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Abstract

Dysregulation of lipid metabolism is a major factor contributing to atherosclerotic cardiovascular 

disease (ACVD), which is the number one cause of death in western countries. The liver plays a 

central role in maintaining whole body cholesterol homeostasis via catabolism of cholesterol to 

bile acids, as well as biliary cholesterol excretion. The liver synthesizes lipoproteins that transport 

dietary cholesterol and fats to muscle and adipose tissue, directs reverse cholesterol transport 

of excess cholesterol from extrahepatic tissues and macrophages to the liver to convert to bile 

acids, and thus, protects against metabolism-related nonalcoholic fatty liver disease (NAFLD) 

and ACVD. Liver fibrosis/nonalcoholic steatohepatitis increases the risk and prevalence of 

cardiovascular disease morbidity and mortality. Bile acids are signaling molecules and metabolic 

regulators that activate farnesoid X receptor and G protein-coupled bile acid receptor-1 to regulate 

lipid, glucose, and energy metabolism. The bidirectional regulation of bile acids and the gut 

microbiota determine the rate of bile acid synthesis, the bile acid pool size, and the composition 

of the circulating bile acid pool. The liver-intestine-heart axis regulates lipid metabolism, 

inflammation, and the pathogenesis of metabolic diseases such as ACVD, NAFLD, diabetes, and 

obesity. This review focuses on the roles of liver-to-intestine, liver-to-heart and intestine-to-heart 

axes in cholesterol, lipoprotein, and bile acid metabolism; signaling in heart health and ACVD; 

and drug therapies for atherosclerosis.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is rapidly increasing worldwide and is an 

independent risk factor for atherosclerotic cardiovascular disease (ACVD).[1–4] NAFLD 

can progress to nonalcoholic steatohepatitis (NASH) with macrovascular ballooning, 

macrophage infiltration, and inflammation and fibrosis of the liver. A recent study has 

shown that NASH fibrosis can predict ACVD events and that there is a strong association 

between NASH fibrosis and ACVD morbidity and mortality.[1] ACVD and NAFLD are 

the manifestations of metabolic syndrome in the heart and liver, respectively. Metabolic 

syndrome is a collection of five abnormal symptoms: hypertension, hyperglycemia, 

hypertriglyceridemia, insulin resistance, and obesity.[5]

Diabetic and obese persons have a higher risk of NASH and ACVD than nondiabetic and 

nonobese persons.[6] Both NASH and ACVD are inflammatory diseases having causative 

factors in common, such as insulin resistance, hyperglycemia, dyslipidemia, and systemic 

inflammation.[1,6–8] Elevated serum low-density lipoprotein (LDL) cholesterol is a major 

risk factor for atherosclerosis. Accumulation of oxidized lipids in the intima of blood vessels 

causes thickening of the arterial wall, as well as inflammation and injury of the coronary 

artery. Cholesterol, fats, and other substances accumulate and form plaques in the aorta; this 

restricts blood flow and reduces elasticity of blood vessels.[7]

The liver plays a central role in lipid, glucose, and energy metabolism by absorbing dietary 

fats and cholesterol, synthesizing fatty acids and cholesterol from acetyl-CoA derived from 

glucose and free fatty acids (FFAs), and distributing fats and cholesterol in lipoproteins 

to other tissues and organs for energy metabolism.[9,10] Impairment of lipid homeostasis 

by high fat diet, insulin resistance, and genetic factors results in dyslipidemia, in which 

increased serum triglycerides (TGs) and cholesterol are linked to the pathogenesis of ACVD 

and NASH in humans.[8] It has been suggested that “atherosclerosis is a liver disease of 

the heart” emphasizing the critical role of the liver in producing lipids and lipoproteins 

to maintain heart health and prevent diseases.[10] This review focuses on the role of the 

liver-intestine-heart axis in cholesterol and bile acid metabolism and in the pathogenesis of 

ACVD. Most of the references cited in this review have been published in the last 10 years. 

Some historical and landmark references have also been cited.

