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Abstract: For early fault detection of a bearing, the localized defect generally brings a complex
vibration signal, so it is difficult to detect the periodic transient characteristics from the signal
spectrum using conventional bearing fault diagnosis methods. Therefore, many matrix analysis
technologies, such as singular value decomposition (SVD) and reweighted SVD (RSVD), were
proposed recently to solve this problem. However, such technologies also face failure in bearing
fault detection due to the poor interpretability of the obtained eigenvector. Non-negative Matrix
Factorization (NMF), as a part-based representation algorithm, can extract low-rank basis spaces with
natural sparsity from the time–frequency representation. It performs excellent interpretability of the
factor matrices due to its non-negative constraints. By this virtue, NMF can extract the fault feature by
separating the frequency bands of resonance regions from the amplitude spectrogram automatically.
In this paper, a new feature extraction method based on sparse kernel NMF (KNMF) was proposed
to extract the fault features from the amplitude spectrogram in greater depth. By decomposing the
amplitude spectrogram using the kernel-based NMF model with L1 regularization, sparser spectral
bases can be obtained. Using KNMF with the linear kernel function, the time–frequency distribution
of the vibration signal can be decomposed into a subspace with different frequency bands. Thus, we
can extract the fault features, a series of periodic impulses, from the decomposed subspace according
to the sparse frequency bands in the spectral bases. As a result, the proposed method shows a very
high performance in extracting fault features, which is verified by experimental investigations and
benchmarked by the Fast Kurtogram, SVD and NMF-based methods.

Keywords: sparse kernel nonnegative matrix factorization; time–frequency distribution; rolling
element bearing; feature extraction

1. Introduction

As the rotary support component of most machinery, the fault detection and diagnosis
of the rolling element bearing is crucial to prevent machinery breakdowns [1]. A variety of
bearing fault detection techniques such as acoustic emission, electrostatic and vibration are
used meticulously by industrial enterprises [2–5]. Among them, vibration monitoring is
the most established diagnostic technique for rolling element bearing.

While a localized defect occurs on the surface of a relatively moving part, a series
of impulses will be excited periodically or quasi-periodically. Due to different natural
frequencies for rotating structure parts, multiple resonance regions reflecting impulse
information will exist in the vibration signal of a mechanical system [6]. Inevitably, in the
early stage of bearing failure, the noise energy usually contaminates the fault information
of resonance regions.

Generally, an envelope-based analysis is one of the most popular technologies for
bearing fault detection, because the envelope demodulation of a vibration signal can
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provide more valuable information [7–9]. Frequency band selection is substantial to get
a successful envelope demodulation, because fault features cannot be extracted if the
frequency band is not selected appropriately. Therefore, two algorithms were proposed,
based on STFT and wavelet packet transform, respectively, to generate the Kurtogram and
obtain the optimal frequency band with maximum kurtosis [10,11]. Apart from Kurtogram,
another representative method is the Protugram [12], where the maximum kurtosis is
extracted from the envelope signal instead of the raw signal. The Autogram [13] selects the
optimal band with the highest impulsiveness also based on the maximum kurtosis, but
unlike the Kurtogram, it is calculated based on the unbiased autocorrelation of the squared
envelope of the demodulated signals. The Sparsogram [14] is based on the sparsity level on
different bands based on the wavelet packet, and the Infogram utilizes the negentropy as a
feature to detect the impulsive bands of the signal for demodulation [15]. SVD, which can
adaptively extract representative features from the time–frequency distribution or Hankel
matrix for the bearing fault diagnosis [16,17], has been proposed as a supplement to the
envelope demodulation method in recent years. Jiang et al. utilized the ratio of singular
values as an evaluation for the fault feature and further introduced the difference spectrum
to select the informative singular vector due to different singular values for the signal and
noise [18]. Xu et al. chose the anti-averaging method for sub-signal reconstruction and
combined the SVD and squared envelope spectrum to identify the fault type. By the way,
the wavelet transform matrix [19] can also be used for the input matrix of the SVD. It is
worth noting that the SVD-based method is essentially the maximum variance projection,
which means that the components with higher energy will be decomposed first, while the
fault information is always neglected. To unravel this problem, an algorithm called RSVD
was proposed based on the periodicity of the defect characteristics [20]. Mathematically,
SVD-based methods only impose orthogonal constraints, so the value of the eigenvector
atoms can be positive or negative. Such eigenvectors are usually associated with multiple
frequency components, which will make the decomposition hard to understand and induce
noise in the final results.

