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Abstract: The functionalization of mono- and octahydrospherosilicate with vinylboranes and allylbo-
ranes via hydrosilylation reaction in the presence of a Karstedt’s platinum (0) catalyst is presented.
This is the catalytic route to obtain a new class of silsesquioxanes containing boron atoms in their
structure in high yields (>90%) and with satisfactory selectivity. The obtained compounds were fully
characterized by spectroscopic (1H, 13C, 29Si NMR) and spectrometric methods (MALDI-TOF-MS),
as well as thermal analysis (TGA). The obtained compounds were subjected to thermal tests, charac-
terizing the processes of melting, thermal evaporation, sublimation and thermal decomposition.

Keywords: POSS; borasilsesquioxanes; borane; organoboron; heterosilsesquioxanes; hydrosilylation;
vinylboranes; thermal decomposition

1. Introduction

Silsesquioxanes of the general formula (RSiO3/2)n (where n = 6, 8, 10, 12; R = H, alkyl,
aryl, halogen, etc.) belong to a wide class of hybrid organosilicon compounds that have
both organic and inorganic properties. The well-defined, three-dimensional structure of
silsesquioxanes consists of an inorganic, rigid silicon–oxygen core and organic substituents,
which can be divided into reactive and inert [1]. Due to their relatively easy synthesis,
numerous possibilities of modification, as well as unique physicochemical properties (high
thermal stability, low dielectricity, high chemical resistance, biocompatibility, etc.), they
are key materials for application in such fields as medicine, biochemistry, catalysis or
coordination chemistry [2–7].

The best known class of these compounds with the greatest applicability potential are
fully condensed octasubstituted silsesquioxanes (n = 8), which may contain reactive groups
or reactive and inert groups in various molar ratios. They can be easily functionalized
by catalytic reactions, e.g., the Heck coupling reaction [8–10], silylative coupling [11,12],
metathesis [13,14] and others [15–17].

Hydrosilylation reactions are the most popular methods for obtaining new silsesquiox-
ane derivatives. The reaction mechanism assumes addition of an Si-H bond to unsaturated
-C=C- bonds in the presence of transition metal complexes, e.g., platinum, rhodium, cobalt,
iridium, ruthenium and others [18–23]. Karstedt’s catalyst is one of the most frequently
used both on a laboratory and industrial scale due to the possibility of obtaining high
yields and high selectivity of the products. Organofunctional silsesquioxanes have been
used in many fields, such as electronics, hybrid materials, nanocomposites and space
application [24,25].

According to literature reports, there are known examples of functionalization of
silsesquioxanes with compounds containing a boron atom in the structure. An example
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is the work by Kaźmierczak et al., which shows the direct attachment of the boron atom
to the cage as a result of dehydrogenative O-bororylation of completely and incompletely
condensed silsesquioxanes with hydroborates (including pinacoloborate or cathechobo-
rate) [26]. Q. Wang et al. synthesized a silsesquioxane with a phosphorus DOPO group,
and then modified it with boric acid. The conducted research proved that modification
improved the thermal stability of the filler–polymer system compared to the polymer ma-
trix itself [27]. Another example of the use of borasilsesquioxanes is the work of K. Suenag
et al., in which the authors modified silsesquioxane (OctaPhenyl-POSS®) with luminescent
boro-organic complexes. The obtained product—mechanoluminescent chromium dye—
was characterized by improved optical and thermal properties. This was due to the radial
arrangement of the substituents in the organosilicon skeleton [28]. Numerous applications
of this group of compounds result from the easy functionalization of silsesquioxanes, which
enables the control and direction of the properties of the final product. Such compounds
have also been used, e.g., as insulating layers [29] or as supports for olefin polymerization
catalysts [30,31].

Functionalization of octahydrosilisesquioxane (SS-8H) and monohydrosilsesquiox-
ane (iBu7SS-H) by hydrosilylation reactions has been reported in many publications and
patents [32–36]. To the best of our knowledge, so far no one has undertaken functionalizing
this type of compounds with vinylboranes by catalytic hydrosilylation reaction.

The aim of the work was to synthesize new iBu7SS-H and SS-8H spherosilicate deriva-
tives containing functional groups with a boron atom in the structure. The obtained
compounds were fully characterized in terms of spectroscopy and thermal stability, which
will allow us to determine the potential application.

