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SUMMARY

Piwi-interacting RNAs (piRNAs) regulate many biological processes through mechanisms that 

are not fully understood. In Caenorhabditis elegans, piRNAs intersect the endogenous RNA 

interference (RNAi) pathway, involving a distinct class of small RNAs called 22G-RNAs, to 

regulate gene expression in the germline. In the absence of piRNAs, 22G-RNA production from 

many genes is reduced, pointing to a role for piRNAs in facilitating endogenous RNAi. Here, 

however, we show that many genes gain, rather than lose, 22G-RNAs in the absence of piRNAs, 

which is in some instances coincident with RNA silencing. Aberrant 22G-RNA production is 

somewhat stochastic but once established can occur within a population for at least 50 generations. 

Thus, piRNAs both promote and suppress 22G-RNA production and gene silencing. rRNAs 

and histones are hypersusceptible to aberrant silencing, but we do not find evidence that their 

misexpression is the primary cause of the transgenerational sterility observed in piRNA-defective 

mutants.
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In brief

Montgomery et al. show that piRNAs both promote and suppress siRNA production and RNA 

silencing in C. elegans. Gain or loss of siRNAs occurs somewhat stochastically in piRNA-

defective mutants but once established, it occurs across numerous generations.

INTRODUCTION

Piwi-interacting RNAs (piRNAs) affect many different processes in the germline (Iwasaki et 

al., 2015). Perturbing the piRNA pathway leads to sterility in many species, in part because 

of its critical role in silencing transposable elements (Iwasaki et al., 2015). In the nematode 

Caenorhabditis elegans, loss of piRNAs does not lead to immediate sterility, but instead 

causes a gradual loss of fertility over numerous generations such that the germline loses 

its immortal nature (Simon et al., 2014). As sterility ensues in piRNA mutants, the germ 

granules involved in RNA surveillance collapse (Spichal et al., 2021). However, the sterility 

of piRNA mutants is not clearly linked to transposon activation and genomic instability 

(Barucci et al., 2020; Reed et al., 2020; Simon et al., 2014; Spichal et al., 2021). Several 

models have been proposed to explain the progressive sterility of piRNA mutants. For 

example, we and others showed that piRNAs prevent silencing of essential genes by an 

endogenous RNA interference (RNAi) pathway involving small interfering RNAs (siRNAs) 

(de Albuquerque et al., 2015; Phillips et al., 2015). Recently, the germline mortality of 

piRNA mutants was attributed to the silencing of essential histone genes (Barucci et al., 
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2020). In a conflicting report published while this manuscript was under review, sterility was 

instead linked to aberrant silencing of ribosomal RNAs (rRNAs) (Wahba et al., 2021).

In C. elegans, piRNAs associate with a single Piwi protein, PRG-1, where they act as 

sequence-specific guides to direct the complex to target mRNAs within germ granules 

(Batista et al., 2008; Das et al., 2008; Ruby et al., 2006; Wang and Reinke, 2008). The 

interaction between piRNAs and target mRNAs leads to the production and subsequent 

amplification of siRNAs, called 22G-RNAs, by an RNA-dependent RNA polymerase in 

association with a collection of proteins called the Mutator complex (Bagijn et al., 2012; 

Lee et al., 2012; Phillips et al., 2012). The Mutator complex is seeded by MUT-16 adjacent 

to the germ granules that house the piRNA machinery (Batista et al., 2008; Phillips et 

al., 2012). This is the same pathway that is activated by canonical siRNAs produced from 

double-stranded RNA during exogenous RNAi and is therefore commonly referred to as 

endogenous RNAi (Almeida et al., 2019a; Claycomb, 2014). piRNA-dependent 22G-RNAs 

bind a worm-specific class of Argonautes called WAGOs (Gu et al., 2009). A genetically 

distinct class of 22G-RNAs binds to the Argonaute CSR-1 and is thought to act in opposition 

to piRNAs to promote or fine-tune gene expression (Campbell and Updike, 2015; Cecere et 

al., 2014; Claycomb et al., 2009; Conine et al., 2013; Gerson-Gurwitz et al., 2016; Seth et 

al., 2013; Wedeles et al., 2013).