NMF has been widely used in audio source separation because of its ability to au-
tomatically separate components with different frequency and time information in the
spectrogram [21,22]. By this virtue, researchers introduced NMF to the field of bearing fault
detection to find the part-based representations of the bearing fault signal. Different from
SVD, NMF imposes a non-negativity constraint on low-rank subspaces, so it has a better
interpretability and can additively separate the components in frequency bands. For the
amplitude spectrogram of the bearing fault signal, NMF can group the spectral components
and sparsely present them in the factor matrices. Liang et al. [23] employed a deconvolu-
tion method for extracting impulse excitation using Convolution NMF and characterized
the localized features of the impulse response, including the resonance frequency band
and the attenuation response, effectively. Liu et al. [24] performed the Semi-NMF for the
time–frequency matrix reconstruction, based on the vibration signal with a rolling element
bearing defect, to extract the impulse response. Based on the amplitude spectrogram
decomposition, Wodecki et al. [25] employed NMF to cluster the spectral components
into the base matrix so that the optimal frequency band can be adaptively obtained. In
essence, the above NMF-based developments were used to seek low-rank representations
of high-dimensional time–frequency matrices for the bearing fault diagnosis based on a
linear mixing model.

Considering that the kernel methods can offer a nonlinear mapping of the input
space, some kernel-based NMF approaches [26–28] have been proposed to obtain a more
trustworthy solution. Generally, as one of the outstanding properties, KNMF can provide a
sparser representation of the data than NMF. Such properties can restrain the noise and help
us select the frequency band more efficiently while we perform a fault diagnosis based on
the amplitude spectrogram. Unfortunately, although the factor matrices obtained by KNMF
are naturally sparse, it is difficult for users to control the sparse degree of representation.
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Hence, sparsity constraints can be imposed either with projections or L1 regularization on
the KNMF model to induce a sparser solution.

We propose a novel feature extraction method in this paper, based on linear kernel
NMF with a sparsity constraint, to detect fault characteristics from the amplitude spec-
trogram of bearing fault signal. To our knowledge, it is the first time a L1 regularization
has been associated with a linear kernel NMF model, and it is the first time such models
are being used in the context of a bearing fault diagnosis. With the linear kernel func-
tion, the time–frequency distribution is naturally decomposed into the superposition of
subspaces by NMF. With the L1 regularization, a sparse KNMF model was established
to obtain sparser factor matrices, which have energy only at the feature frequency bands
presented in the input amplitude spectrogram. Thus, the optimal subspace corresponding
to periodic impulses can be selected effectively by the sparse frequency band distribution
of the sparse factor matrix. The proposed method outperforms the SVD method for its
good interpretability and sparse decomposition results. Different from the envelope-based
methods, the proposed method takes the time–frequency matrix of the short-time Fourier
transform (STFT) as the input and can limit the in-band noise that perplexes the envelope-
based methods by sparse representation. Several engineering applications show that the
proposed method performs better than the SVD and envelope-based methods, especially
in early fault detection cases.

This paper is organized as follows: Section 2 provides the fundamental knowledge
about KNMF. In Section 3, the principles of the multiplicative update rule of kernel NMF
with sparsity constraint are shown in detail. Section 4 presents a feature extraction strategy
based on sparse KNMF; the vibration signals of the rolling bearing faults are presented to
evaluate the proposed method in Section 5. At last, the conclusions are drawn in Section 6.

2. Kernel Non-Negative Matrix Factorization
2.1. NMF

As one of the low-rank decomposition tools, the goal of NMF is to factor a non-
negative matrix into the product of two non-negative matrices called the basis matrix and
the coefficient matrix:

Xm×n ≈ Um×rVr×n (1)

Different from SVD, the non-negativity constraints are imposed on two factor matrices,
which can effectively show the concept of part-based representation. To solve matrices U
and V in Equation (1), the usual Frobenius norm-based cost function is as follows:

min
U,V

1
2

∣∣∣∣∣∣∣∣X−UV
∣∣∣∣|2F, s.t. U, V ≥ 0 (2)

where U(m × r) is defined as the basis matrix, V(r × n) is a coefficient matrix,
∣∣∣∣·∣∣|2F is the

Frobenius norm and r << min(m, n). Considering Equation (2) is not convex to U and V
simultaneously, besides the gradient algorithm, multiplicative and alternating least squares
algorithms were also proposed.