2. Results and Discussion

The choice of the vinyl- and allylboronates applied for this study was made on the basis
of the products thereof being potential reagents for further organic group transformations,
e.g., Suzuki–Miyaura or Liebeskind–Srogl coupling. Due to their satisfactory stability and
commercial availability, boronic esters such as pinacol or MIDA boronates are considered
versatile organoboron reagents [37–39]. Therefore, we decided to choose unsaturated
boronates, being easily commercially available and stable under standard conditions.
Examination of 1H, 13C NMR and 29Si NMR spectra, as well as the MALDI-TOF-MS
showed full agreement of the products’ structure with the expectancy, as shown in Figure 1.
All the isolated products were observed on MALDI-TOF-MS as molecular adducts with a
sodium atom.
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The results collected in Figure 1 show full conversion of Si-H moiety, confirmed by
1H NMR analyses. On the basis of NMR spectroscopy, we determined the ratio of α

and β isomers in the obtained post-reaction mixtures. The presence of boron atom has
a strong electron-withdrawing effect for the double bond of vinylboronic acid pinacol
ester, which resulted in the formation of significant amounts of α-isomer products for both
mono- and octaspherosilicate. At the same time, the products of vinylboronic acid MIDA
ester hydrosilylation were formed in an almost β-specific manner, due to two reasons,
one being the high steric hindrance of MIDA bicyclic moiety, and the second being the
electron density transfer from nitrogen to boron atom, which suppresses its electropositive
character. For the allyl derivative, an additional carbon atom separating the boron atom
from the vinyl moiety prevents this electron-withdrawing effect. The sterical effect of a
substituted six-membered ring affected the high β-regioselectivity of the obtained product
C when compared to the five-membered pinacol ring of the product mixture A.

Positive results of the preliminary tests with iBu7SS-H encouraged us to use an
octasubstituted derivative, SS-8H, with the same type of boron-containing olefins. General
scheme of reaction and the results are collected in Figure 2.
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On the basis of the results presented in Figure 2, it can be observed that the reaction
leading to the formation of products E and F proceeded with almost complete conversion of
the Si-H moiety (>99%). We observed similar results to the tests with the monosubstituted
spherosilicate derivative, such as the electron-withdrawing effect for product E, or high
β product isomer formation for product F. For octasubstituted spherosilicates, it was
suspected that the steric hindrance of the cyclic MIDA moiety may be highlighted to
an even greater degree due to its substitution in as many as eight corners of the cage.
However, this explanation is not sufficient to cover the very low conversion observed
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for products G and H (10–20%). The NMR spectra of post-reaction mixtures suggest that
the boronate reagents were undergoing polymerization instead of hydrosilylation due to
high concentration of the vinyl reagent for octasubstituted product. Unfortunately, the
experiments on system dilution or temperature lowering did not allow for obtaining the
desired products, due to low kinetics of the reaction under such conditions. It could be
the explanation for products G and H being obtained with much lower conversion rates.
Both 4,4,6-trimethyl-2-vinyl-1,3,2-dioxaborinane and vinylboronic acid pinacol ester were
described in detail in a work concerning Heck coupling [40], where it was proven that
under the tested reaction conditions, both reagents are similar in reactivity with a slight
advantage in favor of vinylboronic acid pinacol ester, which was explained on the basis of
the steric hindrance of both the substrates. Additionally, due to this steric hindrance, these
two vinylboronates are characterized by satisfactory stability upon storage. However, as
the reactions with monohydrospherosilicase iBu7SS-H proceeded quantitatively under the
assumed reaction conditions, the steric hindrance of the vinylboronates could not serve as
an explanation for the conversion rates of Si-H observed for octahydrospherosilicate SS-H
in this study, as the observed rates were as poor as 5–10%.

As the reagents were thoroughly purified before use and the catalytic tests repeated
numerous times in closed Schlenk reactors, the chances of reaction issues related to ac-
cidental contamination of the reaction mixture were ruled out. Possible vinylboronate
polymerization was suspected due to much higher boronate reagent concentration when
compared to monospherosilicate analogues (see Sections 3.3 and 3.4). Therefore, additional
experiments were run for octaspherosilicate systems, where both reaction dilution and
temperature reduction were tested to suppress the polymerization effect. An additional
possibility was platinum-catalyzed, temperature-mediated transesterification between
boronate groups, resulting in the curing of reaction components, as high yields of insoluble,
glassy matter were produced during reaction.

