For each formulation, the entrapment efficiency (EE) was determined by using the
previously reported technique, with minor modifications [66]. WFA-NS formulation (2 mL)
was infused onto a dialysis membrane and spun for 1 h at room temperature on a magnetic
stirrer (100 rpm). A UV-Visible spectrophotometer was used to measure the absorbance
of the sample, which was determined to be 218 nm. To compute the EE, the following
equation was used:

Entrapment Efficiency (% EE) = (WFA entrapped in NS)/(WFA added in NS) × 100 (1)

3.2.7. Anticancer Activity (SRB Dye Assay)

The anticancer activity of pure WFA and WFA-NS was tested on human breast cancer
cells (MCF-7 cells) using the sulforhodamine B (SRB) assay [67]. The cells were seeded in a
96-well plate (1 × 104 cells per well) and allowed to develop for 24 h. To test the anti-cancer
effects, different quantities of WFA and WFA-NS were tested. Free NS and cisplatin were
used as negative control and standard anticancer agent, respectively. Following a 24 h
incubation with the materials, the cells were fixed for 1 h using 40% ice-cold trichloroacetic
acid (TCA). Subsequently, the cells were rinsed with PBS and allowed to dry in the open
air. Fixed cells were stained with SRB dye at 0.4% (w/v) for 30 min at room temperature.
Finally, each 96-well was added 100 µL of 10 mM Tris Base (pH 10.5), which was gently
swirled for 5 min. The microplate absorbance reader was used to measure the absorbance
at 565 nm using ELISA microplate reader ELx808™ (BioTek instruments, Winooski, VT,
USA). Prism 5.0 was used to visualize the IC50 values (µM).

3.2.8. DAPI Staining

The cells were grown in a two-well sterile chamber slide with 2 × 104 cells per well.
The growing cells were cultured with pure WFA and WFA-NS (dosage ≥ IC50) for two
treatments. Triton X-100 solution was used to repair the cells (0.1%). After staining the cells
with DAPI (10 µg/mL), they were allowed to rest in the dark for 10 min before repeating
the process. The cells were then incubated in DAPI (10 µg/mL) for 10 min. The unabsorbed
DAPI has washed away with PBS during multiple rinses. The cells were observed at certain
wavelengths using a fluorescent microscope (Nikon Eclipse-Ni, Minato, Tokyo, Japan). The
wavelengths for emission and excitation were 461 and 358 nm, respectively [68].
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3.2.9. Genotoxicity Assessment

A comet test was conducted for detecting double-strand DNA (dsDNA) breaking
using a previously established protocol [69,70]. When MCF-7 cells were treated with WFA-
NS, a suspension of 2 × 104 cells/well was prepared. Comet slides were coated with a
cell suspension that had been diluted with 1% low-melting-point agarose (LMPA). The
slides were put in a lysis solution (10 mM Trizma-X, 10% DMSO, 2.5 M NaCl, 1% Triton-X,
100 mM EDTA) at pH 10. The samples were charged in horizontal electrophoresis tanks
holding a buffer solution with pH 13 for the time-course experiment (300 mM NaOH and
1 mM EDTA). The DNA was untwisted inside an alkaline buffer. Thereafter, the slides
were cleaned thoroughly with methanol and air-dried. CaspLab 1.2.3b2 tools were used to
assess the comet’s DNA damage.

3.2.10. DNA Fragmentation

The inhibitors were added on separate wells for 48 h according to their IC50 values.
After trypsinization, the cells pellet was then re-dissolved in a DNA extraction buffer
(10 mM Tris (pH 7.4), 10 mM EDTA, 0.5% Triton X-100) and incubated at 4 ◦C for 10 min.
The mixture was spun in a centrifuge for an additional 30 min to facilitate the breakdown
of the RNA molecule. When the lysate was treated with proteinase K solution at 50 ◦C, the
sample degraded rapidly. The solution was treated with 0.5 M NaCl and 50% IPA and kept
refrigerated overnight. DNA was solubilized using the Tris-EDTA buffer. One well had a
1 kb DNA ladder, whereas cisplatin was used as the reference drug. The control and test
wells were kept equally on the gel. All DNA samples were electrophoretically examined
and stained with ethidium bromide to detect fragmented DNA under UV irradiation [71].

3.2.11. Flow Cytometry Analysis

WFA, WFA-NS, and cisplatin were incubated separately with MCF-7 cells (1 × 106)
for 24 h. Cells were trypsinized using the trypsin-EDTA solution at 37 ◦C for 5 min. The
cell culture medium was gently introduced to avoid cell clumping. After being treated
with 500 µM H2O2, the cells were reconstituted in 100 µL of binding buffer for 15 min.
Subsequently, the cells were treated with annexin-V-FITC dye for 15 min before being
placed in a dark environment. The pellet was further resuspended in 200 mL annexin-V
binding buffer and stained with 5 µL of propidium iodide. The cells were tested using FACS
with a 600 nm emission filter for PI and a 545 nm filter for annexin-V-FITC. Next, 10,000 cells
were collected and then examined using the CytoFLEX Flow Cytometer (Beckman Coulter
Life Sciences, Brea, CA, USA) [72].