2.2. Kernel NMF

With nonlinear mapping: X→ ϕ(X) . For the decomposition of X = UV, the factor
matrix U can be defined by

U = XW (3)

where W is the transformation matrix, and each column of W satisfies the constraint that
the sum is one. Thus, the cost function (2) can be rewritten as follows:

minDF(ϕ(X‖UϕV)) = 1
2‖ϕ(X)− ϕ(X)WV‖2

F,
s.t. W ≥ 0, V ≥ 0

(4)
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In theory, the kernel function can improve the sparsity of the factor matrices, but the
sparsity is still influenced by the initialization, kernel function type and parameter value.
We will show that, in these cases [29], the sparse constraints can effectively match the
features of the data. Additionally, for the case of the spectrogram of the bearing vibration
signals, it was hoped that the sparsity of the factor matrices would make the impact energy
more concentrated, and it is easy to select the feature frequency band.

3. Sparse KNMF and Update Rule

Although several approaches have been proposed to effectively control the sparseness
of U and V in references [30,31], the sparsity constraints may result in the loss of useful
information [32]. To get better sparseness of the frequency information from the time–
frequency distribution, the constraints about the L1 norm of the coefficient matrix V is
utilized in KNMF, and the sparse kernel non-negative matrix factorization (SKNMF) is also
proposed. Taking the sparseness constraints of V into account, the Lagrangian is given by

minLF(W, V) =
1
2
‖ϕ(X)− ϕ(X)WV‖2

F + α‖V‖1 (5)

where α is the constraint term parameter, and λ and µ are the Lagrange multipliers. Under
the conditions of Karush-Kuhn-Tucker (KKT) optimality, (W, V) is a stationary point of
Equation (5) if

W ≥ 0 V ≥ 0 ,
(∂LF(W, V)/∂W)ij ≥ 0 (∂LF(W, V)/∂V)ij ≥ 0

Wij(∂LF(W, V)/∂W)ij = 0 Vij(∂LF(W, V)/∂V)ij = 0
(6)

when Wij > 0 and Vij > 0, the two partial derivatives of the objective function, from
Equation (6), are denoted as follows:

(∂L(W, V))/∂W = 0
(∂L(W, V))/∂V = 0

(7)

Further, the optimal solution of Equation (7) can be defined following function:

ϕ(X)T ϕ(X)WVVT − ϕ(X)T ϕ(X)VT − λ = 0
WT ϕ(X)T ϕ(X)WV−WT ϕ(X)T ϕ(X) + α∇V‖V‖1 − µ = 0

(8)

where ∇V‖V‖1 is the gradient vector and means of the partial derivative with respect to
‖V‖1. Obviously, because the L1 norm cannot be differentiated directly, the subdifferential
method of the real value variable [33] is used for this problem.

Set ∇V‖V‖ = [∇v1‖v1‖1,∇v2‖v2‖2, . . . ,∇vn‖vn‖n]
T , where the ith element is de-

fined as

∇(vn)i
‖vn‖1 =

∂‖vn‖1
∂(vn)i

=


{+1}, (vn)i > 0

[−1,+1], (vn)i = 0
{−1}, (vn)i < 0

(9)

Due to the non-negative of the elements of matrix V , the set of [+1, −1] is set to 0 to
simplify the calculations, and the above equation can be rewritten as

∇(vn)i
‖vn‖1 =

∂‖vn‖1
∂(vn)i

=

{
{+1}, (vn)i > 0
{0}, (vn)i = 0

(10)
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Let us define K = ϕ(X)Tϕ(X) and use the KKT optimality conditions. We can obtain
the following update rules when λ and µ are set to 0:

Wij = Wij
(KVT)ij

(KWVVT)ij

Vij = Vij
(WTK)ij

(WTKWV+α∇V‖V‖1)ij

(11)

where the kernel matrix K can be obtained with kernel functions, such as the polynomial
kernel functions, Gaussian kernel functions and so on.