C. elegans contains thousands of distinct piRNAs that require only partial sequence 

complementarity to bind target mRNAs (Bagijn et al., 2012; Shen et al., 2018; Zhang et al., 

2018). Consequently, piRNAs are thought to engage most, if not all, mRNAs in the germline 

(Bagijn et al., 2012; Lee et al., 2012; Shen et al., 2018). Furthermore, the 22G-RNAs 

produced from piRNA targets are thought to serve as a memory of piRNA activity that in 

some instances can persist in the absence of the initial piRNA trigger (Ashe et al., 2012; 

Luteijn et al., 2012; Shirayama et al., 2012).

Loss of piwi/prg-1, which results in nearly complete loss of piRNAs, leads to a reduction 

in WAGO-class 22G-RNA levels from many mRNAs in the germline; however, histones 

produce elevated levels of 22G-RNAs in prg-1 mutants (Barucci et al., 2020; Reed et al., 

2020). Through a genome-wide analysis of 22G-RNAs, we discover that many protein 

coding genes, as well as ribosomal RNAs (rRNAs), gain 22G-RNAs in prg-1 mutants. 

Gain of 22G-RNAs in prg-1 mutants was often coincident with silencing of the mRNA 

from which the 22G-RNAs were derived. Hyperaccumulation of 22G-RNAs was detectable 

across 50 generations. We show that aberrant production of 22G-RNAs occurs somewhat 

stochastically, although certain genes, including histones and rRNAs are hypersusceptible to 

this phenomenon. More generally, both gain and loss of 22G-RNAs occurs inconsistently 

within populations of prg-1 mutants. Our results indicate that piRNAs have broad roles in 

both promoting and suppressing 22G-RNA production and gene silencing.

RESULTS

Aberrant 22G-RNA production and gene silencing in prg-1 mutants

We and others recently showed that in C. elegans piwi/prg-1 mutants, histones are directed 

into an endogenous RNAi pathway where they spawn high levels of 22G-RNAs, which is in 
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some instances coincident with reduced histone mRNA levels (Barucci et al., 2020; Reed et 

al., 2020). To further explore this phenomenon, we examined 22G-RNA production from all 

annotated protein coding genes using RNA sequencing (RNA-seq) datasets from dissected 

distal gonads from wild-type and prg-1 and mut-16 mutants (Reed et al., 2020). Roughly 

75% of protein coding genes yielded 22G-RNA reads (at least 1 read) in wild-type animals, 

and to a somewhat lesser extent in prg-1 and mut-16 mutants, indicative of the prevalence 

of 22G-RNAs in the germline (Figure 1A; Table S1). A subset of genes produced highly 

elevated levels of 22G-RNAs in prg-1 mutants (Figure 1B; Table S1). We did not observe 

elevated levels of 22G-RNAs in animals containing a mutation in henn-1, which also acts 

within the piRNA pathway but has only a modest impact on 22G-RNA production in the 

germline (Figure 1C; Table S1) (Billi et al., 2012; Kamminga et al., 2012; Montgomery et 

al., 2012; Pastore et al., 2021; Svendsen et al., 2019). Nor did we observe elevated levels 

of 22G-RNAs in mut-16 mutants, in which WAGO-class 22G-RNAs are nearly completely 

lost, including those that are piRNA-dependent, but which retain CSR-1-class 22G-RNAs 

(Figures 1A and S1A; Table S1). We therefore do not believe that this phenomenon is related 

to loss of piRNA-dependent 22G-RNAs or to noise or variation in 22G-RNA production 

between different strains.

We identified 222 genes that yielded >250 22G-RNA reads on average in prg-1 mutants 

and that were upregulated >5-fold relative to wild-type. These arbitrarily applied cutoffs 

captured most histones and minimized what may be noise in 22G-RNA expression (Figure 

1B; Table S1). Of the 222 genes, ~30% were detectably downregulated > 1.3 fold at the 

mRNA level (Figure 1D; Table S2). However, many genes that gained 22G-RNAs were 

not misregulated and some were instead upregulated in prg-1 mutants, which may in part 

reflect the inconsistent relationship between 22G-RNA expression and gene silencing (Reed 

et al., 2020) (Figure 1D). Twenty-seven of the 66 genes that produced elevated levels of 

22G-RNAs and had reduced mRNA levels are histones, which comprised several of the 

most highly downregulated genes (Figures 1D and S1B; Table S2). The remaining 39 genes 

are unrelated to histones, such as the aldehyde dehydrogenase alh-7 (Figures 1E and S1B; 

Table S2). These results are consistent with Barucci et al. (2020), which also identified 

a prevalence for histones among downregulated genes with elevated 22G-RNA levels in 

prg-1 mutants. Thus, piRNAs have roles in both promoting 22G-RNA production from some 

transcripts and in preventing aberrant 22G-RNA production from others.