Thermogravimetric analysis was performed for all obtained compounds under nitro-
gen atmosphere. Suggested mechanisms of thermal changes taking place in the synthesized
compounds are presented in Figures 3 and 4. The results of the thermogravimetric analysis
are presented in Figures 5–7. The determination of the silsesquioxanes decomposition
mechanism is difficult due to the structural complexity of the discussed compounds [41].
Thermogravimetric measurements allow us to estimate the influence of the modifier (vinylb-
orates) on the overall thermal stability of the compounds obtained. During the process
of supplying heat to the sample to POSS-type compounds in an inert gas atmosphere,
there may be three major transformations, as shown in Figure 3. The transformation
by which the sample passes from the solid phase directly to the gas phase or through
phase transformation—melting (not observed on the gravimetric curve) followed by evap-
oration (a). The course of the gravimetric curve for this process is usually very steep
(Figures 5 and 6 SS-8H). Samples whose volatility does not allow for sublimation or evap-
oration undergo thermal decomposition at temperatures higher than 250–300 ◦C (Figure 6).
The thermal decomposition is related to bond cracking, as can be seen from Table 1, and
the Si-C bond occurring near the corner of the diatomaceous spheres (Figure 4) is the most
susceptible to breaking, illustrated in Figure 3b as thermal decomposition outside the cage.
This mechanism leads to the formation of volatile products which are observed in the
gravimetric curve as weight loss in regions above 250 ◦C. At the same time, at temperatures
above 300 ◦C, the silicon cage bonds may break (Si-O bonds) and form volatile products
containing Si atoms (mechanism Figure 3c). It should be noted that for most complex
POSS derivatives, the mechanism of thermal gravimetric changes will be a superposition
of several effects (Figure 5). For lower temperatures, we will observe a relatively fast
sublimation, confirmed by microscopic photos (Figure 7), and at higher temperatures,
pyrolysis and release of volatile products or formation of a solid, ceramic residue consisting
mainly of SiO2 will occur.
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Table 1. Bond energy (according to reference [42]).

Bond Bond Entalphy kJ/mol

1 Si-C 435

2 B-C 448

3 C-C 607

4 Si-O 798

5 B-O 806

6 C-O 1076

In the case of the iBu7SS-H derivative (Figure 5), we are dealing with both the subli-
mation process (area a) and bond-cracking processes (b, c), leading to both the release of
volatile products and the formation of SiO2-containing residues [43].

Figure 6 shows the thermograms of the obtained substrates and products. Ther-
mal analysis of A–D products shows the decomposition described by the mechanism of
Figure 3c, which consists of the fragmentation of the cage bonds and the formation of
silicon-containing volatile products. A detailed analysis of the thermal decomposition of
the iBu7SS-H substrate is shown in Figure 5. The thermogravimetric curve of the SS-8H
substrate is characteristic of the sublimation process. Modification of the compound with
vinylborates completely changes the shape of the thermogram, which proves other phase
transformations of functionalized products. The highest value of residual masses of the
synthesized compounds is present for samples E and H (47.03 and 36.34% (Table 2)), which
indicates the decomposition mechanism presented in Figure 3b, characterized by the break-
age of Si-C bonds, which leads to remnants of the cage structure. The thermogravimetric
curve shows that sample F is transient between the substrate and sample E. The residual
mass value of 19.02% allows for the conclusion that the sample distribution is complex and
indicates loss of functional groups connected with fragmentation of the cage structure.

Table 2. Summary of the data from the conducted measurements: the beginning of the decomposition process (onset).

Sample
Name

5% Mass
Loss (◦C)

10% Mass
Loss (◦C)

Temperature at the Maximum
Rate of Mass Loss (◦C)

Onset
Temperature (◦C)

Residual Mass
800C (%)

iBu7SS-H 234.3 249.6 268.4 241.3 44.23
A 217.7 240.6 304.2 270.1 3.89
B 244.4 264.6 312.4 284.6 3.62
C 228.0 250.3 296.1 267.0 1.67
D 266.6 299.9 363.9 337.6 3.47

SS-8H 220.4 234.1 270.9 240.4 13.92
E 294.1 359.6 359.1 410.5 47.03
F 315.6 359.1 359.6 390.1 19.02
H 288.1 315.9 315.9 311.1 36.34

iBu7SS-H and SS-8H were both proven to sublime during heating, as during the
measurements of melting point, no melting was observed, but resublimed material was
observed on the capillary walls (Figure 7). For compounds A, B, C and D, the melting
points determined were 114, 96, 72 and 207 ◦C, respectively. Compounds E and F were
viscous oils at room temperature. Reaction product H decomposed at temperatures above
300 ◦C. The decomposition of reaction product H was associated with the color change of
the beige compound to red.

