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Abstract: The bronchial vascular endothelial network plays important roles in pulmonary pathology
during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1)
and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with
underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious
vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant
responsiveness of the host immune system and lack of effective antiviral drugs. Current management
of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of
morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications,
including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological
changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of
fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and
controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of
the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome
secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors,
and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to
decrease disease burden, are discussed.

Keywords: endothelial cells; oxidative stress; pulmonary edema; respiratory syncytial virus; in-
fluenza H1N1; SARS-Cov-2; respiratory distress syndrome; gene expression

1. Introduction

The endothelium is a semi-permeable barrier that separates any given tissue from
blood or lymph. The endothelium nourishes every tissue and extends into all organs by
forming a single-cell layer lining the inner surface of blood arterioles, capillaries, and
post-capillary venules and lymphatic vessels. It covers thousands of square meters (up
to 7000 m2) within an adult human. It forms the greatest surface where large numbers of
physiological processes take place. The endothelial vascular network regulates exchange
of fluid, electrolytes, various macromolecules (plasma proteins, hormones, inflammatory
mediators), and controls trafficking of leukocyte immune cells. In addition, the endothelium
maintains blood fluidity, regulates blood flow, and responds to signals triggered during
oxygenation, hypoxia, and inflammation. Remarkably, endothelial cells can remain in a
resting state over long periods of time, while keeping their ability to respond and regulate
diverse processes when they are activated [1].
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Dysfunction of the vascular endothelial barrier in the lungs can lead to acute respira-
tory distress syndrome (ARDS). ARDS is an extremely severe, frequently fatal condition
characterized by fluid accumulation (edema) in the lungs due to a leaky endothelium
under inflammatory conditions, induced by viral, bacterial or fungal infection. ARDS
represents a great challenge for several patient populations. Presently, there is no efficient
preventive measure or a means to reverse this fluid accumulation; essentially, supportive
clinical care in terms of artificial ventilation is the standard treatment. In uninfected lungs,
electrolytes and small polypeptides cross the intravascular space to the interstitial space via
intercellular gaps between capillary endothelial cells and are returned by the lymphatics to
the circulation. These electrolytes do not enter the alveoli in normal conditions due to the
tightness of the epithelium in the alveoli [2].

2. Endothelial Cells

Endothelial cells (ECs) comprise the inner surface of blood vessels as a single-cell
layer that has the function of a semi-permeable barrier between circulating blood and
underlying tissue; ECs have a similar function in lymphatic vessels [3,4]. ECs regulate
vascular function in terms of blood flow, blood fluidity, and vascular permeability, and
are implicated in pathological manifestations after viral infections, control of immunity,
inflammation, and leukocyte recruitment. Importantly ECs largely influence the spectrum
of tissues that a virus can reach via circulation. ECs are effectors of the host response to
viral infections; however, it must be noted that activation of host response to viruses occurs
both in infected as well as uninfected cells, due to the diffusion of second messengers
across intercellular gap junctions, and the secretion of paracrine mediators [5–8].

ECs regulate leukocyte traffic, vascular tone and permeability, and coagulation, and
participate in control of allergic inflammation through the expression of soluble medi-
ators and adhesion molecules in response to stimuli such as the cytokine interleukin-4
(IL-4) [9,10]. Expressed molecules also include: selectins E and P, intercellular adhesion
molecules 1 and 2 (ICAM-1, ICAM-2), vascular adhesion molecule (VCAM), inflammatory
cytokines interleukin-1 (IL-1) and -6 (IL-6), chemokines C-X-C motif chemokine ligand
8 (CXCL8, IL-8) and RANTES (Regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted), prostacyclin-2, endothelium-derived relaxing factor, nitric oxide, el-
ements of local renin-angiotensin system, angiopoietins, tissue plasminogen activator, and
endothelial plasminogen activator inhibitor [9,11–14]. Both in normal and inflamed tissues,
ECs express CD antigens (cluster of designation), including CD31, CD34, CD309/Flk-1,
CD202b/Tie2, CD144/VE-Cadherin, CD105/endoglin, CD146, acting as receptors or lig-
ands [15,16].

The role of ECs in allergic responses that involve vascular damage and angioedema
has been investigated in a clinical trial showing the role of ECs in chronic urticaria (regis-
tered with identification code NCT03443362), an inflammatory disorder that is driven by
mast cells. EC dysfunction has a central role in this disorder, especially in the context of
expression of adhesion molecules, increased vascular permeability, angiogenesis, increase
in markers of coagulation and fibrinolysis, and importantly, increases in IL-4 and IL-6 [17].

2.1. The Pulmonary Endothelial Cell

Pulmonary ECs are an essential component of the gas exchange machinery of the
lung alveolus, which can be divided into macrovascular and microvascular endothelial
cells [18,19]. These cells are particularly interesting due to their potential for a number of
important pathologic consequences upon infection, and during the process of recovery from
infections or inflammation [20]. For instance, transdifferentiation of ECs or weakening
of the endothelium, can occur. The latter can result from increased contractility and
the loosening of intercellular tight junctions, which are both induced by inflammatory
cytokines [21].