Cholesterol Metabolism and Homeostasis

Cholesterol is an important component of biological membranes and serves as a precursor 

of steroids, sex hormones, and bile acids. The liver obtains cholesterol through three 

cholesterol input mechanisms: dietary absorption, LDL receptor (LDLR)-mediated uptake, 

and de novo synthesis.[11] The liver catabolizes cholesterol to bile acids, which facilitates 

biliary cholesterol secretion as the predominant cholesterol output mechanism. A small 

amount of cholesterol is used for cell membrane and steroid hormone synthesis. Cholesterol 

input and output need to be balanced to maintain whole body cholesterol homeostasis;[12] 

hence, alteration of cholesterol homeostasis contributes to the pathogenesis of NAFLD and 

ACVD. A brief description of cholesterol synthesis, lipoprotein metabolism, and bile acid 

synthesis are presented below.
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De novo Cholesterol Synthesis

All tissues and organs in our body can synthesize cholesterol. Cholesterol synthesis in the 

liver accounts for about 50% of the total cholesterol synthesized daily. In the postprandial 

state, excess glucose and fatty acids are oxidized to generate acetyl-CoA for the synthesis 

of cholesterol and fatty acids. In the de novo cholesterol synthesis pathway, β-hydroxy-

β-methylglutaryl-CoA (HMG-CoA) reductase is the rate-limiting enzyme for cholesterol 

synthesis. A series of enzymatic reactions convert mevalonate to farnesyl-pyrophosphate, 

squalene, lanosterol, and finally cholesterol. Cholesterol is a precursor to steroid hormones, 

vitamin D, and bile acids. De novo cholesterol synthesis is regulated by the intracellular 

levels of cholesterol/oxysterols, which regulate the maturation of sterol regulatory element 

binding protein-2 (SREBP-2), an important transcription factor that regulates the cholesterol 

synthesis pathway.[13] When intracellular cholesterol levels are high, the SREBP-2 precursor 

forms a complex with insulin-induced gene and SREBP cleavage-activating protein (SCAP), 

and the complex is retained in the endoplasmic reticulum (ER) membrane.[14] When 

intracellular cholesterol levels decrease, SCAP escorts the SREBP-2 precursor to the 

Golgi, where two steroid-sensitive proteases cleave an N-terminal fragment transcription 

factor that is subsequently translocated to the nuclei to activate transcription of its target 

genes, including LDLR and a number of key genes involved in de novo cholesterol 

synthesis.[15] Activated SREBP-2 binds to the steroid response elements located in the 

promoters of cholesterol synthesis genes and activates gene transcription. Oxysterols are 

endogenous ligands of liver X receptor (LXR),[16,17] which plays an important role in 

the regulation of lipogenic pathways including cholesterol and fatty acid synthesis and 

transport. Activation of LXR by oxysterols promotes the pathogenesis of atherosclerosis.[18] 

In contrast, activation of LXR in macrophages protects against atherosclerosis.[19]

Lipoprotein Metabolism

Lipoproteins contain a hydrophobic core, consisting of TGs and cholesterol esters (CEs), 

and an outer layer, consisting of phospholipids, free cholesterol (C) and apolipoproteins.
[9] The major lipoproteins are chylomicrons (CMs), very LDL (VLDL), LDL, and high-

density lipoprotein (HDL). These lipoproteins contain several classes of apolipoproteins: 

ApoA, ApoB, ApoC, ApoD, and ApoE, which serve as structural proteins and effectors 

or ligands for lipoprotein receptors. These lipoproteins contain different amounts of TGs 

and cholesterol and transport them to other organs and tissues. Dietary lipids are the major 

source of fats, phospholipids, and cholesterol in humans. Bile acids released from the 

gallbladder in the postprandial state emulsify fats to form lipid micelles, which are absorbed 

in the intestine and transferred to the liver for distribution to other organs and tissues.

