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Abstract

Background: Active learning is a powerful tool for guiding an experimentation process. Instead of doing all possible
experiments in a given domain, active learning can be used to pick the experiments that will add the most knowledge
to the current model. Especially, for drug discovery and development, active learning has been shown to reduce the
number of experiments needed to obtain high-confidence predictions. However, in practice, it is crucial to have a
method to evaluate the quality of the current predictions and decide when to stop the experimentation process. Only

saved.

experiments for highly accurate predictions.

by applying reliable stopping criteria to active learning can time and costs in the experimental process actually be

Results: We compute active learning traces on simulated drug-target matrices in order to determine a regression
model for the accuracy of the active learner. By analyzing the performance of the regression model on simulated data,
we design stopping criteria for previously unseen experimental matrices. We demonstrate on four previously
characterized drug effect data sets that applying the stopping criteria can result in upto 40 % savings of the total

Conclusions: We show that active learning accuracy can be predicted using simulated data and results in
substantial savings in the number of experiments required to make accurate drug-target predictions.

Keywords: Active learning, Drug-target prediction, Simulation, Matrix factorization, Regression

Background

A critical step in developing new therapeutics is fre-
quently to conduct large scale searches for potential drugs
that can affect a desired target. Recently, it has become
clear that finding successful drugs also requires search-
ing for the absence of undesired effects on other targets.
This need can often not be met by exhaustive experimen-
tation due to cost, but selective experimentation driven by
machine learning (a process referred to as active learning)
may provide an alternative [1]. The heart of active learning
is having good predictive models to guide experimen-
tation. Recent studies show that drug-target prediction
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algorithms can speed-up the discovery of new drugs (e.g.,
[2-5]).

Current drug-target prediction methods are coarse
grained over at most a handful of ‘campaigns’ In these, a
classifier is trained with relatively large amounts of train-
ing data resulting from exhaustive screening, and then
verified on a small test set. These data are generally iden-
tified manually, and limited to human ’expert’ knowledge.
This process is generally only performed once, or at most a
handful of times due to the expense of exhaustive screen-
ing over many compounds. This procedure limits the
generalization capability of the model and does not allow
for an optimal exploration of the drug-target interaction
space. Alternatively, active learning methods can be used
to iteratively build a model of drug-target interactions.
Instead of relying on large training data sets, the active
learning procedure enlarges the training set stepwise,
guided by the predictions on small, automatically-selected
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test sets. Thus time and experimental costs are spent on
improving the general model rather than for the verifica-
tion of a small specific model that does not account for the
large space of chemical compounds and targets. The gen-
eral model has the potential to predict side-effects early
on in the drug design process, since a larger number of
drugs and targets are considered in the drug-target predic-
tion matrix. A critical point when using active learning to
guide experimentation is to decide when to stop, since the
goal is to perform as few experiments as possible in order
to have the best model. The best stopping time is reached
when adding new experiments to the training set will not
appreciably improve the accuracy on the test set. The diffi-
culty, of course, is that calculating the true accuracy of the
model requires all of the data. Therefore, reliable methods
for predicting the accuracy of the current model during an
active learning cycle are desired. This would allow exper-
imentation to stop when a predefined confidence on the
output of the model is reached.

A natural question is how such an active learning strat-
egy is related to classical statistical approaches [6, 7] to
design experiments with incomplete coverage of factors to
estimate response surfaces. In the case of a large number
of parameters in the model (multiple drugs and multi-
ple targets), these methods are very slow and adapting
them to model a large number of parameters is challeng-
ing [8]. Furthermore, the most critical difference between
the active learning strategy such as the one proposed in
our work and the classical statistical setup of design of
experiments is that they provide guarantees on the con-
centration of parameters conditional on having observed
sufficiently many experiments with particular arrange-
ments, but not guarantees on the optimality of the learned
model up to that point. Our goal is to learn the most
accurate model possible regardless of the number of
experiments performed.