Abnormal activation of the host response to structures conserved among infectious
agents and to known allergens activates the lung endothelium to elicit an angiogenic
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response associated with activation of T-helper cell type-2 (Th2)-driven inflammation [22].
Endothelial cells, as well as epithelial cells, actively participate in both innate and adaptive
immune responses, which are crucially involved in the pathogenesis of allergic disorders;
these responses are characterized by the expression and secretion of inflammatory media-
tors such as tumor necrosis factor alpha (TNFα) and by cytokines of the Th2 state such as
interleukins-4 (IL-4) and-13 (IL13) [23].

In bronchi, endothelial and epithelial cells are also involved in pulmonary pathol-
ogy [24]. The involvement of ECs in pulmonary pathology of viral infections is an active
field of research. It has produced some controversial results yet promises to deliver impor-
tant answers regarding the pathobiology of infectious disease. Specifically, endothelium
has been shown to possess a key role in lung pathogenesis from viral infections such as
influenza, respiratory syncytial virus (RSV), and recently SARS-CoV-2. A well-studied
example is bronchiolitis associated with RSV infection [25].

2.2. Permeability of the Alveolar Endothelium during Respiratory Viral Infections

One potentially severe form of respiratory complication is manifested upon infection
of bronchial endothelial cells. The endothelial loss of tight junctions (TJ) leading to edema
in ARDS often causes alveolar epithelial damage due to the cells’ capacity to support RSV,
influenza or CoV-2 replication. The loss of cell-to-cell contact in the endothelium is linked to
death of alveolar epithelial cells, changes in extracellular matrix (ECM) protein components
and their contact with endothelial and epithelial cells, and changes in the communication
of both epithelium and endothelium with immune cells. Of note, TJs also modulate cellular
polarity, activate a variety of intracellular signals, and control the transcellular transport
across the endothelium and the epithelium by altering expression of transport proteins and
ion channels. Lung inflammation is the key reason for TJ breakdown in the endothelium
and epithelium [2,26,27].

Inflammation in the alveoli occurs prior to the development of endothelial breakdown
of TJs and is associated with excessive changes in electrolytes and protein permeability [26].
In RSV, influenza, and CoV-2-infected experimental mouse models of acute innate inflam-
mation and also in humans, this transition is characterized by excessive neutrophil influx,
activation of macrophages, and exacerbated expression of type CC, CXC chemokines (IL-8,
monocyte chemoattractant protein-1 (MCP-1 or CCL2), macrophage inflammatory protein-
1 (MIP-1 or CCL3), cytokines (e.g., TNF-α), interleukins (IL-1β, IL-6), interferons (INFγ,
IFNα and INFλ), and growth factors (e.g., granulocyte colony-stimulating factor, G-CSF).
The reason is that most alveolar epithelial and endothelial cells express receptors for these
soluble mediators and respond by amplifying the expression of these mediators [27]. For
example, IL-1β increases endothelial and epithelial permeability via rat sarcoma virus ho-
molog family, member A (RhoA)/integrins-mediated epithelial transforming growth factor
beta (TGF-β) release. TGF-β signaling has been shown to induce post-translational modifi-
cations (e.g., phosphorylation) of adherent junction proteins and formation of actin stress
fibers in endothelial cells in vitro [28]. IL-1β also enhances fluid transport across the human
distal lung epithelium in vitro [29]. TNF-α strongly decreases the trans-endothelial electri-
cal resistance across human pulmonary arterial endothelial cells; this effect is independent
from myosin light chain phosphorylation catalyzed by either myosin light chain kinase
or Rho serine-threonine kinase, but dependent on p38 mitogen-activated protein kinase
activation [30]. The underlying mechanisms of capillary endothelial and epithelial barrier
alterations point to apoptosis-dependent and apoptosis-independent mechanisms [31].
To this end, TNF-α also decreases expression of TJ proteins (ZO-1, claudin 2-4-5) as well as
β-catenin in pulmonary arterial endothelium and also alveolar epithelium [32–34], which
can be exacerbated by IFN-γ [35].

TNF-α also enhances human pulmonary microvascular endothelial permeability
by altering the actin cytoskeleton via activation of PKC, increase of MAPK activity in
a RhoA/ROCK-dependent manner, and inhibition of the Rho-dependent myosin-light-
chain phosphatase [30,36,37]. TNF-α, IL-1β and IL-6 can upregulate trypsin expression



Cells 2021, 10, 3067 4 of 18

in arterial endothelial cells, which may lead to the loss of zonula occludens-1 (ZO-1) and
vascular hyperpermeability via protease-activated receptor-2 [38]. IL-4 and IL-13 decrease
the expression of ZO-1 and occludin and lower the capacity of repair in the pulmonary
epithelium, which also leads to compromise in arterial endothelial barrier function [39].

3. Respiratory Viruses and Their Effects on the Bronchial Endothelium

We next compare infections from RSV, influenza H1N1 and SARS-CoV-2 and describe
their effects in the activation of inflammatory pathways that are implicated in bronchial
pathology. The descriptions of these three viruses linked to dysfunction of the endothelial
cells is not meant to be exhaustive, but instead provides examples of the severity of the
threat for morbidity or loss of life that is associated with infections that compromise the
function of the endothelial cells and can lead to dysregulation of the barrier function.
We note that human rhinoviruses, parainfluenza viruses, metapneumovirus, respiratory
adenovirus, bocaviruses, coronaviruses, middle-east respiratory syndrome virus (MERS),
and severe acute respiratory syndrome virus (SARS) are also accountable for over three
million deaths worldwide and are responsible for multiple outbreaks in recent times [40].