Hyperaccumulation of 22G-RNAs from rRNAs in prg-1 mutants

We next examined small RNAs produced from long non-coding RNAs and structural RNAs, 

including small nuclear RNAs (snRNAs), Y RNAs, small nucleolar RNA (snoRNAs), 

tRNAs, and rRNAs, to determine if they also lose or gain 22G-RNAs in the absence of 

piRNAs. Many non-coding RNAs produced relatively high levels of 22G-RNAs, a subset 

of which were depleted in prg-1, as well as in mut-16 mutants, indicating that like many 

coding genes they are targeted by piRNAs and routed into the RNAi pathway (Figures 2A 

and 2B; Table S3). However, rRNAs were distinct in having high levels of small RNAs 

that were elevated >5-fold in prg-1 mutants but which were not substantially affected in 

mut-16 mutants (Figures 2A and 2B). These small RNAs bare the hallmarks of 22G-RNAs: 

antisense orientation, preference for a 5’G, and length of 22-nts, and are therefore likely 
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to be the ribosomal siRNAs (risiRNAs) previously associated with rRNA misprocessing, 

although we do not have evidence that rRNAs are more prone to misprocessing in prg-1 
mutants (Figures 2C and 2D) (Zhou et al., 2017; Zhu et al., 2018).

To confirm that rRNAs are misrouted into the endogenous RNAi pathway in the absence 

of piRNAs, we tested whether mutations in core components of the RNAi machinery 

suppressed hyperproduction of 22G-RNAs in prg-1 mutants. Mutations in mut-14 and 

smut-1 (that are partially redundant RNA helicases), mut-2, or mut-7 all suppressed 

22G-RNA amplification from rRNAs in prg-1 mutants, as determined by small RNA 

high-throughput sequencing and TaqMan qRT-PCR (Figures 2E and 2F) (Chen et al., 

2005; Ketting et al., 1999; Phillips et al., 2014; Tijsterman et al., 2002; Zhang et al., 

2011). Furthermore, aberrant 22G-RNA production was lost from all hyperaccumulators 

in prg-1;mut-14 smut-1 mutants, demonstrating that in general aberrant 22G-RNAs are 

produced through the endogenous RNAi pathway (Figure 2F).

Low levels of 26S/28S rRNA-derived 22G-RNAs accumulated in mut-14 smut-1 mutants 

and in animals containing mutations in both prg-1 and any one of the mutators tested, 

albeit at reduced levels compared to wild-type (Figures 2E and 2F). It is therefore 

possible that rRNAs are normally targeted by both the CSR-1-class 22G-RNA pathway 

thought to be involved in licensing gene expression and the WAGO-class 22G-RNA 

pathway involved in RNAi. Consistent with this possibility, rRNA-derived 22G-RNAs were 

previously shown to bind both CSR-1 and WAGO-1 (Zhou et al., 2017). We also found 

that 26S/28S rRNA-derived 22G-RNAs were enriched in co-immunoprecipitates (coIPs) 

from the nuclear Argonaute HRDE-1, which is involved in transgenerational gene silencing 

(Figure 2G) (coIPs from Phillips et al. [2015]) (Buckley et al., 2012). Furthermore, 22G-

RNA enrichment was higher in coIPs from prg-1 mutants than from wild-type animals 

(Figure 2G). 26S/28S rRNA-derived 22G-RNA levels were also elevated in a distinct and 

unrelated allele of prg-1, tm872, demonstrating that this phenomenon is not unique to the 

prg-1(n4357) deletion allele primarily used in this study (Figure 2H). These results suggest 

that in the absence of piRNAs, rRNAs are directed into the heritable gene silencing pathway 

involving HRDE-1 and the RNAi machinery.