Previous work in drug-target prediction has generally
addressed active learning methods or drug-target predic-
tion methods, but rarely both. For example, active learning
has been used to identify active compounds from a large
pool of compounds targeting a single molecule [9]. Active
learning has also been applied in the context of cancer
research [10]. Several methods for drug-target predic-
tion without active learning have been proposed recently
[11-17] and remain an active area of research. The focus
of this work is not to promote a particular drug-target pre-
diction method, but to show using matrix factorization as
an example of how drug-target prediction can be com-
bined with active learning and lead to reductions of exper-
imentation cost. Initial results on applying active learning
for drug-target prediction on multiple drugs and multi-
ple targets simultaneously have been reported [18, 19],
with and without requiring prior knowledge of drug or
target similarities. Dramatic benefits of active learning on
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a large dataset from PubChem using drug and target sim-
ilarities have been reported, but without consideration of
when to stop experimentation [19]. A method for pre-
dicting the accuracy of models learning by active learning
for the purpose of developing a stopping rule has been
described, but it was not applied to the particular problem
of drug-target prediction [18].

Several stopping rules for active learning have been con-
sidered in the past [20-22], however there has been little
analysis of which performs the best in general. Four sim-
ple stopping criteria based on confidence estimation over
the unlabeled data pool and the label consistency between
neighboring training rounds of active learning have been
presented [22]. Instead of using a single criterion to stop,
combining different stopping criteria in a feature vector
describing the active learning trajectory has been pro-
posed [18]. The features of trajectories on simulated data
are used to train a regression function in order to predict
the accuracy of active learning algorithms on unseen sim-
ulated data. Here we will follow this approach and adopt
it to the binary drug-target prediction case.

The major goals of our active learning system are: (1)
We want to have a fast and reliable method to eluci-
date drug-target interactions. (2) Previous knowledge on
similarities between drugs and similarities between tar-
gets should be included in the model, so that predictions
for new drugs or targets (for which no experiments are
available) are possible. (3) The number of experiments
required to make confident predictions should be system-
atically reduced. (4) An efficient stopping rule for ending
the active learning process should be designed.

Previously, kernel-based matrix factorization [23] has
been shown to provide good models of drug-target
interactions [24]. In the kernelized Bayesian matrix
factorization (KBMF) algorithm [24, 25], the drug-target
interaction matrix is factorized by projecting the drugs
and the targets into a common subspace, where the pro-
jected drug matrix and the projected target matrix can be
multiplied in order to produce a prediction for the drug-
target interaction matrix. The entries of the prediction
matrix are modeled using truncated normal distributions.
The projected drug matrix and target matrix are based on
two different kernels: a drug specific kernel and a target
specific kernel. A kernel encodes the similarity between
the drug and the target features. Thus prior information
can be easily inserted into the model. Furthermore, the
knowledge of the full interaction matrix is not needed in
order to make predictions for new drugs, which is not the
case for previous methods (i.e. [12]).

The main contributions of this work are: (i) We use
KBMF to construct a powerful and practical active
learning strategy for analyzing drug-target interactions.
(i) We extend previous work [18] on estimating the
accuracy of active learning predictions to the KBMF case
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and show how it can be used to construct a stopping
rule for experimentation. (iii) We provide a proof of con-
cept through evaluation of the method on four data sets
previously used for modeling of drug-target interactions
[26]. (iv) We show the superiority of the proposed active
learning approach compared to random choice of an
equivalent number of experiments.

Methods

Active learning framework

An active learning method is an iterative process com-
posed of four components: the initialization, the model,
the active learning strategy and an accuracy measure
for the predicted output in each step (Fig. 1). Most
active learning papers focus on the second and third
components. The active learning framework starts with
an initialization strategy which is followed by the gen-
eration of a model. The model is used to make pre-
dictions, in our application drug-target interactions are
predicted. Interactions can be measured by performing
an experiment, i.e. a direct assay of drug-target interac-
tion (e.g., in cell extracts). Based on the predictions, an
active learning strategy is applied to query new exper-
iments (labels) which will improve the model. We use
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batchwise learning, where a fixed number of experi-
ments is queried in each training round thereby increasing
the size of experiments with known label. Each train-
ing round defines a time-point in the active learning
process and is measured by the number of batches of
experiments performed. For each time-point the accu-
racy of the model is predicted. The process is stopped
for example, if a certain budget for performing exper-
iments is reached or the predicted accuracy of the
model is high enough. We assume equal cost for each
experiment.