3. Materials and Methods
3.1. Materials

The chemicals were purchased from the following sources:, allylboronic acid pinacol
ester, 4,4,6-trimethyl-2-vinyl-1,3,2-dioxaborinane and vinylboronic acid pinacol ester from
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Tokyo Chemical Industry Co.; vinylboronic acid MIDA ester and Karstedt’s catalyst from
Sigma-Aldrich; toluene and acetonitrile from Chempur; and benzene-d6 and toluene-d8
from Deutero. Vinylboronic acid MIDA ester was dissolved in acetone and then purified
by standard chromatography method with a short column filled with silica gel. The eluate
was collected and then evaporated under reduced pressure. Toluene was dried over P2O5,
distilled under argon and stored under argon atmosphere in Rotaflo Schlenk flasks over
Na/K alloy.

3.2. Synthesis of Organosilicon Precursors

Heptaisobutylomonohydrospherosilicate iBu7SS-H (1) was synthesized according
to the procedure given in the literature [44] with an isolated yield of 91% based on hep-
taisobutyltrisilanol. Octakishydridooctaspherosilicate SS-8H (2) was synthesized according
to the procedure given in the literature [45]. Product was obtained with 95% yield.

3.3. General Procedure for Hydrosilylation Tests with Heptaisobutylmonohydrospherosilicate

All hydrosilylation reactions were conducted under argon atmosphere in 25 mL high-
pressure Schlenk reactors equipped with a Rotaflo stopcock and magnetic stirring bars. In
a typical procedure, a Schlenk’s reactor was charged with 0.056 mmol (50 mg) of iBu7SS-H,
3 mL of toluene and 0.056 mmol of olefin. Karstedt’s catalyst solution (10−5 eq Pt/mol
Si-H) was added. The reaction mixture was set at 110◦C for 24 h. After removal of the
solvent under reduced pressure, 1H NMR analysis was run to measure conversion rate and
product selectivity.
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0.15 (d, J = 8.8Hz, α isomer SiMe2), 0.08 (s, β isomer SiMe2);
1H NMR (400 MHz, C6D6): δ (ppm) = 2.16–2.01 (m, iBu), 1.40 (d, J = 7.3 Hz, α isomer
SiCH(CH3)Si), 1.23 (t, J = 6.2 Hz, α isomer BCH2CH2Si), 1.10–1.05 (m, pinacol Me; iBu),
0.98–0.90 (m, β isomer BCH2CH2Si), 0.85–0.81 (m, iBu), 0.80–0.74 (q, J = 7.3, α isomer
SiCH(CH3)Si), 0.44 (d, J = 10.4 Hz, α isomer SiMe2), 0.26 (s, β isomer SiMe2);
13C NMR (101 MHz, CDCl3): δ (ppm) = 83.0, 82.0 (pinacol ring), 25.9 (iBu), 25.1, 25,0 24.8
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−66.67, −66.71, −67.55 (cage), −109.32 (β isomer SiMe2 SiO4), −109.66 (α isomer SiO4).
MALDI-TOF-MS: [M]+Na+: 1067.3804
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13C NMR (101 MHz, C6D6): δ (ppm) = 82.7 (pinacol ring), 26.0 (iBu), 25.1 (pinacol Me), 24.4,
23.1, 23.0, 22.9 (iBu), 21.5 (BCH2CH2CH2Si), 18.3 (BCH2CH2CH2Si), 1.4 (BCH2CH2CH2Si);
29Si NMR (79,5 MHz, C6D6): δ (ppm) = 11.32 (SiMe2), −66.69, −66.72, −67.56 (cage),
−109.41 (SiO4).
MALDI-TOF-MS: [M] + Na+: 1081.3910
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high-pressure Schlenk reactors equipped with a Rotaflo stopcock and magnetic stirring 

bars. In a typical procedure, a Schlenk’s reactor was charged with 0.0246 mmol (25 mg) of 

octakishydridooctaspherosilicate SS-8H, 3 mL of toluene and 0.197 mmol of olefin. 

Karstedt’s catalyst solution (10 −5 eq Pt/mol Si-H) was added. The reaction mixture was 

carried out at 110 °C for 24 h. After removal of the solvent under reduced pressure, 1H 

NMR analysis was run to measure conversion rate and product selectivity. 