3.1. Respiratory Syncytial Virus

Infections by RSV are a formidable threat for certain groups of patients, especially
newborns and elderly [25,41]. It is a single stranded, negative-sense enveloped RNA virus
belonging to the Orthopneumovirus genus of thePneumoviridae family [42]. RSV replicates
in the nasopharynx and then spreads within the epithelium of bronchi and bronchiole by
cell-to-cell and producing clinical features including bronchiolitis and pneumonia [43–45].
RSV also productively infects non-epithelial cells; thus, it been isolated from alveolar en-
dothelium, myocardial tissue, central nervous system, cerebrospinal fluid, endocrines and
liver, during severe disease and sudden infant death [46–49]. There is no effective treatment
or vaccine available for RSV; palivizumab (a humanized monoclonal antibody) is the only
RSV immunoprophylaxis approved for use in specific high-risk pediatric populations [50].
The therapy is mostly supportive care combined with symptomatic treatments including
modalities such as bronchodilators, epinephrine, corticosteroids, hypertonic saline, and/or
supplemental oxygen [51,52].

Newborns cannot be expected to mount a sufficiently strong secretion of IFNs to
respond against RSV, while the elderly do not respond well to vaccinations in general [53].
There are vaccine candidates under development, yet it remains a major challenge to
immunize certain population categories [54]. It is imperative that therapies are developed
to protect patients that either have not been vaccinated or cannot mount an optimal
immune response to RSV. RSV infection causes respiratory symptoms that may encompass
the lower respiratory tract, culminating in bronchiolitis, which in severe cases results in
necrosis and the sloughing of epithelial cells into the airways, airway mucus, edema, and
peribronchiolar inflammation, cumulatively resulting in airway obstruction [55–57]. Severe
bronchiolitis is associated with the manifestation of asthma in later life [57]. Epithelial cells
express cytokines IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), as well as the
innate immune cell-derived cytokine high mobility group box 1 (HMGB1), which activate
group 2 innate lymphoid cells (ILC2). This signaling promotes the progression of T-helper
type 2-mediated pulmonary disease, thus explaining the association of RSV with asthma in
later life.

In vitro and in vivo experiments show that during RSV infection, epithelial cells in-
fected with RSV express and secrete IL-1α, which activates vascular endothelial cells to
express increased cell surface ICAM-1, and to a lesser extent, vascular adhesion molecule-
1 (VCAM-1) and E-selectin [58]. RSV induces expression of MIP-1α in epithelial cells
of the alveoli and bronchioles, as well as in adjoining capillary endothelium [59]. Ad-
hesion experiments using polymorphonuclear leukocytes (PMN) verified an increased
ICAM-1-dependent adhesion rate of PMN co-cultured with RSV-infected endothelial cells.
Furthermore, the increased adhesiveness resulted in an enhanced transmigration rate of
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PMN [60]. ICAM-1 expression on RSV-infected endothelial cells may contribute to the en-
hanced accumulation of PMN into the bronchoalveolar space. The virus-induced ICAM-1
upregulation was dependent on the activity of protein kinase C, protein kinase A, phos-
phatidylinositol 3-kinase (PI3K), and p38 mitogen-activated protein kinase (MAPK) [60].

In lung alveoli, a gradient of CXCL8 is the most likely chemo-attractant for the neu-
trophils that migrate from the systemic circulation into the alveolar space [61]. Neutrophils
function by releasing reactive oxygen species (ROS) and extracellular traps, undergoing
degranulation and phagocytosis, and by recruiting other cell types to the site of infec-
tion such as alveolar macrophages, dendritic cells, and T-cells [62]. However, soluble
endothelial cell adhesion molecules (sCAMs), such as sICAM-1, can be measured in the
systemic circulation, indicating that the currently postulated neutrophil influx into the
lungs should rather be regarded as a neutrophil efflux from the vasculature, involving
substantial neutrophil-endothelial interactions. Endothelial cells become activated upon
RSV infection, driving a ‘pro-adhesive state’ for circulating neutrophils with upregulation
of endothelial ICAM-1. During RSV lower respiratory tract infections, different subsets of
immature and mature neutrophils are present in the bloodstream, parallel with upregula-
tion of integrins, lymphocyte-function associated (LFA)-1 and macrophage (Mac)-1 antigen,
serving as ICAM-1 ligands [61].

RSV infection induces ROS generation, activates mitogen- and stress-activated kinases-
1 (MSK1)-phospho-Ser-276 v-relreticuloendotheliosis viral oncogene homolog A (RelA)
pathway required for cytokine expression [63]. Aero-allergens and respiratory viruses stim-
ulate toll-like receptor (TLR) signaling, producing oxidative injury and inflammation [64].
Repetitive exacerbations produce complex mucosal adaptations, cell-state changes, and
structural remodeling. These structural changes produce substantial morbidity, decrease
lung capacity, and impair quality of life. Repetitive activation of innate signaling pathways
produces a form of epigenetic ‘training’ in the cell nucleus, to induce adaptive epithelial
responses [64].