Cholesterol Transport from Liver to Other Tissues

The liver synthesizes lipoproteins and assembles VLDL for the transport of TGs to 

extrahepatic tissues for energy metabolism[9] [Figure 1]. In the postprandial state, dietary 

TGs transported to the liver by CMs are hydrolyzed to FFAs and glycerol for energy 

metabolism. CEs are hydrolyzed to free cholesterol by cholesteryl esterase (CES) for bile 

acid synthesis. Excess FFAs are re-esterified to glycerol to form TGs and free cholesterol 
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is re-esterified to CE by acyl-CoA:cholesterol acyltransferase 2 for storage and transport to 

other tissues. Liver microsomal TG transfer protein transfers TGs to ApoB100 (B-100) in 

the ER to form nascent VLDL, which acquires ApoE and ApoCII from HDL via cholesteryl 

ester transfer protein (CETP) to form mature VLDL for secretion into blood circulation. On 

the surface of the blood capillary wall of muscle and adipose tissue, lipoprotein lipase is 

activated by ApoCII carried by VLDL to hydrolyze TGs to FFAs and glycerol for energy 

metabolism. VLDL releases some TGs to reduce its size and increase its density to form 

LDL, which is bound by LDLR, an ApoB100 receptor.

In the liver and other tissues, LDLRs bind ApoB100 carried by LDL to deliver CEs 

to cells via receptor-mediated endocytosis.[20] Free cholesterol is sorted to the ER and 

Golgi membranes and is redistributed to intracellular and plasma membranes. Mutations 

of the LDLR gene impair LDL binding and internalization, as well as lysosomal 

hydrolysis, recycling and secretion, and cause hypercholesterolemia and severe familial 

hypercholesterolemia (FH).[21] Patients with FH have very high serum LDL cholesterol 

(>500 mg/dl) and premature ACVD. More recent studies have identified a natural LDLR 

inhibitor, proprotein convertase subtilisin kexin type 9 (PCSK9), which regulates the LDLR 

secretory pathway by stimulating degradation of LDLRs.[22] Mutations in the PCSK9 gene 

impair LDLR endocytosis in FH.[23,24] Hepatic PCSK9 expression is regulated by insulin 

and SREBP-1C.[25]

Reverse Cholesterol Transport

The transport of cholesterol from peripheral tissues and macrophages to the liver for 

conversion to bile acids is called reverse cholesterol transport (RCT). RCT is the major 

route for removing excess cholesterol and oxysterols from macrophages to prevent foam-cell 

formation in the aortic wall and protect against atherosclerosis.[8,26,27] ATP-binding cassette 

transporter A1 (ABCA1; synthesized in liver and intestine) and ATP-binding cassette 

transporter G1 (ABCG1) efflux cholesterol and phospholipids to ApoAI to form nascent 

HDL [Figure 1]. CETP catalyzes the exchange of TGs for CEs and transfers ApoCII 

and ApoE from VLDL to nascent HDL to form mature HDL.[28,29] In hepatocytes, HDL 

binds to scavenger receptor-B1 (SR-B1) to deliver TGs and CEs to the liver[9] [Figure 1]. 

Hepatic lipase on the surface of the hepatic blood capillary wall hydrolyzes TGs to FFAs to 

deliver FFAs to hepatocytes.[30] In hepatocytes, CE is hydrolyzed to free cholesterol, which 

is catabolized to bile acids, and this completes the RCT process. Stimulating RCT from 

macrophages to liver accelerates conversion of cholesterol to bile acids and protects against 

atherosclerosis.

Bile Acid Synthesis

The liver exclusively contains all the enzymes required for catabolism of cholesterol to bile 

acids, which is the predominant use of cholesterol in the body. Bile acid synthesis involves 

17 enzymes located in microsomes, cytosol, mitochondria, and peroxisomes.[31–33] Here, 

only the regulatory cytochrome P450 (CYP) enzymes in bile acid synthesis are described. 