4. Feature Extraction Strategy Based on SKNMF

For the bearing fault detection, the periodic impulses caused by a defect are localized
at the resonance frequency band and corresponding time point in the time–frequency
distribution. The fault impulse feature can be extracted by the advantages of SKNMF in
the parts-based representation. The scheme of the whole strategy is displayed in Figure 1,
and the implementation procedure is detailed as follows:
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Figure 1. Scheme of the feature extraction based on the SKNMF.

4.1. Time–frequency Distribution Construction

We denote by TFt,f the corresponding time–frequency matrix of the measured signal,
and with STFT, TFt,f is described as below:

TFt, f =

∣∣∣∣∫ ∞

−∞
x(t + τ)w(τ) exp(−2jπ f τ)dτ

∣∣∣∣ (12)

where x(t) is the measured signal, w(t) is the window function (i.e., Hanning window) and
t and f are the time and frequency, respectively.

4.2. Subspace Extraction with SKNMF

For the time–frequency space TFt,f, where its rows and columns represent the fre-
quency and time location, respectively, the factor matrix V and transform matrix W are
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learned by the multiplicative updates of Equation (11). Then, in the feature space, according
to Equations (1) and (3), we can obtain following expression:

ϕ(TFt, f ) = UϕV (13)

Uϕ = ϕ(TFt, f )W (14)

where ϕ is mapping of the input space. Uϕ is the base matrix, where each column of Uϕ

is denote by uϕk. Considering the generalization ability of the global kernel, the linear
kernel function is selected and the kernel matrix K = XTX. For TFt,f, we can obtain
ϕ(TFt, f ) = TFt, f . Thus, according to Equation (13), the time–frequency space TFt,f is
given by

TFt, f =
j

∑
k=1

uϕkvk (15)

Naturally, Equation (15) shows that the time–frequency matrix TFt,f consists of a series
of time–frequency subspace TFk

t, f = uϕkvk, and it can be rewritten by

TFt, f =
j

∑
k=1

TF(k)
t, f (16)

4.3. Subspace Selection and Waveform Reconstruction

It is clear that each column of V has energy only at the main frequencies that are
present in the subspace TF(k)

t, f . We can interpret these columns as the frequency energy
contained in the spectrogram. Due to the sparsity of V , the corresponding frequencies
in the subspace are more concentrated—namely, the noise interference components are
less. Therefore, combining the resonance regions of the spectrum with the larger weight
of V , subspaces TF(i)

t, f (i ∈ (1, 2, . . . r)) that represent the impulse features effectively can
be determined. Then, using the inverse STFT to the estimated impulse components, the
extracted signal xs can be obtained.

x(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
TFS

t, f w(t− τ)ej f td f dτ (17)

where TFS
t, f = ∑ TF(i)

t, f (i ∈ (1, 2, . . . r))T is the selected time–frequency subspace.

4.4. Envelope Demodulation

Since the extracted signal xs contains the periodic impulse components, the envelope

signal is obtained by Z(t) =
√
|xs(t)|2 + {H[xs(t)]}2, where H is the Hilbert transform,

and the frequency information of the periodic impulses can also be derived from the
envelope spectrum of Z(t).

5. Experimental Results

Two experiments were investigated to validate the proposed SKNMF, and the results
are compared with not only the Kurtogram [10] and RSVD [20] but, also, NMF [34], sparse
NMF (SNMF) [32] and kernel NMF (KNMF). Although a numerical experiment can be
easily performed, it is difficult to accurately reflect the real working environment and
complex frequency components of the vibration signal. Therefore, we used the real-world
vibration data for comparison and analysis, while a measured data in practice was adopted
for experiment verification.
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5.1. Comparison Analysis Experiment

The first experiment was designed to illustrate the efficiency of SKNMF for detecting
an incipient bearing defect. The measured data came from the specially designed bearing
test rig described in Figure 2. Four bearings were installed on a rotor shaft driven by an
AC motor. The rotation speed was 2000 r/min, and acceleration sensors were mounted in
the vertical and horizontal directions of each bearing seat. With a normal load and 20-kHz
sampling frequency, the vibration data of the bearings was collected every 10 minutes.
Finally, the outer race fault occurred in bearing 1 at the end of the experiment. For detailed
information about the experiment, please refer to the literature [35].
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Figure 2. Bearing test rig.