3.2. Influenza Virus and SARS-CoV-2

Influenza viruses have a single negative-stranded segmented RNA genome; deadliest
in history is H1N1, an Alphainfluenzavirus of the family Orthomyxoviridae [65,66]. SARS-CoV-2 in
contrast, the causative agent of the COVID-19 pandemic, belongs to the positive-strand
RNA viruses of the genus Beta coronavirus [67]. Both viruses constitute very significant
health burdens worldwide, due to the lack of effective treatments, and are still under
research for the generation of vaccines that will offer lasting protection against emerging
variants [68,69]. In influenza virus infection, pulmonary endothelial cells play a central role
in regulating both innate immune cell recruitment as well as innate cytokine and chemokine
production [4]. In victims of the 2009 pandemic influenza A/H1N1 infection, tissues of
bronchial mucosa, lung, myocardium, gastrocnemius, and liver that were investigated by
light microscopy and transmission electron microscopy, viral particles were found in all
samples, frequently located in endothelium, epithelium, and muscle cells [70]. Cultured
ECs respond to infection and iron incubation with increased production of IL-6. Iron, the
generation of intracellular hydroxyl radical and NF-κB activity are essential in cellular
activation, suggesting that ROS generated in the Haber–Weiss reaction are essential in
invoking an immunological response to infection by ECs [71].

In patients who died from SARS-CoV-2 or influenza (H1N1)-associated respiratory
failure, the histologic pattern in the peripheral lung was diffuse alveolar damage with
perivascular T-cell infiltration. The lungs from patients with COVID-19 also showed distinc-
tive vascular features, consisting of severe endothelial injury associated with the presence
of intracellular virus and disrupted cell membranes. Histologic analysis of pulmonary
vessels in patients with COVID-19 showed widespread thrombosis with microangiopathy.
Alveolar capillary micro-thrombi were 9 times as prevalent in patients with COVID-19
as in patients with influenza (p < 0.001). In lungs from patients with COVID-19, the
amount of new vessel growth—predominantly through a mechanism of intussusceptive
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angiogenesis—was 2.7 times as high as that in the lungs from patients with influenza
(p < 0.001) [72].

Although respiratory viruses initially infect the airway epithelium, it is a compromise
in vascular integrity that causes alveolar damage [4]. Indeed, the compromise in vascular
integrity distinguishes influenza H1N1 from SARS-CoV-2 infections, and this divergence
in effects can be attributed to difference in the patterns of expression and secretion of in-
flammatory mediators. The main difference between influenza and SARS-CoV-2 infections
is the ability of SARS-CoV-2 to elicit dysfunction of the blood vessels. This difference
can be attributed to a divergent expression of signaling molecules that cause the pathol-
ogy that involves blood vessels. A comparison between immunological factors produced
during the influenza and SARS-CoV-2 infection suggests that although both infections
raise levels of T-helper type I mediators, SARS-CoV-2 also distinctly increases T-helper
type II (Th2) mediators (IL-4, IL-5, IL-10, IL-13), as well as the allergy mediator [73]. In
contrast, H1N1 severe cases show high expression of surfactant protein D at the alveo-
lar epithelium [73]. H1N1 infections have shown more efficient activation of reparative
macrophages of the M2 subtype [74]. This might suggest a more efficient repair capacity
for the H1N1-infected lung.

One hypothesis is that severe SARS-CoV-2-driven pneumonia causes respiratory
failure via pulmonary microthrombi and endothelial dysfunction [75]. A considerable
body of evidence suggests that SARS-CoV-2, unlike other related viruses, infects and
replicates within ECs, which may explain a significant portion of the observed clinical
pathology [76,77]. On the contrary, certain data that show an inability of SARS-CoV-2 to
directly infect and lyse endothelial cells without angiotensin-converting enzyme-2 (ACE2)
expression explain the lack of vascular hemorrhage in COVID-19 patients and indicate
that the endothelium is not a primary target of SARS-CoV-2 infection [78]. Although the
detection of SARS-CoV-2 has not been singularly linked to bronchiolitis, with the exception
of necrotizing bronchiolitis [79], it has been proposed that co-infections of SARS-CoV2 with
other viruses, most notably RSV, are associated with a severe course of bronchiolitis in
patients [80]. Furthermore, SARS-CoV-2 can directly infect engineered human blood-vessel
organoids in vitro. EC involvement was demonstrated across vascular beds of different
organs in a series of patients with COVID-19 and SARS-CoV-2 can directly infect engineered
human blood-vessel organoids in vitro [81].

The binding site of the SARS-CoV-2 viral spike protein on the surface of cells is the
receptor “angiotensin converting enzyme 2 (ACE2)”, which functions to protect against hy-
pertension, cardiovascular and lung diseases, and diabetes mellitus [82]. In an experimental
setting, loss of ACE2 function in the mouse lung during endotoxin inhalation led to release
of inflammatory chemokines such as C-X-C motif chemokine 5 (CXCL5), macrophage
inflammatory protein-2 (MIP2), C-X-C motif chemokine 1 (KC), and pluripotent cytokine
TNF-α from airway epithelia, increased neutrophil infiltration, and exaggerated lung
inflammation and injury [83]. By immunohistochemistry, flow cytometry and RNA se-
quencing, the lung could show expression of ACE2, mainly in alveolar macrophages, and
subsets of type II alveolar epithelial cells [84–88].