In total, 5.8S-derived 22G-RNA levels were elevated ~5-fold and 18S- and 26S/28S-derived 

22G-RNAs levels were elevated >30-fold in prg-1 mutants (Figure 2I). Despite these 

elevated levels, we were unable to identify a consistent impact on rRNA levels in distal 

gonads of prg-1 mutants using qRT-PCR (Figure S2A). We also did not observe a difference 

in read distribution across the different rRNA subunits using total RNA-seq from dissected 

gonads of prg-1 and wild-type animals; nor did we capture reads derived from the 45S 

precursor outside of the subunits (Figure S2B). Nevertheless, while this manuscript was 

under review, another study identified a positive correlation between rDNA copy number 

and generational fertility in prg-1 mutants (Wahba et al., 2021). It is possible that we did not 

detect an effect by qRT-PCR or total RNA-seq because of the sheer abundance of rRNAs, or 

because variation in rRNA levels limited our ability to detect small differences.

Aberrant 22G-RNAs produced from rRNAs, histones, and other annotated coding genes in 

prg-1 mutants accounted for ~45% of all WAGO-class 22G-RNA reads in prg-1 mutants, 
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but only a very small fraction in wild-type animals (Figure 2J). This points to substantial 

repurposing of the RNAi machinery for aberrant 22G-RNA production in prg-1 mutants. 

Disabling a single class of primary small RNAs that trigger WAGO-class 22G-RNA 

production (i.e., ERGO-1-class 26G-RNAs) enhances exogenous RNAi, likely because of 

competition for shared factors, suggesting that RNAi functions at or near capacity (Billi 

et al., 2014). The dramatic shift in WAGO-class 22G-RNA production to rRNAs, histones, 

and other coding genes may have wide-ranging impacts on 22G-RNA production in the 

germlines of prg-1 mutants. That many genes lose 22G-RNAs while other genes gain 22G-

RNAs in prg-1 mutants suggests that piRNAs have a broad role in orchestrating endogenous 

RNAi.

Variation in aberrant 22G-RNA production between prg-1 mutant strains

We observed that the levels of 22G-RNAs produced from hyperaccumulators in prg-1 
mutants were typically very consistent between biological replicates from the same parental 

line (Tables S1 and S3). To determine if hyperaccumulation of 22G-RNAs also occurs 

uniformly between different strains of prg-1 mutants, we assessed by high-throughput 

sequencing 22G-RNA levels in two distinct partial deletion alleles of prg-1, both of which 

are presumably null: prg-1(n4357) and prg-1(tm872) (Figures 3A and 3B) (Das et al., 2008; 

Yigit et al., 2006). The pattern of widespread loss of 22G-RNAs from some genes and gain 

of 22G-RNAs from others was strikingly similar between the prg-1 mutant strains (Figures 

3A and 3B; Table S4).

Although we previously classified hyperaccumulators in prg-1(n4357), we repeated it for 

this experiment because it involved whole animals rather than dissected gonads. Because 

whole animals contain fewer 22G-RNAs relative to the total small RNA pool than gonad 

tissue (compare Figures 1B and 3A), we applied a less stringent, but arbitrary, 10 normalized 

read cutoff rather than the 250 read cutoff applied to our gonad-seq libraries for classifying 

hyperaccumulators. Using again a 5-fold-change cutoff to classify hyperaccumulators, we 

identified ~500 annotated genes that met our read threshold criteria in one or both strains 

(Table S4). Although some genes, including rRNAs and many histones, gained 22G-RNAs 

in both strains, many were unique to one of the two strains (Figure 3C; Table S4). There was 

also some variation in the extent to which genes lost 22G-RNAs in prg-1 mutants, however, 

the median fold change between the two prg-1 alleles among the hyperaccumulators was 

5.9, compared with only 1.2 among non-hyperaccumulators (calculated from the data in 

Table S4). These results suggest that aberrant production of 22G-RNAs in prg-1 mutants, 

while seemingly consistent within a population derived from the same parental line, 

differs substantially between strains. Because many genes, such as histones and rRNAs, 

consistently gain 22G-RNAs in prg-1 mutants, there must be features that predispose some 

transcripts to 22G-RNA hyperproduction in the absence of piRNAs.