According to the RMS value of the measured signals, we selected the vibration data
collected during the 88.5 h for analysis, and the waveform and its spectrum are shown in
Figure 3. Due to the early bearing defect, there are no periodic impulses shown in Figure 3a.
For the spectrum in Figure 3b, not only the low frequency component is complicated, but
also, different resonance regions can be observed.
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Figure 3. Waveform and spectrum of the outer race defect: (a) waveform and (b) spectrum.

Figure 4 presents the time–frequency distribution obtained with the Hanning window
of 20 samples. Obviously, the time–frequency space of the early fault signal presented a
combination of time information and frequency energy. It was found that the frequency
bands were focused at about 980 Hz, 1800 Hz, 3200 Hz and 4300 Hz. respectively, while
the energy was lower for the frequency bands at about 1800 Hz and 3200 Hz.

The SKNMF method was adopted to decompose the time–frequency space, where
the elements in the initial matrices W and V were randomly chosen, and the factorization
rank r and sparse coefficient α were set to 7 and 0.55, respectively. The coefficient matrix V
is shown in Figure 5, where the vertical axis represents the frequency, and the horizontal
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axis is associated with a serial number of the subspace. It is shown that SKNMF with
sparsity constraint tends to provide a sparse weight distribution in Figure 5, where the
corresponding subspace has a more concentrate frequency band. From the frequency
distribution of Figure 5, the corresponding weights of the fifth and sixth subspaces in the
main frequencies were concentrated and larger. Therefore, the union of the two subspaces
was selected, and the corresponding time–frequency subspace shown in Figure 6 was
calculated by Equation (16). The extracted signal was obtained by inverse STFT, as shown
in Figure 7a, and it revealed impulses compared with the original signal demonstrated in
Figure 3. The spectrum of Figure 7b shows that the frequency band between 3100 Hz and
4400 Hz can be extracted adaptively, while the noise and other component interference can
be eliminated effectively. The envelope analysis was performed on the extracted signal,
and the corresponding envelope spectrum is shown in Figure 8. It is clear that the outer
race fault characteristic f BPFO (236.4 Hz) denoted by a red arrow is rather evident. Besides,
the second order harmonic of f BPFO denoted by another red arrow was also distinctive.
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For comparison, the Kurtogram [10] of the same measured signal is present in Figure 9,
where it is found that the optimal demodulation band is from 6250 Hz to 7500 Hz. Accord-
ing to the obtained optimal demodulation band, a bandpass filter with a center frequency
of 6875 Hz and a bandwidth of 1250 Hz is constructed and used to filter the raw vibration
signal. The waveform of the filtered signal is presented in Figure 10. However, the results
indicate that the filtered signal with maximum kurtosis still has noise interference, and the
transient feature in the waveform is not very clear. When the envelope analysis is applied
to this signal, little diagnostic information could be obtained, as shown in Figure 11. In
fact, we know that kurtosis is a measure of the peakedness, so it easily tends to highlight
the outliers of the signal caused by the noise.
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The RSVD method [20] was then introduced to detect the impulse components. The
waveform and spectrum of the reconstructed signal is shown in Figure 12, from which
the fourth subspace was selected for construction according to the first 30 PMIs of the
decomposed singular components. It is obvious that SVD can be decomposed by frequency
information adaptively. However, compared with the above methods, except for the main
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frequency band, there are still other frequency components in Figure 12b. Therefore, from
the envelope spectrum given in Figure 13, one can also find that the repetition frequency of
the impulse is severely disturbed by the other interference components. In essence, only
under orthogonality constraint, the decomposed eigenvector can be a positive or negative
value. It means that the basis vector is related to many frequencies. Therefore, as the
superposition of the subspace, the subspace usually includes not only multiple resonance
regions but, also, noise.
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Figure 12. Waveform and spectrum of the 4th subspace obtained by the RSVD method: (a) waveform of the reconstructed
signal and (b) spectrum of the reconstructed signal.