Data representation

We use interaction matrices Y € {—1, 1}N>M to represent
drug-target interactions. We assume that the outcome of
the experiment determines the ground truth label / €
L = {—1,1} for an interaction matrix entry. N € N is the
number of drugs, M € N is the number of targets. Knowl-
edge of the interaction between a drug d € {1,2,..,N}
and a target ¢ € {1,2,..,M} is ternary encoded in the
experimental matrix X: +1 for an interaction, —1 for lack
of interaction, and 0 to denote experiments which have
not yet been performed. Hereby, the set of remaining
experiments (unlabeled data) will be denoted by X =

0 15 D % 0
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Fig. 1 The major components of an active learning framework. The entries of the matrix are color coded: label not known (light gray), interaction
(black), no interaction (white). At initialization a subset of known labels for the interactions matrix and the drug and target kernels Kg and K¢ are
provided. In each round of the active learning algorithm, the labels of the entire interaction matrix are predicted and used to determine which
labels to query next. In this figure, the dark red values represent a high probability for a hit, whereas the dark blue values represent a high probability
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{x = (d,t)|X(x) = 0}. Therefore, we consider a semi-
supervised binary labeling problem where the sign of the
label indicates the interaction status between a drug and a
target.

Kernelized Bayesian matrix factorization (KBMF)

We use drug and target kernel matrices respectively to
represent the pairwise similarity of drugs to one another
and the pairwise similarity of targets to one another. These
similarities are values between zero and one, where zero
indicates no similarity and one indicates the highest sim-
ilarity. All the values on the diagonal of the kernel are
therefore one. In order to compute the similarities for
the target kernel matrix we use the normalized Smith-
Waterman score [27] which uses the sequence informa-
tion of two proteins to compute similarities. Other pos-
sibilities to compute the similarity between proteins are
to first compute features using programs like ProtParam
[28] or Prosite [29] as employed previously [19] and then
compute the similarity between the features using a dis-
tance metric. For computing the similarity between drugs
we used SIMCOMP [30], a program which uses graphs to
represent drugs and computes the similarity between two
drugs by searching the maximal common subgraph iso-
morphism. Other tools to compute the similarity between
drugs are included in the OpenBabel package [31].

As  described previously [24, 25], KBMF can be
effectively applied to model drug-target interactions. It
approximates the interaction matrix by projecting the
drug kernel Kg € RN*N and the target kernel K¢ € RM>*M
into a common subspace of dimension R € N such that the
interaction matrix Y can be reconstructed from the sign
of its prediction matrix F € RM*N:

1 ifF(d,t) >0
1 else.

Y(d,t) = { B (1)
The prediction matrix F is a product of the projected
kernel matrices:

F= ((Ad)TKd)T (A07K:), @)

where Aq € RV*R and A¢ € RM*R are subspace transfor-
mation matrices computed by the variational Bayes algo-
rithm [24, 25] using the values of the experimental matrix
X. The dimension R of the subspace is a free parameter; we
used the value of 20 previously determined to be optimal
for these datasets [25]. The entries of the kernel matrix Kq
and K are a measure of the pairwise similarities between
drugs and targets respectively. The similarity matrices
provided by Yamanishi et al. [26] and the KBMF imple-
mentation of semi-supervised classification provided by
Goenen [25, 32] were used.

Note that it is not possible to factor the interaction
matrix Y by multiplying the drug and target kernels
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directly, since they are matrices of differing dimension.
Therefore transformation matrices Aq and A are needed
which project the drug kernel and the target kernel into
a common subspace. Since the product of the trans-
formed kernels F should reflect the observed experiments
as well as possible, the values of Ay and A4 are found
such that they maximize the posterior probability of
having observed the experimental matrix X along with
some prior information on the distribution of the ele-
ments in the transformation matrices. Goenen [24, 25]
used a graphical model to represent the relationships,
and provided a detailed derivation of an efficient infer-
ence scheme using variational approximation. The KBMF
algorithm is an iterative algorithm which converges usu-
ally after 200 iterations. The values of the kernels do not
necessarily have to be in the range zero to one, since
the scaling of the kernels is implicitly encoded in the
transformation matrices.