Stochasticity in 22G-RNA production within prg-1 populations

Having found that 22G-RNA production is variable between different strains of prg-1, we 

asked whether substantial variation also occurs within a population from a single strain. 

We first sequenced small RNAs and mRNAs from three distinct pools of wild-type animals 

and prg-1(n4357) mutants. The prg-1 strain was recently backcrossed to wild-type and then 
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starved for an extended period. Starvation restores fertility to prg-1 mutants and brief bouts 

of starvation delay transgenerational sterility (Heestand et al., 2018; Simon et al., 2014). 

Thus, by starving the animals we were able to reset the fertility clock to some extent. The 

wild-type and prg-1 strains were then expanded on food for ~3 generations, after which, 

eggs were collected and hatched under starvation conditions to generate synchronized 

populations of L1 larvae, which were then transferred to food and grown to adult stage 

for RNA isolation. We refer to these founding populations as the ancestral generations, in 

which the animals were grown for 1 generation on continuous food. Next, we singled 10 

animals from each population of wild-type and prg-1 mutant animals (as well as mut-14 
smut-1 and prg-1; mut-14 smut-1, discussed below) and propagated them without starvation 

for 65 generations. Propagation across many generations in the presence of food leads 

to progressive germline dysfunction and loss of fertility in prg-1 mutants, which we also 

observed in this experiment (Heestand et al., 2018; Simon et al., 2014; Spichal et al., 2021).

At 50 generations, an arbitrary time point chosen because at this point the individual prg-1 
lines had diverged considerably in health, as discussed below, we again sequenced small 

RNAs and mRNAs from the 3 surviving prg-1 mutant lines and 3 of the wild-type lines 

harvested as adults. We refer to these lines as descendants in reference to the ancestral 

populations from which they were derived (Figure 3D). Most genes that produced aberrant 

22G-RNAs in the ancestral population of prg-1 mutants continued to do so in the descendant 

lines (Figures S3A and S3B). However, there was substantial variation in 22G-RNA levels 

between the ancestral population and the three descendent lines (Figure 3E). It is possible 

that 22G-RNA levels tend to drift across generations or that there is variation even within 

a population of wild-type animals. Arguing against this possibility, we did not observe 

dramatic gain or loss of 22G-RNAs between the ancestral population and the 3 descendant 

lines from wild-type animals (Figure 3F).

It is important to consider here that the descendant lines that were sequenced after 50 

generations were pools of ~3,000 animals derived from similarly sized pools of animals that 

were sequenced at the ancestral generation. Within these pools there could be differences 

between individuals in which genes produced aberrant 22G-RNAs and thus we cannot assess 

with certainty gain or loss of 22G-RNAs within the three lines. Nevertheless, aberrant 22G-

RNA production in only a subset of lines would point to stochasticity within the population. 

Indeed, we identified many genes for which only 1 or 2 of the 3 prg-1 descendant lines 

hyperaccumulated 22G-RNAs (Figures 3G and 3H; Table S5). In contrast, 22G-RNA levels 

were nearly identical in the 3 wild-type lines (Figure 3H; Table S5). In many instances, 

22G-RNA levels were drastically different between the 3 prg-1 lines, indicating that aberrant 

22G-RNA production is somewhat stochastic (Figure 3H; Table S5). However, we also 

observed drastic variation in the levels of 22G-RNA depletion in prg-1 mutants, and in some 

instances, 22G-RNA levels were reduced in one line and elevated in another (Figure S3C; 

Table S5).

We then did pairwise comparisons between each of the wild-type or prg-1 replicates to 

assess variation in coding gene-derived 22G-RNA levels more globally across the different 

lines. Within the ancestral populations, there was very little variation between the three 

biological replicates of either wild-type or prg-1 mutants (Figure S3D). In contrast, we 

Montgomery et al. Page 7

Cell Rep. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed dramatic variation in 22G-RNA levels between the three prg-1 descendant lines, 

which we did not observe between the wild-type descendant lines (Figure S3E). This 

variation was suppressed in prg-1; mut-14 smut-1 triple mutants, which were included in 

our generational assay as well, indicating that the variation we observed in the prg-1 single 

mutants is in WAGO-class, rather than CSR-1-class, 22G-RNA levels (Figure S3E).