In humans, cholic acid (CA) and chenodeoxycholic acid (CDCA) are the two primary bile 

acids synthesized in the liver [Figure 2]. Cholesterol 7α-hydroxylase (CYP7A1) catalyzes 
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the first and rate-limiting step in the classic bile acid synthetic pathway to synthesize 

7α-hydroxycholesterol, which is converted to 7α-hydroxy-4-cholesten-3-one (C4). Serum 

C4 levels are currently used as a surrogate marker for the rate of bile acid synthesis. 

Sterol 12α-hydroxylase (CYP8B1) is required for hydroxylation at the C-12 position 

leading to synthesis of CA; in the absence of this step, CDCA is produced. Mitochondrial 

sterol 27-hydroxylase (CYP27A1) oxidizes the steroid sidechain of intermediates leading 

to cleavage of a 3C unit to produce C24 bile acids. Bile acids recycled to the liver 

and bile acid-CoA synthesized in the liver are immediately conjugated to the amino 

acid taurine (T) or glycine (G) by bile acid:amino acid transferase and bile acid:CoA 

synthase, respectively, to form T-or G-conjugated bile acids, which are secreted into 

bile. The alternative bile acid synthesis pathway is initiated by CYP27A1 to generate 27-

hydroxycholesterol from cholesterol. The nonspecific oxysterol 7α-hydroxylase (CYP7B1) 

catalyzes 7α-hydroxylation of 27-hydroxycholesterol. CYP27A1 is highly expressed in 

macrophages to generate 27-hydroxycholesterol, which is 7α-hydroxylated by CYP7B1.[34] 

27-Hydroxycholesterol is an endogenous LXR agonist in cholesterol-loaded macrophages.
[35] Cholesterol-loading activates LXR to induce ABCA1 and ABCG1 in macrophages 

to efflux cholesterol and oxysterols [Figure 2]. It has been suggested that the transport 

of 27-hydroxycholesterol from macrophages to the liver for bile acid synthesis is a RCT 

process to protect against atherosclerosis.[36] CYP27A1 and CYP7B1 are expressed in many 

extrahepatic tissues, such as the heart, brain, and kidney, and play a key role in the regulation 

of oxysterol synthesis and steroid hormone synthesis in the adrenal glands.[34]

Transformation of Bile Acids in the Gut

The gut-to-liver axis plays a critical role in bile acid synthesis and metabolism.[37] The gut 

microbiota metabolizes primary bile acids to secondary bile acids, which in turn control 

gut bacterial overgrowth. In the postprandial state, the duodenum releases cholecystokinin 

to stimulate gallbladder contraction and secretion of bile into the gastrointestinal tract for 

emulsification of fats and nutrients. Most bile acids (~95%) are reabsorbed in the ileum. 

A small amount of bile acids enter the colon, where gut bacterial bile salt hydrolases 

(BSHs) de-conjugate T/GCA and T/GCDCA [Figure 2].[38,39] Subsequently, bacterial 7α-

dehydroxylase removes a 7-hydroxyl group from CA and CDCA to form the secondary bile 

acids deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. These secondary 

bile acids are highly insoluble and toxic and are mostly excreted in the feces. Some 

DCA is passively reabsorbed in the colon and secreted into the circulating bile acid pool. 

Most LCA is excreted in feces; a small amount of LCA circulated to the liver is rapidly 

sulfur-conjugated by sulfotransferases and excreted in urine. In humans, a small amount 

of CDCA is converted to ursodeoxycholic acid (UDCA) by bacterial 7α/β-hydroxysteroid 

dehydrogenase. Isomerization of CDCA to UDCA converts the highly hydrophobic CDCA 

to the highly soluble UDCA. In humans, the bile acid pool consists of the hydrophobic bile 

acids CA, CDCA, and DCA in an approximate 40:40:20 ratio, and bile acids are conjugated 

to G and T in a ratio of 3:1. The gut bacterial enzymes BSH and 7α-dehydroxylase play a 

critical role in the regulation of bile acid synthesis, pool size, and homeostasis. Alteration 

of bile acid composition and pool size by gut bacteria causes dysbiosis and significantly 

Chiang et al. Page 5

Cardiol Plus. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impacts the host metabolism, as well as pathogenesis of metabolic liver and heart diseases.
[39–43]

Enterohepatic Circulation of Bile Acids

In the ileum, conjugated bile acids are reabsorbed along with fats, cholesterol, and lipid-

soluble vitamins for delivery to the liver and distribution to other organs and tissues. 