3.2.12. In Vivo Studies

Adult female albino BALB/c mice (25–30 g) were housed at the Faculty of Pharmacy,
Bahauddin Zakariya University, Multan, Pakistan. The mice were housed at 24 ◦C with a
12 h light and dark cycle and were given normal rat chow with unrestricted water supply.
Five animals were housed in a steel mesh cage to minimize the discomfort caused by
overpopulation. Animals were treated following the rules established by the Faculty of
Pharmacy, Bahauddin Zakariya University, Multan’s Ethics Committee on the Care and
Use of Animals in Scientific Research (50/PHP/20). The mice were split into seven groups
of five mice each at random. A total of 4 × 106 MCF-7 cells were injected into the flanks
of female mice from Groups B-G using an i.p injection technique. The tumor was left to
develop to approximately 50 mm3 [55]. The treatment and control groups are summarized
in Table 3.
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Table 3. The anticancer effects of WFA, WFA-NS, and cisplatin were shown in both experimental and
comparison groups of mice.

Group Type of Treatment

A Water for injection in cancerous mice (WFI)
B Free nanosponges (NS) for cancerous mice
C Cancerous mice were given 10 mg/kg cisplatin
D WFA (10 mg/kg) treated cancerous mice
E WFA-NS (2 mg/kg) treated cancerous mice
F WFA-NS (5 mg/kg) treated cancerous mice
G WFA-NS (10 mg/kg) treated cancerous mice

From the second day following MCF-7 cell administration, the tumor volume was
measured daily. The following equation was used to quantify the tumor volume of the mice:

Tumor volume = (Length × Width2)/2 (2)

While length is the longest dimension and width is the dimension that is perpendicular
to the length. To evaluate the anticancer efficacy of each formulation, the tumor inhibition
rate (TIR) was computed.

TIR (%) = [(Tumor weight of sample group)/(Tumor weight of the control group)] × 100 (3)

3.2.13. Molecular Docking Studies

The structures of PVA, ethycellulose, and WFA were obtained from PubChem. Briefly,
the canonical SMILES were obtained and were converted to a three-dimensional structure
using the Builder module in MOE [62]. The partial atomic charges were calculated, followed
by energy minimization according to a steepest–descent protocol using the Merck Molecular
Force Field (MMFF94X) in MOE with a Root Mean Square gradient of 0.01 Å. By the
stoichiometric calculation of nanosponges, a single molecule of polyvinyl alcohol and two
molecules of ethylcellulose were used for calculation. Furthermore, two molecules of WFA
was docked against a single nanosponge assembly. The resulting poses were analyzed
visually. All graphics were extracted using MOE and Discovery Studio software using
previously reported protocols [73].

3.2.14. Statistical Analysis

A paired t-test was used to analyze flow cytometry and genotoxicity studies. The
level of significance was set at 5% (p < 0.05). Other research findings are provided as mean
standard deviation (SD). Microsoft Excel (2010), SPSS (9.0), and Prism (5.0) Software was
used to conduct the statistical analysis.

4. Conclusions

In summary, the distribution of natural anticancer compounds like WFA was success-
fully achieved inside the nanosponge structure. The WFA-NS were less than 120 nm in
size, and WFA was embedded as an amorphous form, as revealed by DSC, with no change
in the drug molecule’s chemistry. The FTIR and molecular docking studies had confirmed
a stable complexation between WFA and EC inside the nanosponges. The medication
was efficiently entrapped and released continuously from the NS for 12 h. The anticancer
studies (SRB assay) revealed that the WFA-NS was more effective as compared to pure
WFA with an IC50 value of 1.57 ± 0.091 µM and 3.41 ± 0.134 µM, respectively. In the comet
assay, the WFA-NS cellular contact demonstrated significant DNA damage (56.70%), while
standard H2O2 showed a slightly higher value (61.38%). Similarly, the WFA-NS showed
more potential in killing cancer cells via apoptosis (31.19%) as compared to pure WFA
(20.96%). A reduction in tumor volume was seen when tumor bearing mice were treated
with WFA-NS (72 ± 6%), and the results were in good agreement to cisplatin activity
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(78 ± 8%). Collectively, the WFA-NS described here could serve as a prototype platform for
natural materials such as cancer therapeutics, thereby expanding nutraceutical potential in
chronic metabolic disorders.
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