Initialization and experiment selection

Our initialization strategy is to select a random column
and one random experiment from each row of the experi-
mental matrix X.

Uncertainty sampling
We use uncertainty sampling [33] to form a batch of
experiments {x1,..,xx} € X by greedily choosing the K €
N experiments with the greatest uncertainty function U
[22]:
Ux) = =) P(llx)logP(l]x), 3)
lel
where £ = {0, 1} is the set of possible labels and [ is a label.
For the KBMF case the posterior probability is com-

puted by the sigmoid function from the predicted
interactions:

Pl =1|x) : (4)
= X)) = —/—/—7—7-"7

1+ exp(—F(x))
and P(I = —1|x) = 1 — P(I = 1|x) for no interaction
respectively.

Here we make use of the property of the KBMF method,
that the magnitude of the predicted entry in F is an
indicator for the confidence of the prediction.

Stopping rule

In order to stop the active learning process, a method is
needed to predict the accuracy of the model for a given
time-point along with the confidence of that prediction.
As proposed previously in [18], the accuracy of a model
at a given point in an active learning process can be pre-
dicted using a regression function trained for other, sim-
ilar experimental spaces. The fully observed drug-target
space is characterized by two measures, uniqueness (u)
and responsiveness (r) [18] defined by:
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1
= Y,
r=xa 2 Y@ (5)
dtY(dt)=1
uRows(Y) + uColumns(Y)
u = , (6)
N+ M

where uRows(.) and uColumns(.) compute the number of
unique rows and unique columns of a matrix.

The uniqueness and responsiveness are values in the
range [0,1] and characterize the interaction matrix.
Responsiveness measures the percentage of interactions
in the matrix. Uniqueness is a measure of independence
of the rows and columns in the matrix. The higher the
value for uniqueness is, the more difficult it is to make
predictions.

These two measures have two purposes: (1) They are
used to compute features for a time-step in our current
active learning process. (2) They can be used to generate
simulation data having similar properties to the measured
experimental data.

Each time-point ¢; is described by a vector of 13 features
fi; € R?, p =13, defined as:

® f(1),f(2): average observed responsiveness across
columns (respectively rows)

® f(3),f(4): average predicted responsiveness across
columns (respectively rows)

e f(5): average difference in predictions from last
prediction for current time-point (¢;)

® f(6): average difference in predictions from last
prediction for previous time-point (¢;,_1)

e f(7): fraction of predictions at t;_; observed as
responsive ([ = 1) at ¢;

® £(8),(9),f(10): minimum, maximum and mean
number of experiments that have been performed for
any drug

e f(11),f(12),f(13): minimum, maximum and mean
number of experiments that have been performed for
any target

These features are normalized to the range [0..1] and
additional features are generated by computing the square
root of their pairwise products (a simple way to create
quadratic terms in the regression models). The extended
feature vector f is formed by concatenating the entries
V@) *f(), i,j € {1,2,.,p} and i > j to the original fea-
ture vector. These extended feature VECtOI‘S}; are predictor
variables f = (fﬂ, v fi};)T, while the true accuracies are
stored as rows in the vector of observations y € RM.
Therefore, our predictor follows a linear model:

b
subject to Z 1Bl <t (7)
j=1

N b ?
p=argmin Z Y —Zﬂ;fil
=1 =
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where Ny is the number of observations used, p = 0.5 -
p-(p+1)and¢ > 0 is a tuning parameter. We use lasso
regression [34] to learn the vector of response coefficients
B e RP.

To learn the accuracy predictor via simulation data,
interaction matrices of size 50 x 50 were randomly
sampled in the grid of uniqueness and responsive-
ness parameters 5%,10%,...,95%. For each interaction
matrix we derived ’perfect’ Gaussian similarity kernels
Kq, K¢ by pairwise distances of the column-space and
row-space, respectively. These were disrupted by forc-
ing 0%,5%,10% of the kernel entries to the value
1 and regularized to ensure positive semidefiniteness.
Features computed from trajectories of the uncertainty
sampling active learner on these data were collected;
for eachtrajectory we also measured the accuracy of
prediction against the ground truth. A linear model of
these features against adjusted accuracies (accuracy above
the fraction of experiments performed so far) was fitted
by lasso regression [34]. The lasso regularization parame-
ter was chosen by 11-fold cross validation under squared
loss, with holdout granularity at the level of trajectories.
To make accuracy predictions from adjusted accuracy
predictions, we added the fraction of experiments per-
formed so far.