This enterohepatic circulation (EHC) of bile acids from the intestine to the liver is highly 

efficient, recovering ~95% of bile acids in the pool to inhibit bile acid synthesis in the 

liver [Figure 3].[31,44] A small amount (5%) of bile acids lost in feces is replenished 

by de novo synthesis in the liver. The EHC of bile acids involves several bile acid 

transporters [Figure 3].[32] At the canalicular membrane, bile salt export pump (BSEP, 

ABCB11) effluxes bile acids to bile, multidrug resistance associated protein (ABCC2, 

MRP2) effluxes conjugated-bile acids, multi-drug resistant protein 2 (MDR2, ABCB4) 

effluxes phospholipids and the ABCG5/G8 heterodimer effluxes cholesterol into bile. Bile 

acids, phospholipids, and cholesterol form mixed micelles in bile to increase cholesterol 

solubility and reduce bile acid toxicity. Bile acids are reabsorbed into intestinal cells by 

apical sodium-dependent bile acid transporter (ASBT) located in the brush border membrane 

and are transported to the basolateral membrane for secretion into portal blood by the 

heterodimeric organic solute transporters (OSTα and OSTβ). In the apical membrane of 

enterocytes, the ABCG5/G8 transporter effluxes plant sterols and cholesterol to prevent 

absorption of plant sterols and limit dietary cholesterol absorbed by Niemann-Pick C1-like 

protein (NPC1 L1). In hepatocytes, the bile acid transporter Na+-dependent taurocholate 

co-transport peptide (NTCP) located in the sinusoidal membrane absorbs bile acids in 

exchange for Na+. These bile acid transporters may play an important role in protection 

against cholestasis when bile acids accumulate in hepatocytes. Interrupted EHC of bile acids 

contributes to metabolic syndrome, cholestatic liver disease, inflammatory bowel disease, 

diarrhea, and gallstone disease.[32,45]

Transintestinal Cholesterol Excretion

Biliary cholesterol secretion and catabolism of cholesterol to bile acids are the main 

mechanisms for cholesterol excretion from the body. RCT is the main pathway for removing 

excess cholesterol from peripheral tissues and macrophages. However, recent studies have 

implicated a role for the intestine in nonbiliary cholesterol excretion via direct fecal neutral 

sterol excretion called transintestinal cholesterol excretion [TICE; Figure 3]. In the intestine, 

NPC1 L1 and ABCG5/G8 are involved in TICE.[46,47] TICE is inducible by PCSK9 

inhibitors or HMG-CoA reductase inhibitors (statins).[48,49] In both mice and humans, TICE 

can be stimulated by a NPC1 L1 inhibitor, ezetimibe, which induces ABCG5/ABCG8 to 

efflux cholesterol from the intestine to prevent atherosclerosis.[50,51]

Bile Acid-Activated Receptors in Atherosclerosis

Bile acid synthesis and the EHC of bile acids are regulated by the bile acid-activated nuclear 

receptor farnesoid X receptor (FXR).[32,52] FXR plays a central role in the regulation of 

glucose, lipid, and energy metabolism.[53,54] FXR is highly expressed in the gastrointestinal 
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tract, acts as a sensor of bile acid levels in hepatocytes and enterocytes, and coordinately 

regulates transcription of a network of genes in bile acid synthesis, conjugation, and 

transport. In the liver, activation of FXR by bile acids induces the nuclear receptor small 

heterodimer partner, which negatively regulates bile acid synthesis by inhibiting CYP7A1 
gene transcription [Figure 3].[55,56] FXR also induces BSEP to stimulate bile acid efflux 

into bile and inhibits NTCP to suppress bile acid uptake by hepatocytes.[57] In the intestinal 

ileum, FXR induces an enteroendocrine hormone known as fibroblast growth factor 19 