To explain this drawback of the SVD method, the time–frequency matrix shown in
Figure 4 is decomposed by SVD, where the decomposition equation is TFt, f = USV, and
the column vectors of U and V are the orthonormal eigenvectors. Figure 14 illustrates the
first six columns of V , and it is well-known that the eigenvector of V reflects the frequency
distribution of the raw signal. Since the SVD methods allow the atoms of the eigenvector
as the negative value, as a result, each eigenvector mostly has positive and negative atoms
in the main frequencies (i.e., 980 Hz, 1800 Hz, 3200 Hz, 4300 Hz and so on). Therefore,
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the subspace constructed by the eigenvectors of U and V also includes multiple frequency
bands, which means that the noise cannot be limited effectively.
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Figure 13. Envelope spectrum of the reconstructed signal obtained by the RSVD method.
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Figure 14. First six eigenvectors of Figure 4 extracted by SVD: (a) the first three eigenvectors and (b) the fourth–sixth eigen-
vectors.

To further test the effectiveness of the proposed method, Figure 15 illustrates the
coefficient matrix V computed by NMF [34]. Certainly, one can easily see that the weights in
KNMF are sparser than that of NMF. The poor sparsity makes each subspace factorized by
NMF contain a lot of frequency components. Considering that the energy distribution of the
seventh subspace is larger between 2400 Hz and 4700 Hz, the seventh subspace is selected
as the extracted time–frequency subspace, as given in Figure 16. Using inverse STFT, the
extracted waveform and spectrum are shown in Figure 17. Known from Figure 17b, except
for the 986-Hz and 2400 Hz–4700-Hz frequency bands, the noise and other components are
also observed. Thus, the periodic transient components were almost swallowed by noise in
the waveform of Figure 17a. As a result, the envelope spectrum in Figure 18 shows that the
fault characteristic f BPFO is submerged by many high-amplitude frequency components.
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Figure 15. Coefficient matrix obtained by NMF.
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Figure 16. Selected time–frequency subspace for NMF.
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Figure 17. Waveform and spectrum of the extracted signal: (a) waveform of the extracted signal and (b) spectrum of the
extracted signal.
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Figure 18. Envelope spectrum of the extracted signal.

SKNMF performs better than NMF, because the sparseness of the coefficient matrix is
useful for the frequency information determination. It can be observed from Figure 5 that
the sparsity of the decomposition result is strengthened, and SKNMF is sensitive to the
different frequency band and can separate them effectively.

Figure 19 shows the coefficient matrix V of the sparse NMF method [32], where the
rank r of the factorization is still set to 7, and parameters η and β are set to 0 and 0.55, respec-
tively. Similar to the NMF, according to the spectrum and frequency distributions of the
coefficient matrix of Figure 19, we chose the sixth subspace as the extracted time–frequency
distribution. Thus, from the selected time–frequency subspace shown in Figure 20, one can
obtain the extracted signal and spectrum. Compared with the original spectrum, the corre-
sponding spectrum shown in Figure 21b includes not only 3600 Hz–5200-Hz frequency
bands but, also, noise components. The transient signals in Figure 21a indicate that the
extracted signal still has noise, and the transient feature is not very clear. Meanwhile, the
fault frequency is also not easily distinguishable in the envelope spectrum, because only
the first-order harmonic of f BPFO is shown in Figure 22, where the fault character interfered
with unknown high-amplitude components.
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Figure 19. Coefficient matrix obtained by SNMF.
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Figure 21. Waveform and spectrum of the extracted signal: (a) waveform and (b) spectrum.
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Figure 22. Envelope spectrum of the extracted signal (the fault characteristic f BPFO is highlighted by
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As the SNMF method was improved in the sparseness of the coefficient matrix,
the extracted feature frequency band of the time–frequency distribution can be more
concentrated. However, compared with SKNMF, except for the main frequency band,
there were still other components that resulted in the feature frequency submerged in the
envelope spectrum. Based on the kernel mapping and L1 norm-oriented sparseness, the
SKNMF-based method can effectively eliminate the noise in the extracted signal. Therefore,
the repetition frequency of the pulse characteristic can be highlighted.