Results

For evaluation of our method, experiments were per-
formed on four data sets extracted from the KEGG BRITE
[35], BRENDA [36] , SuperTarget [37] and DrugBank
[38] databases, previously described by Yamanishi et al.
[26, 39]. The data set consists of four drug-target inter-
action matrices: Nuclear Receptor, GPCR, Ion Channel
and Enzyme. To do this evaluation, we considered what
a fair comparison would be with how a multiple drug,
multiple target screening process might be carried out
using current practice. Most decisions about experimental
choice are currently made by investigators based on their
prior knowledge. However, we are not aware of any study
where human investigators have been asked to choose
experiments in a multiple drug, multiple target scenario.
This would be difficult since investigators would typi-
cally not have sufficient knowledge of hundreds of targets
to carry this out; most investigators have expertise for a
limited number of targets. The closest strategy used in
practice would be to choose drugs for each target inde-
pendently, either using multiple experts or using a strat-
egy such as Quantitative Structure-Activity Relationship
(QSAR) modeling [40]. We have previously shown that
an AL based strategy outperforms a single-based target
strategy panel of experts using QSAR [19]. Therefore,
we decided to compare our strategy with random sam-
pling, since random selection is often difficult to improve
upon [41].
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Comparison of active and random learning strategies

As can be seen in Fig. 2, the active learning strategy
outperformed the random sampling strategy for all four
datasets. The experimentation cycle for both random
sampling and uncertainty based sampling was initialized
by the same set of experiments, however in each consec-
utive experimentation cycle the labels that are added to
the training set depended on the sampling strategy used
(means and standard deviations are shown for 5 different
randomly-chosen starting sets). In both cases the KBMF
method is used to train the model using the known labels
of experiments and make predictions for the labels of the
remaining experiments (the accuracy reported is only for
these remaining experiments). Thus the accuracies for the
first 1% are the same but they quickly diverge after that.
In the very last step of the process 99 % of the experiments
are used for training and the prediction performance is
evaluated only on the remaining 1% of the experiments
(since this remaining set differs between random and
uncertainty based sampling, we can arrive at different final
prediction accuracies). On the GPCR and the Ion Channel
datasets, the active learning strategy reaches 99 % accu-
racy 5-6 times faster than the random strategy. We have
also tested a second initialization strategy for active learn-
ing, where the drugs were clustered and the targets were
clustered using k-means clustering. The initialization was
performed using the same number of experiments from
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each drug-target cluster combination. Figure 2 shows that
the two initialization strategies for uncertainty sampling
yielded similar results.

Predicting the accuracy of the model

As discussed above, in practice we require a mechanism to
decide when to stop experimentation. It is not enough to
have a good active learning method without the possibility
to evaluate the accuracy of the whole model apart from
acquiring all the data. To address this problem, we have
previously proposed a parametrization of perturbagen-
target systems in which we characterize each system by its
responsiveness (the probability that a perturbagen has an
effect on a target) and its uniqueness (the probability that
a perturbagen or target is different from others) [18]. This
permits simulations of large numbers of systems to evalu-
ate active learning strategies. We applied this approach by
creating many simulated systems for interaction matrices
with uniqueness and responsiveness values in the range
0.05 — 0.95 and with kernel noise in the range 0 — 0.1.
We then performed active learning simulations using our
KBMF model and uncertainty sampling and learned a
regression function for the predicted accuracy. By uni-
formly varying the parameters of uniqueness and respon-
siveness in the range 0.05-0.95, a wide range of possible
interaction matrices are generated without the limitation
to a special case (a subset of possible interaction matrices).
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From the interaction matrices the ground truth similarity
matrices can be computed by considering the similar-
ity between the rows (target kernel) and the similarity
between columns (drug kernel). The ’perfect’ similarity
kernels are then disrupted by noise in order to deal with
more realistic similarity matrices. It is true that the perfor-
mance can be improved much further by considering only
a subset in the parameter space, however in general it is
not known beforehand what parameters describe the con-
sidered interaction matrix. Therefore the learned model
describes a large range of possible interaction matrices.
The results of applying the regression function to the com-
puted features at each time point are shown in red in Fig. 3
for the four experimental data sets. On all four data sets,
the predicted accuracy of 90 % guarantees the true accu-
racy to be at least 90 %, and the predicted accuracies are
a reasonable lower estimate for the true accuracy. Note
that a predicted accuracy of 100 %, does not imply that the
true accuracy is 100 %. It is merely a prediction from the
features at that time point applying the learned regression
model and therefore does not indicate that the system has
been overfit.