(FGF19) [Figure 3].[58] FGF19 circulates to hepatocytes to activate the FGF receptor 4/β-

Klotho complex on the cell membrane, inhibiting CYP7A1 and CYP8B1 gene transcription 

[Figure 3].[32,58]

Activation of FXR has been shown to stimulate RCT, increase fecal cholesterol excretion, 

and reduce pro-inflammatory cytokines to attenuate atherosclerosis.[30,59–61] FXR is 

expressed in vascular smooth muscle and atherosclerotic blood vessels.[62] Accumulation 

of bile acids has been shown to induce cardiomyopathy and cardiac function by decreasing 

expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which 

is involved in energy metabolism in the heart.[63] It has been reported that activation of 

FXR contributes to myocardial ischemia-reperfusion injury.[64] Deficiency of FXR impairs 

bile acid synthesis and increases serum bile acids, cholesterol, TGs, and pro-atherogenic 

lipoprotein profile in mice.[65] However, activation of FXR reduces ApoAI and ApoCIII 

expression; thus, it may reduce serum HDL and TGs in humans.[66,67]

The secondary bile acids LCA and DCA activate G-protein coupled bile acid receptor-1 

(Gpbar-1, also known as TGR5) in enteroendocrine L cells to stimulate secretion of 

glucagon-like peptide 1 (GLP-1), which stimulates insulin secretion in the pancreas to 

improve insulin sensitivity [Figure 3].[32,68,69] TGR5 is widely expressed in most tissues, 

including the heart. Activation of TGR5 has been shown to improve myocardial function,
[70] induce nitric oxide production and reduce monocyte adhesion in vascular endothelial 

cells,[71] stimulate smooth muscle relaxation,[72] and reduce macrophage inflammation 

and atherosclerosis.[73,74] Activation of both FXR and TGR5 protects mice against 

atherosclerosis.[75]

Gut Microbiota and Atherosclerosis

The role of the gut microbiota in lipid metabolism and atherosclerosis has been implicated.
[43,76–81] Proinflammatory gut bacteria have been shown to increase systemic inflammation 

and promote atherosclerosis in mice.[43] Secondary bile acids and lipopolysaccharide 

(LPS) generated by intestinal bacteria are transported to the heart and liver and cause 

inflammation. The gut bacteria convert choline (derived from phosphatidylcholine) and 

L-carnitine to trimethylamine (TMA) by the action of TMA lyases [Figure 4]. TMA 

is circulated to the liver and converted to trimethylamine-oxide (TMAO) by flavin-

containing monooxygenase 3 (FMO3). Serum TMAO levels have been linked to increased 

cardiovascular events.[82,83] TMAO impairs RCT, as indicated by increased macrophage 

cholesterol and oxLDL, CD36 and SR-A1 receptors, and foam-cell formation, to promote 

atherosclerosis in a gut microbiota-dependent manner.[78] TMAO supplementation in diet 

suppresses CYP7A1 and CYP27A1 expression, increases hepatic cholesterol, and decreases 
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the total bile acid pool.[78] TMAO also suppresses expression of intestinal NPC1 L1 and 

ABCG5/ABCG8, thereby reducing intestinal cholesterol absorption.[78]

Lipid-Lowering Therapies for Treating Atherosclerosis and Familial 

Hypercholesterolemia

Serum bile acid levels vary in individuals, and increased fasting bile acids and serum C4 

are correlated with type 2 diabetes (T2D) and ACVD.[84] Disruption of RCT contributes 

directly to the accumulation of oxidized LDL and fatty foam cells in the endothelium of 

the aortic wall and to the pathogenesis of atherosclerosis. A study conducted about 50 years 

ago reported that interruption of the EHC of bile acids by cholestyramine increased ileal 

excretion of cholesterol and reduced hypercholesterolemia in humans.[85] Cholestyramine 

reduces serum cholesterol and LDL-cholesterol in T2D.[86] Cholestyramine reduces the 

bile acid pool to stimulate bile acid synthesis and increases LDLR gene expression to 

reduce hepatic cholesterol and LDLR-mediated uptake of cholesterol from blood circulation, 

thereby reducing hypercholesterolemia.[87] Patients with hyperlipoproteinemia treated with 

cholestyramine had increased bile acid and TG synthesis, whereas those treated with 