SARS-CoV-2 infection can result in diverse, multiorgan pathology, the most significant
being in the lungs (diffuse alveolar damage in its different phases, micro-thrombi, bronchop-
neumonia, necrotizing bronchiolitis, viral pneumonia), heart (lymphocytic myocarditis),
kidney (acute tubular injury), central nervous system (micro-thrombi, ischemic necrosis,
acute hemorrhagic infarction, congestion, and vascular edema), lymph nodes (hemophago-
cytosis and histiocytosis), bone marrow, and vasculature (deep vein thrombosis) [79].

4. RSV, H1N1 and SARS-CoV-2 Infections and Oxidative Stress

Endothelial dysfunction is tightly correlated with oxidative stress, which represents
unifying concepts for the underlying permeability changes and its pathophysiology marked
by pulmonary morbidity and mortality [89,90]. Therefore, inflammatory cells are impli-
cated in the induction of endothelial dysfunction, either directly from ROS generated by
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respiratory viral infections or indirectly by inflammatory mediators. The sub-molecular
mechanisms of ROS generation are well established, and multiple sources are involved
in generating oxidative stress during viral infections (Figure 1). These include mito-
chondria, peroxisomes, endoplasmic reticulum associated cytochrome oxidoreductases in
nonimmune cells, and NADPH oxidase and xanthine oxidase in immune cells, as well as
myeloperoxidase released from neutrophils [83,91,92]. In particular, RSV infection increases
cellular ROS levels via NADPH oxidases and mitochondria, which are paralleled with
the downregulation of superoxide dismutase, 1,3, catalase, and glutathione-S-transferase
expression via degradation of the transcription factor NF-E2-related factor 2 [91–93]. Simi-
larly, H1N1 infections increase ROS levels derived from multiple sources as determined
by increases in oxidative metabolites such as 8-hydroxydeoxyguanosine (8-oxoGua), mal-
ondialdehyde, 2-isoprostane, 7-ketocholesterol, 7-beta-hydroxycholesterol, and carbonyl
compounds as well as the activity of Nrf2, which controls the expression of enzymes
that participate in the defense against oxidation [94]. In experimental animal models and
cell culture infections with SARS-CoV-2, increases in ROS levels were observed through
the activation of oxidoreductases, mitochondrial dysfunction and perturbation of cellular
antioxidant defenses, similar to those of RSV or influenza infections [95–97]. Excess ROS
generated by mitochondria is the primary cause of oxidative stress and is considered to ini-
tiate and exacerbate inflammation and chronic endothelial dysfunction [97]. Consequently,
mitochondrial oxidative stress could prime endothelial cells to acquire a pro-thrombotic
and pro-inflammatory phenotype, predisposing patients to thromboembolic and vasculitic
events and to disseminated intravascular coagulopathy [97]. This implies a pivotal role
played by oxygen centered free radicals in the pathogenetic mechanism of RSV-, H1N1-and
SARS-CoV-2-induced diseases, in that its availability would tune the oxidant state and
consequent damage [93,94,98].
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Figure 1. Cellular sources of ROS in respiratory viral infections. Activation of receptors liganded by
RSV, influenza and SARS-CoV-2 envelope proteins and the recognition of viral PAMPs by intracellular
sensors (NLRs, TLRs) trigger signaling pathways, leading to activation of oxidoreductases located
in cell membranes, endoplasmic reticulum, peroxisomes, and mitochondria. NADPH oxidases
(NOXs) are the primary enzyme complexes in nearly all cell types, particularly in granulocytes
and macrophages, along with oxidoreductases in mitochondrial complex I and II, which partially
oxidize oxygen molecules to generate superoxide anion (O2

•−). O2
•− via Fenton and/or Haber-Weiss

reactions are converted into hydroxyl radical (•OH). The highly reactive •OH reacts with proteins,
lipids and DNA. ROS themselves, but particularly peroxidation of polyunsaturated fatty acids, trigger
nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), which heterodimerizes
with small musculoaponeurotic fibrosarcoma (MAF) transcription factor and binds the cis-acting
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enhancer antioxidant response element (ARE), leading to the expression of antioxidant enzymes,
including Cu/Zn-superoxide dismutase (SOD1), glutathione peroxidases (GPXs) and catalase (CAT).
However, in RSV and SARS-CoV-2infected cells and lungs there is a progressive decrease in levels
of NRF2 via increased protein ubiquitination and its degradation through a proteasomal path-
way [93,99–101]. Although ROS generation in RSV, SARS-CoV-2 infected cells is similar, it seems that
NRF2 primarily modifies influenza A entry and replication [102]. In addition to the above-described
pathways, activated monocytes and polymorphonuclear cells, in particular, neutrophils, have been
shown to produce ROS. Abbreviations: NLR, nucleotide-binding oligomerization domain-like recep-
tors; TLR, TOLL-like receptors, PAMP, pathogen-associated molecular patterns; NOX, nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase; ER, endoplasmic reticulum.