Learning the stopping rule

Statistics on the performance of the accuracy predictor in
simulations can be used to design a stopping rule [18]. We
adopt this method to determine a threshold for stopping
the active learning procedure. The simulated data is used
to assess the probability that the true accuracy is greater
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than or equal to the predicted accuracy using 11-fold
cross-validation. The number of folds for cross-validation
is essentially an arbitrary choice. By choosing 11-fold cross
validation over 10-fold cross validation we have a bit more
training data available in each round. We count for each
predicted accuracy value how often the condition was ful-
filled and divide it by the total occurrence of this predicted
value (Fig. 4). As expected, a low predicted accuracy has a
high probability that the accuracy measured in the actual
experiments will be higher. In the beginning of the active
learning procedure a small amount of data is available, so
it is hard to make good predictions about the accuracy of
the method. However, the more data is gathered in the
active learning procedure, the more confident the predic-
tor gets, reaching a peak for predicting the accuracy of
0.8 and higher for 65 % of the cases. For very high accura-
cies (> 0.95), the chance that the actual accuracy exceeds
the prediction naturally drops drastically. From Fig. 4 the
best threshold to stop lies in the range 0.8 to 0.9. Since
higher accuracy values are more desirable, our stopping
rule was to terminate the active learning procedure when
the predicted accuracy was 0.9.

Applying the stopping rule

In the work of Goenen [24], the KBMF classifier was eval-
uated by 5-fold five cross validation using 80 % of drugs
for training and 20 % of drugs for testing. We wanted to
test if a matching accuracy on the test set could be reached
by actively choosing a reduced number of experiments
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for training. In other words, assuming that we get to per-
form selected experiments drawn from a given set, use
them to train a model, and make predictions for a held
out set (for which experiments are not possible), can we
get an accurate model without doing all experiments? For
this purpose our active learning strategy was modified.
We use 1% of drugs as the batch size and select in each
run the drugs which the classifier is the most uncertain
about. For uncertainty sampling using the predictions of
the KBMF classifier, this means that drugs with the max-
imal mean uncertainty across targets are selected. When
the predicted accuracy on the training set reaches 90 %,
the active learning process is stopped and the AUC value
on the test set (the 20% of the drugs which were held
out) is reported. (Note that the stopping rule is to achieve
an expected accuracy for the training set, and the accu-
racy for the test set would normally be lower.) The average
results after 5-fold five cross validation are reported in
Table 1. By using the stopping-rule on all four data sets,
only half of the drugs were needed for training to reach a
similar AUC value to that when using all 80 % of the drugs
for training.

We also tested whether simply clustering drugs accord-
ing to their similarity could lead to a better training set
(similar to the strategy of identifying a representative set’
of drugs for screening). We applied k-means clustering on
the drug similarity matrix and the number of clusters was
chosen using the Akaike information criterion. A set of
drugs was chosen to maximize representation of this clus-
tering, either of a fixed size of 80 % or of the same size as
that found for a particular dataset by active learning. This
approach performs slightly better than random choice of
drugs but not as well as active learning selection (Table 1).