CDCA had reduced bile acid and TG synthesis.[88] Cholestyramine also reduces FGF19 

induced by FXR in intestine, thus derepressing CYP7A1 to stimulate bile acid synthesis.[89] 

Cholestyramine, colestipol, and second generation bile acid binding resins colesevelam and 

colestimide have been used to treat hypercholesterolemia, cholesterol gallstone disease, 

and T2D.[90–93] Cholestyramine significantly reduced atherosclerosis progression in a 

clinical trial of patients with coronary heart disease.[94] Bile acids may be used to treat 

atherosclerosis by regulating lipoprotein metabolism. ABCA1, ABCG1, and HDL are 

potential targets for the treatment of atherosclerosis.[95]

Statins are potent lipid-lowering drugs that inhibit HMG-CoA reductase activity in the de 
novo cholesterol synthesis pathway, and thus, have been used successfully to reduce the 

risk of ACVD events in humans. Although statins alone are not sufficient for treating 

FH, a combination of statins and cholestyramine has been shown to alter lipoprotein 

profile and lower LDL cholesterol, as well as to safely treat FH.[96–98] However, statins 

are not recommended for pregnant women and some patients who are resistant to statins 

may develop unwanted side effects of muscle pain and liver injury. Drugs designed to 

increase HDL cholesterol have been further developed for treating FH. Ezetimibe and 

niacin modestly reduce LDL cholesterol and increase HDL cholesterol. Torcetrapib, a CETP 

inhibitor, has been shown to effectively increase HDL cholesterol levels and stimulate RCT 

in mice[99] and humans.[29,100] However, a clinical trial of torcetrapib for atherosclerosis 

was withdrawn due to high mortality rate.[101,102] As an alternative to statins, PCSK9 

inhibitors were developed for reducing LDL cholesterol and ACVD risk.[103] PCSK9 

inhibitors have been shown to augment circulating LDLRs to hepatocytes to accelerate 

clearance of LDL. The FDA recently approved two PCSK9 monoclonal antibodies for 

treating FH. Statins inhibit the synthesis of oxysterols and reduce the activation of LXR 

by oxysterols in hepatocytes.[104] Activation of LXR specifically in macrophages reduces 

inflammation and atherosclerosis. Therefore, drugs specifically targeting macrophages may 

be designed to treat atherosclerosis.[105,106]
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Obeticholic acid (OCA) is a potent bile acid derivative that activates FXR to reduce 

hepatic lipid synthesis and improve glucose and insulin sensitivity in patients with NAFLD.
[37,107–109] OCA may also be used to treat atherosclerosis. Activation of FXR represses 

PCSK9 in human hepatocytes.[110] However, OCA reduces serum ApoAI and HDL 

cholesterol levels, and may have adverse effects in atherosclerosis.[8,111,112]

Conclusion

The liver plays a central role in lipid metabolism and homeostasis by providing TGs and 

cholesterol to the heart and other tissues. Catabolism of cholesterol to bile acids and biliary 

cholesterol secretion are the predominant mechanisms to remove excess cholesterol from 

the body and protect against atherosclerosis. Bile acid signaling via activating FXR in the 

gut-to-liver axis plays a key role in the regulation of the EHC of bile acids, as well as bile 

acid synthesis, composition, and pool size, to maintain bile acid homeostasis and regulate 

whole body lipid homeostasis.[41,76,77,113,114] The liver, heart, and intestine are linked by 

lipoproteins, bile acids and gut bacterial metabolites to control bile acid and cholesterol 

signaling [Figure 4]. The liver-to-heart axis is regulated by normal cholesterol transport to 