5. Gene Expression Driving Pulmonary Pathologies via Dysregulation of Bronchial
Endothelial Cells

Infected cells secrete soluble mediators such as inflammatory cytokines IL-1β, IL-6,
and TNF, which in turn stimulate neighboring cells to express cascades of inflammatory me-
diators and adhesion molecules that enable exacerbation of inflammation, ROS generation
and its associated pathological sequelae [82]. Endothelial cells, in response to viral infection
and inflammation, express and secrete CXCL8, which activates neutrophil chemotactic
movement and extravasation to exacerbate inflammation [103–105].

The inducible expression of cytokines and chemokines by inflammatory stimuli has
been previously characterized. In particular, inflammatory stimuli induce a number of
cell surface receptors and intracellular receptors, which in turn activate signaling cascades
that culminate in the activation and nuclear translocation of transcription factors. These
factors, bound to their DNA binding site, recruit transcriptional initiation and elongation
components to activate expression of inflammatory genes in response to stimuli. The
activated genes also encode several proteins that program the termination of inflammation
to reestablish physiological cellular function. The return of cellular functions enables
restoration of tissue homeostasis that is essential for the health of the organism [106].

Specifically, viral PAMPs through signaling cascades, and other inflammatory stimuli
including ROS induce expression of cytokines and chemokines through activation of
transcription factor binding on the promoter region of their genes [94,102,107]. In the
activation of inflammatory gene expression, one of the best characterized transcription
factors is nuclear factor kappa B (NFκB), which is activated after mediators of tissue stress,
such as bacterial lipopolysaccharide, damage-associated molecules, ROS or inflammatory
cytokines and cytokines that bind to their receptors at the cell surface [106,108]. These
ligand-receptor interactions activate signaling cascades that culminate in the activation
of gene expression by NFκB (and other transcription factors including STATs, AP1, and
CREB), which, in turn, activates inflammatory genes such as chemokine IL-8 (CXCL8). IL-8
is secreted, generating concentration gradients at the host tissue that lead to the recruitment
of neutrophils by chemotaxis [107,109]. Mechanistically, NFκB bound to its cis element,
interacts with the transcriptional elongation complex, which consists of cyclin-dependent
kinase 9 and bromodomain-containing protein 4 (BRD4). BRD4 facilitates phosphorylation
of RNA polymerase II and regulates its enzymatic processivity and RNA splicing functions.
Recent data also show that the association of RelA (NFκB’ catalytic subunit) with BRD4
induces its histone acetyl transferase activity acetylating histone H3 on Lys 122, which is a
modification that leads to the destabilization of nucleosomes. Consequently, together this
activity mediates cytokine production, neutrophilia, leukocytic infiltration, and clinical
manifestations of disease [64].

In RSV, H1N1 or SARS-CoV-2 infection, clusters of NFκB target genes are expressed,
driving the main part of pathological changes in tissues [64,110–115]. Respiratory vi-
ral infections result in inflammation and oxidative injury, as well as feedback-mediated
enhancement of the expression of inflammatory genes. Although ROS are required for
activation of NFκB and initiation of host antiviral responses, it has been shown that dereg-
ulation of the control of oxidant stress has a role in disease pathology, leading to the
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proposal of interventions that target the emergence of aberrantly increased ROS [116,117].
Therefore, the use of radical scavengers such as N-acetylcysteine and vitamin C, as well
as inflammasome inhibitors, have been proposed as a method to inhibit the pathological
effects of these viral infections [93,117–119].

Henceforth, it can be concluded that viral infection of airway epithelial cells, including
type II cells, induces expression of inflammatory mediators, which are secreted and exposed
at the cell surface. The mediators activate phenotypes of inflammation in all types of
neighboring cells, regardless of the presence (or absence) of effective viral infections. This
is especially true for pulmonary endothelial cells, which undergo extensive inflammatory
changes in gene expression and phenotypes, which thereby intensifies the recruitment
of inflammatory cells, like neutrophils, and damages host tissue [120]. Experimentally,
activated vascular endothelial cells become a source of inflammatory cytokines and ROS,
contributing to the development of coagulopathy, systemic sepsis, and cytokine storm.

6. Unifying Approach to Ameliorate Endothelial Dysfunction via DNA Occupancy of
Transcription Factors

Because oxidative stress is the link to numerous pathologies caused by RSV, influenza,
or SARS-CoV-2 infections, in theory, the use of antioxidants such as (vitamins E, C, SH
group donors (e.g., N-acetyl cysteine), iron chelating agents (deferoxamine)- or activators
of NRF2-driven gene expression, could be useful in decreasing expression of specific pro-
inflammatory mediators and help recovery of experimental animals and patients from
respiratory viral infections [91,93,99,100,117,119]. However, these attempts resulted in only
partial successes to inhibit steps in the process of inducible expression of cytokines and
chemokines and endothelial dysfunction [117,121,122].