Besides the above liner NMF-based models, the KNMF method with a multiplicative
update strategy was employed to analyze the same signal. Figure 23 presents the heat map
of coefficient matrix V . Compared with the results of NMF, the decomposition results of
KNMF had a certain sparsity, which was similar to the results of SNMF.
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Figure 23. Coefficient matrix heat map obtained by KNMF.

However, the sparseness of matrix V derived by KNMF was not as good as that
of SKNMF, shown in Figure 5. Since the weight distribution of the subspace was not
concentrated, a seventh subspace with the larger weight value was selected, and the
extracted subspace is shown in Figure 24. Figure 25a,b shows the spectrum and the
envelope spectrum of the extracted signal. Compared with Figure 7b, the extracted feature
frequency bandwidth of KNMF was wider than that of SKNMF, which led to the defect
feature KNMF extracted not being as clear as what SKNMF extracted.
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Figure 24. Selected time–frequency subspace for KNMF.
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Figure 25. Spectrum and envelope spectrum of the extracted signal: (a) spectrum and (b) envelope spectrum (the fault
characteristic f BPFO is highlighted by a red arrow).

5.2. Experimental Verification
5.2.1. Test Rig

A vibration signal, including multiple resonance regions, was also used to verify the
SKNMF method in extracting the periodic impulses. The vibration data were obtained
from the machinery fault simulator shown in Figure 26a, which was constructed with a
motor, couplings, rotors, belt tensioning and gearbox. The rotating shaft was driven by
an AC motor, and a fault simulation was conducted by replacing the fault motors. The
motor bearing was SKF 6203. A constant load was applied by means of the magnetic
brake. A zoomed version of the AC motor mounted with an acceleration sensor is shown
in Figure 26b. The technical details of the acceleration sensor are listed in Table 1.
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Figure 26. (a) Structure of the machinery fault simulator. (b) AC motor with acceleration sensor mounted.

Table 1. Technical details of the acceleration sensor.

Sensor Model Sensitivity Measurement Range Broadband Resolution Frequency Range

PCB 352C68 ICP (±10%) 100 mV/g
(10.2 mV/(m/s2))

±50 g pk
(±491 m/s2 pk)

0.00016 g rms
(0.0015 m/s2 rms) (±5%) 0.5 to 10,000 Hz

In the experiment, the AC motor with built-in inner race faulted bearings was installed
under 1 pound of torque, and the PCB 352C68 ICP acceleration sensor was mounted on the
bearing set of the motor. The rotary speed f r controlled by a speed controller was 25 Hz,
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and the sample frequency was 10,240 Hz. According to the structural parameters of the
bearing, the frequency of the inner race fault f BPFI was 4.9f r Hz.

The waveforms and spectrum of the vibration signal of the defect bearing was plotted
in Figure 27. Obviously, we can see that the many frequency bands were obviously visible.
Obviously, the time–frequency distribution shown in Figure 28 presents the resonance
region center focused at about 500 Hz, 2050 Hz and 3150 Hz and other high-frequency components.
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Figure 27. Waveform and spectrum of the vibration signal with an inner race fault bearing: (a) waveform and (b) spectrum.
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Figure 28. Time–frequency distribution of a defected bearing.

5.2.2. Results and Analysis

The proposed SKNMF-based method was adopted to decompose the time–frequency
space, in which the rank r of the factorization was set to 11 because of more frequency
bands. The extracted coefficient matrix is shown in Figure 29. From the weight distribution
of Figure 29, the sparse weight of each rank was concentrated in different frequency bands,
and the corresponding weight values in the subspaces of the first, second and tenth were
larger. Therefore, the union of these subspaces was selected as the extracted signal given in
Figure 30, and Figure 31 shows the spectrum and envelope spectrum of the extracted signal.
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Figure 29. Coefficient matrix heat map of SKNMF.
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Figure 30. Extracted signal waveform.
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Figure 31. Spectrum and envelop spectrum of the extracted signal: (a) spectrum and (b) envelope spectrum (the first three
order harmonics of f BPFO are highlighted by three red arrows).
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In Figure 31a, the feature frequency band between 3470 Hz and 4440 Hz can be
extracted adaptively. The corresponding feature frequency f BPFI that indicates the inner
race defect can be observed clearly in Figure 31b, where the first three harmonics of f BPFI
are highlighted by three red arrows. It can be concluded from the results that the extracted
signal with SKNMF can be used as an effective extraction means for the impulse feature
caused by the localized defect.