Comparison of stopping rules

We also compared two previously described stopping cri-
teria, overall uncertainty (OU) and minimum expected
error (MEE) (either with a fixed threshold or an adapted
threshold based on label consistency as described [22]),
with our stopping method based on predicted accuracy
(Table 2). We use the absolute difference of the percent-
age of experiments completed at the stopping time-point
to the percentage of experiments completed at the best
stopping time (BST) averaged over four data sets (Ag,ye)

Table 1 Average AUC on hold out data and percentage of experiments after applying our stopping rule. The average AUC obtained
on held out data using 80 % of the data for training. Random sampling of the training data [24] is compared with sampling the training
data by active learning (AL) and sampling by pre-clustering of the drugs. Furthermore, the average AUC obtained by training with only
the listed percentage of experiments obtained by applying the stopping rule is provided. The percentage of experiments can be
halved by using the proposed stopping rule

Goenen results Pre-clustering AL With stopping rule
Dataset AUC (%) AUC (%) AUC (%) AUC(%) experiments (%)
NR 824 84.0 93.6 81.7 529
GPCR 85.7 86.4 90.6 816 39.3
IC 79.9 853 86.8 83.8 44.2
Enz 832 85.8 90.3 77.8 29.7
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Table 2 Average difference between the BST point and the stopping point chosen by various stopping rules. OU=Overall Average
Uncertainty, MEE=Minimum Expected Error PA=Predicted Accuracy. The value in the parentheses denotes the threshold. The smaller
the difference Ague value is, the better the stopping criterion is. The proposed method (PA) with threshold 0.9 performed the best

Methods 0uU(0.12) 0U(0.09) 0U(0.06) 0U(0.03) OU(adapted)

Agve(%) 40.1 (£12.2) 338 (£ 17.8) 40.1 (£21.3) 509 (£ 54) 282 (£29.7)

Methods MEE(0.12) MEE(0.09) MEE(0.06) MEE(0.03) MEE(adapted)
Agve(%) 40.1 (£11.7) 383(+127) 36.1 (£ 134) 406 (£12.7) 303 (£ 126)

Methods PA(0.85) PA(0.9) PA(0.95)

Agve(%) 32.8(+88) 13.7 (£11.3) 221 (£ 154)

to evaluate different stopping criteria, as described previ-
ously [22]. The BST is defined as the time-point (fraction
of experiments), when the classifier first reaches the high-
est performance. The predicted accuracy (PA) method
with threshold 0.9 produces the smallest average error to
the BST. Both MEE and OU perform two to three times
worse than the PA method, even with the adaptive thresh-
old method. The fixed threshold for OU and MEE fails
on average, because each of the four data sets has a dif-
ferent optimal threshold for OU and MEE. The maximum
uncertainty (MU) and the selected accuracy (SA) stopping
criteria [22] could not be applied, since those curves are
not continuous on these data sets.

Discussion and conclusions

We have presented an active learning method for pre-
diction of drug-target interactions based on kernelized
matrix factorization. Building on prior work [24], our
model can efficiently leverage prior information through
kernels to achieve high predictive accuracy. We have
furthermore shown that our method can significantly
improve the prediction task for drug-target interactions
when only a limited number of experiments can be per-
formed. For three real-world data sets with high unique-
ness values, the active learning strategy achieves 99 %
accuracy with 2-3 times fewer experiments than a random
sampling strategy. It is important to note that our goal was
not to choose the best possible matrix completion method
for these specific datasets, but to show that a good method
can be used as a basis for active learning to dramatically
reduce further experimentation.

It should therefore be emphasized that the presented
framework is not limited to KBMF only. Any other
model for drug target prediction could be applied that
produces outputs for drug-target scores which can be
converted into probabilities. Furthermore the selection
strategy we used (uncertainty sampling) could be replaced
by any other active learning strategy (i.e. diversity sam-
pling) to learn new traces on simulated data. Pre-
sumably, the regression model for predicting accuracy
from simulated active learning traces could also be
improved.

For a practitioner to realize these advantages, we have
provided a method for estimating the accuracy of an
actively learned model using only experimental results
already collected; this estimated accuracy is generally a
lower bound of the true accuracy of the model. We have
shown that this method, calibrated from simulation data,
accurately assesses the active learner performance on our
real-world data. We have also shown that by applying a
stopping rule learned on the simulated data, only half of
the experiments are needed to achieve similar accuracies
on holdout data. We conclude that active learning driven
experimentation is a practical solution to large experi-
mental problems in which time or expense make exhaus-
tive experimentation undesirable.
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