Interaction of ROS with DNA produce modification to purine and/or pyrimidine bases
and DNA strands (apurinic/apyrimidinic sites and DNA single- and double-strand breaks),
which need to be repaired to maintain genome integrity. Of these, the most frequent is a
purine oxidation product, 7,8-dihydro-8-oxodezoxyguanine (8-oxoGua), which is thought
to be a pre-mutagenic lesion [123]. Under physiological conditions, it is removed via base-
specific DNA repair enzymes primarily by 8-oxoguanine DNA glycosylase (OGG1) and to a
smaller extent also by Nei-like glycosylases (e.g., NEIL1, NEIL-2, human homolog of E. coli
Nei-like glycosylase 1and 2) from double and single stranded DNA, respectively [124]. The
generated apurinic/apyrimidinic (AP) site is tailored by AP endonuclease1/redox effector
factor-1 (APE1/Ref1) to form polymerase-ready 3’OH residues [124,125]. The generated
DNA strand gaps are filled via the short and/or the long-patch repair sub-pathways [126].

Recent reports have documented that 8-oxoGua and AP-site, in gene regulatory ele-
ments of various inflammatory, hypoxia response genes and some proto-oncogenes, can
modulate transcription [127–133]. For these reasons, 8-oxoGua(s) in a transcription start site
(TSS) adjacent promoter sequences is considered as an epigenetic-like mark [129,133]. Bind-
ing of OGG1 to 8-oxoGua (with or without excision) in the gene regulatory region facilitates
binding of transcription factors, including NFκB, as depicted in Figure 2A–C [132,134,135].
This 8-oxoGua enrichment in promoter regions is not unique to cytokine (e.g., TNFα)-
exposed cells as promoters of hypoxia-inducible genes, including vascular endothelial
growth factor and endonuclease III-like protein 1, which contains potential guanine-
quadruplex forming sequences, which also acquire 8-oxoGua [128,129,136,137].
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flammatory Mediators and Inflammation 

Studies described in Section 6, and references therein, show that OGG1, with or with-
out 8-oxoGua excision, can regulate inflammatory responses (Figure 3A). Therefore, pre-
vention of OGG1 interactions with genomic 8-oxoGua by inhibitors offer novel therapeu-
tic opportunities (Figure 3). Pioneering studies by Dr. Lloyd’s laboratory have identified 
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benzo[b]thiophene-2-carboxylic acid hydrazide), also known as O8, which inhibit OGG1-

Figure 2. Models for OGG1-8-oxoGua-dependent gene expression. (A) Viral infection-induced ROS
or those generated by cytokine exposure oxidatively modify guanine to 8-oxoGua and inactivate
OGG1′ glycosylase activity by reversible oxidation at cysteine residues (cysteine-sulfenic acid).
Oxidatively disabled OGG1 flips 8-oxoGua into its active-site pocket, interacts with the opposing
cytosine and results in the conformational change of the DNA helix, which favors TFs DNA occupancy.
(B) OGG1-8-oxoGua driven gene expression under hypoxic conditions. Guanines in gene promoters
with G-quadruplexes are highly sensitive to ROS and are oxidized to 8-oxoGua under tissue hypoxia,
caused by SARS-CoV-2, RSV, or H1N1 infections during pneumonia. OGG1 excises 8-oxoGua
and generates an AP-site a substrate for APE1. APE1 binding leads to melting of the guanine
duplex and stalls because of the non-canonical structure. Stalled APE1 increases transcription
factor loading on the DNA via transient cooperative binding via conformational change of the
helix. APE1, via its interacting domain, interacts with TFs (e.g., HIF1-α, STAT3, and CBP/p300)
to modulate their redox state and promote both their binding to cis elements and gene expression.
(C) OGG1-dependent transcription initiated by estrogens and its nuclear receptor. Estrogen (17β-
estradiol; E2) binding to estrogen receptor alpha (ERα) results in demethylation of histone H3 lysine
9 (H3K9me2) via lysine-specific histone demethylase (LSD1; a flavin-dependent amine oxidase).
Histone demethylation leads to a focal superoxide anion, hydroxyl radical generation and induces
site-specific oxidation of guanine to 8-oxoGua. The latter is recognized and excised by OGG1 and via
its AP-lyase activity cleave into the DNA strand generating the AP-site. The strand gap is recognized
by topoisomerase II beta (topo IIb), which results in DNA structural changes in the chromatin
allowing efficient assembly of transcriptional machinery and gene expression. Such scenarios are
relevant to acute lung injury and SARS-CoV-2 infection capacity [138,139]. Similarly, LSD1-dependent
DNA oxidation and OGG1 recruitment was needed for gene expression driven by TNFα, retinoic
acid, and androgen exposure of cells [140–142]. Abbreviations: AP-site, apurinic/apyrimidinic site;
APE-1, apurinic/apyrimidinic endonuclease 1; FAD, flavin adenine dinucleotide; FADH2, reduced
flavin adenine dinucleotide; LSD1, flavin-dependent amine oxidase 1, 3-OH, 3-terminal hydroxyl;
5′-dRP, 5-terminal deoxyribose-phosphate.