Then, the Kurtogram was adapted to analyze the same measured signal in Figure 27.
According to the maximum value principle shown in Figure 32, the envelope spectrum
of the signal filtered by the optimal frequency band between 3760 Hz and 3920 Hz is
demonstrated in Figure 33, where it is found that the repetition frequency of the impulses
is not prominent.
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There is no denying that the Kurtogram-based method has a certain ability to extract
the feature frequency of the impulses. However, in Figure 33, the transient feature of the
extracted signal was still disturbed by the noise and other frequencies, and the feature
frequency in the envelope spectrum was less clear when compared with the envelope
spectrum obtained by the proposed method, as shown in Figure 31b.

The RSVD method was also adapted for comparison. By integrating 30 singular com-
ponents, the spectrum and envelope spectrum of the reconstructed signal were obtained by
the third subspace and illustrated in Figure 34, from which multiple frequency bands can
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be selected. The corresponding feature frequency of the inner race fault was not evidently
displayed. Clearly, due to more frequency bands and noise contained in the vibration
signal, for the adaptive decomposition of SVD, the feature signal and noise components
were embedded in the same eigenvector subspace, which could affect the effect of the fault
frequency extraction.
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Figure 34. Spectrum and envelope spectrum of the 3rd subspace obtained by the RSVD method: (a) spectrum of the
reconstructed signal and (b) envelope spectrum of the reconstructed signal.

In summary, SKNMF outperforms two excellent techniques. To clarify the essence
of SKNMF, the coefficient matrices obtained by NMF, SNMF and KNMF are shown in
Figure 35. It is obvious that the NMF-based method has the worst sparsity, while the factor
matrix of KNMF is similar to SNMF because of its natural sparsity.
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Figure 35. Coefficient matrixes with other NMF-based methods: (a) NMF-based, (b) SNMF-based and (c) KNMF-based.
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Considering the distribution of subspace frequency band extracted by SKNMF, a
similar frequency band was also selected in three NMF-based methods. The time–frequency
subspace of NMF was selected with a union of the third, sixth and ninth subspaces. The
envelope spectrum of the corresponding signal showed the fault-related signatures in
Figure 36a. For the SNMF method, the union of the fifth and tenth subspaces was selected
for the extracted result, and the envelope spectrum of the signal provided fault information
in Figure 36b. Finally, KNMF was also adopted to process the weak signal and select the
union of the first, third and tenth subspaces for analysis. The envelope spectrum of three
extracted signals is plotted in Figure 36c. Although the envelope spectrum reflected the
fault frequency, the signal-to-noise ratio was much lower than that of Figure 31b.
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6. Conclusions

The vibration signal of a rolling bearing with a localized defect is generally a mixture of
multiple components, in which the characteristic component, revealing the latent impulses,
is often weak and difficult to detect. In this paper, a sparse kernel NMF model and
corresponding feature extraction method were proposed to address this concern.

Two cases, one with an outer race fault and another with an inner race fault, were
provided to illustrate that the proposed method can achieve the extraction of local weak
signatures under the strong interference of a background noise. The proposed method
was benchmarked by Fast Kurtogram, the SVD-based method, the NMF-based method,
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the SNMF-based method and the KNMF-based method. When the signal of interest was
submerged by a strong background noise, the Fast Kurtogram showed how to keep the
peak frequencies of interest below the noise level. The SVD-based method was confused
by its orthogonal constraints, which often induce the eigenvectors associated with multiple
frequency components, making the decomposition hard to understand and inducing
noise in the final results. As for the NMF-based method, although it can extract the
frequencies of interest, the final diagnosis result was not as clear as the proposed method.
The comparison analysis experiment confirmed that SKNMF was superior to the other
matrix decomposition methods, because it was sensitive to the different frequency bands
and could separate them adaptively. As the result, the experimental verification allowed us
to conclude that SKNMF is reliable enough to extract fault features and, hence, achieve early
fault detection. It should be noted that the proposed method used an alternate iteration
strategy, which made the algorithms not fast enough to be promoted for online monitoring.
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