deliver cholesterol to the heart, RCT to transport oxidized cholesterol from macrophages 

to the liver for catabolism to bile acids, and LDLR-mediated endocytosis to remove excess 

cholesterol from macrophages and extrahepatic tissues to prevent atherosclerosis. The liver-

to-intestine axis is important to bile acid metabolism and to the control of gut bacterial 

overgrowth to prevent inflammation and injury to the liver and heart. The intestine can 

directly excrete cholesterol to feces through TICE. The intestine-to-liver axis and intestine-

to-heart axis link the gut bacteria metabolite TMA to the liver to form TMAO, which 

impairs RCT and atherosclerosis. Further study of the impact of the gut microbiota on heart 

diseases will be important for developing alternate drug therapies to the use of statins for 

ACVD. Probiotics may be used for ACVD treatment in human patients in the future, as they 

modify gut microbiota and induce bile acid synthesis and have been shown to protect against 

NASH and atherosclerosis in mouse models.[115–118]
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Figure 1: 
Cholesterol and lipoprotein metabolism. (1) Cholesterol transport from the liver to 

peripheral tissues; (2) Reverse cholesterol transport from peripheral tissues and macrophages 

to the liver. ER: endoplasmic reticulum, CYP7A1: cholesterol 7-hydroxylase, CYP8B1: 

sterol 12-hydroxylase, CYP27A1: sterol 27-hydroxylase, CA: cholic acid, BACS: bile acid 

CoA synthase, CDCA: chenodeoxycholic acid, DCA: deoxycholic acid, LCA: lithocholic 

acid, UDCA: ursodeoxycholic acid, CYP7B1: oxysterol 7-hydroxylase
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Figure 2: 
Bile acid synthesis in the liver, heart and other tissues, and biotransformation in the intestine. 

LDLR: LDL receptor, SR-A1: scavenger receptor A1, CE: Cholesterol esters, ACAT2: acyl-

CoA: cholesterol acyltransferase 2, C: cholesterol, MTTP: microsomal triglyceride transfer 

protein, HL: Hepatic lipase, SR-B1: scavenger receptor B1, PCSK9, proprotein convertase 

subtilisin kexin type 9, LDLR: LDL receptor, VLDL: very low-density lipoprotein, LRP: 

LDL receptor related protein, HL: Hepatic lipase, TG: triglycerides, FFA: free fatty acids, 

CETP: cholesteryl ester transfer protein
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Figure 3: 
Farnesoid X receptor regulation of enterohepatic circulation of bile acids and transintestinal 

cholesterol excretion. FGF19: fibroblast growth factor 19, SHP: small heterodimer partner, 

FXR: farnesoid X receptor, CYP7A1: cholesterol 7-hydroxylase, NTCP: Na+-dependent 

taurocholate co-transport peptide, BSEP: bile salt export pump, ASBT: apical sodium-

dependent bile acid transporter, TGR5: Takeda G protein receptor 5, GLP-1: glucagon-like 

peptide 1, TICE: transintestinal cholesterol excretion, NPC1L1: Niemann-Pick C1-like 

protein
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Figure 4: 
Interactions of the liver, heart, and intestine in lipid metabolism. The liver-to-heart, liver-

to-intestine, and intestine-to-heart axes are shown. CYP7A1: cholesterol 7-hydroxylase, 

TMA: trimethylamine, FXR: farnesoid X receptor, SR-B1: scavenger receptor B1, TMAO: 

trimethylamine-oxide, VLDL: very low-density lipoprotein, LDL: low-density lipoprotein, 

RCT: reverse cholesterol transport, TGR5: Takeda G protein receptor 5, EHC: enterohepatic 

circulation, TMA: trimethylamine, CM: chylomicrons, FGF19: fibroblast growth factor 

19, BSH: bile salt hydrolases, DCA: deoxycholic acid, LCA: lithocholic acid, TMA: 

trimethylamine, GLP-1: glucagon-like peptide 1, TICE: transintestinal cholesterol excretion
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