Inhibitors of OGG1 and 8-Oxogua Interactions in the DNA Helix Decreases Expression
of Inflammatory Mediators and Inflammation

Studies described in Section 6, and references therein, show that OGG1, with or with-
out 8-oxoGua excision, can regulate inflammatory responses (Figure 3A). Therefore, preven-
tion of OGG1 interactions with genomic 8-oxoGua by inhibitors offer novel therapeutic op-
portunities (Figure 3). Pioneering studies by Dr. Lloyd’s laboratory have identified a family
of hydrazide/acyl hydrazone inhibitor chemotypes (e.g., 3,4-dichloro-benzo[b]thiophene-
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2-carboxylic acid hydrazide), also known as O8, which inhibit OGG1-mediated catalysis at
sub micromolar concentrations [143]. It allows OGG1 substrate interaction, but inhibits
glycosylase activity, and thus stabilizes the OGG1-8-oxoGua complex.
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Figure 3. Proposed depiction of endothelial dysfunction by ROS in respiratory virus-infected airways
and potential therapeutic intervention. (A) Oxidative modification to the heterocyclic DNA base
guanine(s) in gene regulatory sequences is considered an epigenetic mark that is recognized by the
“reader” OGG1, leading assembly of transcriptional complex and dysregulated gene expression.
Consequences are pulmonary edema, congestion, respiratory failure in patients with risk factor(s).
(B) Inhibition of OGG1′ interaction with epigenetic mark decreases extent of inflammation and
manifestation of endothelial dysfunction. TH5487, and SUO268, OGG1 specific inhibitors; BRD4,
bromodomain-containing protein 4; CDK9, cyclin-dependent kinase 9; p50-p65, nuclear factor kappa
B; CBP/p300, RNA pol II, RNA polymerase II.

Another research group developed a chemically different compound, SU0268 that
was shown to be selective for inhibiting OGG1 over other DNA base excision repair
enzymes, and had dispensable toxicity in cultured human cell lines. The addition of
SU0268 to cultured cells, inhibited OGG1 substrate binding and increased in intrahelical
8-oxoGua level [144–146]. SU0268 administration to experimental animals attenuate robust
airway inflammation and increased survival rates after Pseudomonas aeruginosa infection.
Remarkably, inhibition of OGG1 substrate binding increased type I IFN expression, which
decreased bacterial load and disease progression [146].

Because OGG1-deficient mice are resistant to acute and systemic pulmonary inflam-
mation, it was hypothesized that OGG1 inhibition may represent a strategy for the preven-
tion and treatment. Therefore, a highly potent and selective small molecule inhibitor of
OGG1, TH5487 [4-(4-Bromo-2-oxo-3H-benzimidazol-1-yl)-N-(4-iodophenyl) piperidine-
1-carboxamide)] was developed [147]. The compound shows excellent membrane per-
meability and low levels of cytotoxicity in cultured cells and animals [147]. TH5487
precludes OGG1 binding to substrate-containing DNA in vitro and to genomic 8-oxoGua
at nanomolar concentrations. Its administration to experimental animals challenged with
bacterial lipopolysaccharides or TNFα decreases DNA occupancy of nuclear factor κB
and suppress pro-inflammatory gene expression, airway endothelial permeability and
inflammation [147,148].

Importantly, TH5487 is tolerated well when added repeatedly to experimental an-
imals infected intrapulmonarily with RSV. TH5484 attenuated RSV-induced expression
from inflammatory genes, accumulation of inflammatory cells and decreased endothelial
permeability. Compared to untreated RSV-infected animals, histopathological analysis
of Hematoxylin and Eosin (H&E) stained lung sections showed that inhibition of OGG1′
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substrate binding decreased the density of perivascular inflammatory infiltrates (e.g.,
neutrophils, macrophages) and the number of inflammatory cells in alveoli, and their
perivascular accumulation. Treatment with TH5487 of RSV-infectedor SARS-CoV-2infected
human small airway epithelial cells (a relevant cell type to bronchiolitis) significantly
decreased expression of over thirty pro-inflammatory genes including TNF, CCL20, IL6,
CCL5 and CXCL10 at RNA and protein levels (GSE157630).

Overall, the small molecules TH5487 and SU0268 are first-in-class inhibitors of gene
expression that depends on oxidative stress-generated epigenetic marks. They therefore
may have clinical utility to lessen severe/chronic airway inflammation induced by respira-
tory viral infections. Of note is that the OGG1 inhibitor is used as a tool, and the possibility
of using it in humans is speculative at this time.

7. Conclusions

Viral respiratory infections that cause endothelial dysfunction can have life-threatening
consequences due to the central role of pulmonary endothelial cells in tissue homeosta-
sis. Expression and secretion of soluble mediators and adhesion molecules generate
inflammatory signaling cascades that shape the microenvironment of endothelial cells and
compromises vascular integrity. Oxidative stress is increased in cells during inflammation
and has a central function in the mechanism of activation of inflammatory gene expression.
Although prevention of severe pathological sequelae is difficult, it is nevertheless feasible
by interfering with the molecular mechanisms that induce inflammatory gene expression
by viral infection. This type of molecular interference is already under clinical develop-
ment. Finally, the recently developed small molecule OGG1 inhibitors, with nanomolar
binding affinity, has provided a useful tool to test the role of oxidative stress-induced DNA
base lesion(s) and OGG1 interactions, as rate limiting steps in violent cytokine storm and
inflammation after viral and bacterial infection of the lungs.
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