 

1H NMR (400 MHz, CDCl3):  (ppm) = 1.23 (s, β isomer pinacol Me), 1.20 (s, α isomer 

pinacol Me), 1.06 (d, J = 7.2Hz, α isomer SiCH(CH3)B), 0.90-80 (m, 2H, SiCH2CH2B), 0.77–
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1H NMR (400 MHz, CDCl3): δ (ppm) = 1.23 (s, β isomer pinacol Me), 1.20 (s, α isomer
pinacol Me), 1.06 (d, J = 7.2Hz, α isomer SiCH(CH3)B), 0.90-80 (m, 2H, SiCH2CH2B),
0.77–0.60 (m, 2H, SiCH2CH2B), 0.51 (q, J = 7.2 Hz, α isomer SiCH(CH3)B), 0.17 (s, β isomer
SiMe2), 0.11 (d, J = 8.8 Hz, α isomer SiMe2);
1H NMR (400 MHz, Tol-d8): δ (ppm) = 1.41–1.39 (m, α isomer SiCH(CH3)B), 1.16–1.10
(m, pinacol Me), 1.05–0.91 (m, 2H, SiCH2CH2B), 0.82–0.79 (m, 1H, SiCH2CH2B), 0.45 (d,
J = 8.8 Hz, α isomer SiMe2), 0.32 (s, β isomer SiMe2);
13C NMR (101 MHz, Tol-d8): δ (ppm) = 82.7, 82.6 (pinacol ring), 25.0 (pinacol Me), 10.8
(BCH2CH2Si), 8.8 (BCH(CH3)Si), 1.4 (BCH(CH3)Si, 0.6–(−0.7) ((BCH2CH2Si), SiMe2 α

isomer, SiMe2 β isomer);
29Si NMR (79,5 MHz, Tol-d8): δ (ppm) = 13.36 (β isomer SiMe2), 12.53 (α isomer SiMe2),
−108.84 (core).
MALDI-TOF-MS: [M] + Na+: 2248.9294
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1H NMR (400 MHz, Tol-d8): δ (ppm) = 1.75–1.67 (m, 16H, BCH2CH2CH2Si), 1.11 (s, pinacol
Me), 1.09–1.01 (m, 16H, BCH2CH2CH2Si), 0.87–0.83 (m, BCH2CH2CH2Si), 0.29 (s, 48H,
SiMe2);
13C NMR (101 MHz, Tol-d8): δ (ppm) = 82.6 (pinacol ring), 25.0 (pinacol Me), 21.3
(BCH2CH2CH2Si), 18.2 (BCH2CH2CH2Si), 1.4 (BCH2CH2CH2Si), 0.01 (SiMe2);
29Si NMR (79,5 MHz, Tol-d8): δ (ppm) = 12.31 (SiMe2), –108.43 (core).
MALDI-TOF-MS: [M] + Na+: 2385.0117

3.5. Analytical Methods

The 1H NMR spectra were recorded on a Bruker Ultrashield 300 MHz. The 13C and
29Si NMR spectra were recorded on a Bruker Ascend 400 MHz operating at 101 and 79 MHz,
respectively. Benzene-d6 was used as a solvent.

MALDI-TOF mass spectra were recorded on a UltrafleXtreme mass spectrometer
(Bruker Daltonics), equipped with a SmartBeam II laser (355 nm) in the 500–4000 m/z
range, and 2,5-dihydroxybenzoic acid (DHB, Bruker Daltonics, Bremen, Germany) served
as the matrix.

Thermogravimetry (TG) was performed using a NETZSCH 209 F1 Libra gravimetric
analyzer (Selb, Germany). Samples of 2 ± 0.2 mg were placed in Al2O3 crucibles. Measure-
ments were conducted under nitrogen (flow of 20 mL/min) in the range of 50–800 ◦C and
a 20 ◦C/min heating rate.

4. Conclusions

Novel boron-containing silsesquioxane derivatives of mono- and octaspherosilicate
were obtained by Karstedt’s complex-catalyzed hydrosilylation of various unsaturated
boronates. Products were fully characterized by spectroscopic methods that confirmed the
structures and purity of the obtained compounds. The chosen boronates are commercially
available and shelf-stable, and the silsesquioxane precursors obtainable via well-described
synthetic procedures (alternatively, also commercially available). Presumed mechanisms of
thermal decomposition of silsesquioxane compounds were determined and characterized
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for the obtained derivatives. The obtained compounds may play a role as interesting
synthons for the preparation of organosilicon hybrid materials or other silicon-containing
precursors. This is the first available literature report which analyzed the thermal decom-
position of silsesquioxanes containing a boron atom in the structure.
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