The variation in 22G-RNA levels afforded us the ability to directly assess whether aberrant 

22G-RNAs lead to silencing of the gene from which they are produced. The complexity 

of 22G-RNA production and mRNA expression somewhat obscured a global analysis. For 

example, many mRNAs were expressed at very low levels (Table S5). We did, however, 

identify several genes for which 22G-RNAs were clearly produced from an annotated 

transcript and mRNA levels were relatively high. In such cases, 22G-RNA levels were in 

some instances anticorrelated with mRNA levels (Figures 3G and S3F; Table S5). In many 

instances, however, there was no clear correlation between 22G-RNA levels and mRNA 

levels (Figure S3F; Table S5). These results, in combination with our earlier observation 

that many of the genes that produce aberrant 22G-RNAs in prg-1 mutants are downregulated 

(Figure 1D), indicate that piRNAs in some instances prevent aberrant gene silencing, but 

also further illustrate the inconsistent link between 22G-RNAs and gene silencing (Reed et 

al., 2020).

We then assessed whether genes that hyperaccumulated 22G-RNAs in prg-1 mutants 

in the ancestral generation and that were downregulated at the mRNA level were also 

downregulated in the descendant lines after 50 generations. Indeed, the majority of the 

107 genes that were downregulated and hyperaccumulated 22G-RNAs in the ancestral lines 

were also downregulated in the descendant lines despite some stochasticity in 22G-RNA 

production and gene silencing among the three lines (Figure 3I; Table S5). We conclude that 

aberrant 22G-RNA production and gene silencing occur somewhat stochastically, but once 

initiated occur consistently across generations.

Aberrant 22G-RNA production from rRNAs and histones after outcrossing

We then asked whether the somewhat stochastic nature of aberrant 22G-RNA production we 

observed for many genes also applied to histones and rRNAs, as histones were consistently 

silenced in all our prg-1 mutant lines (Table S5). If so, outcrossing prg-1 mutants to wild-

type might be able to restore normal levels of 22G-RNAs, at least partially. To test this, 

we did reciprocal crosses between wild-type and prg-1 mutant males and hermaphrodites. 

We then isolated multiple F1 progeny from the crosses and homozygosed and expanded 

them over a total of ~5–6 generations and then assessed aberrant 22G-RNA production from 

his-12 and 26S/28S rRNA using qRT-PCR.

In all prg-1 homozygous mutant lines, 22G-RNA levels were similar to those of the control 

prg-1(n4357) parental line regardless of whether the prg-1(n4357) mutation was introduced 

via the male or hermaphrodite, whereas a control heterozygous line showed an intermediate 

phenotype between wild-type and prg-1(n4357) mutants (Figures 3J and 3K). This suggests 

that aberrant 22G-RNA production from rRNAs and histones occurs consistently and within 

only a few generations in prg-1 mutants. Alternatively, aberrant 22G-RNAs or a memory of 

aberrant 22G-RNA production may be transmitted through both male and female gametes.
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Aberrant gene silencing and generational fertility

Histone silencing was recently linked to the transgenerational sterility of prg-1 mutants 

(Barucci et al., 2020). Furthermore, our results demonstrating that rRNAs and many other 

coding genes are also susceptible to aberrant 22G-RNA production in prg-1 mutants led us 

to explore the link between aberrant gene silencing and transgenerational sterility in prg-1 
mutants. During the experiments described above, we followed the fertility of prg-1 mutants, 

as well as mut-14 smut-1 mutants, which are defective in 22G-RNA production downstream 

of piRNAs, and triple prg-1; mut-14 smut-1 mutants over 65 generations (Figure 4A) 

(Phillips et al., 2014). Consistent with previous studies, most prg-1 mutant lines became 

sterile over the course of the experiment (Simon et al., 2014). Of the 10 prg-1 lines we 

followed, only 3 survived to generation 50 (Figure 4A). However, prg-1; mut-14 smut-1 
mutants also displayed a high incidence of sterility (40%), which although lower than 

what was observed in prg-1 single mutants suggests that loss of WAGO-class 22G-RNAs, 

and thus presumably loss of aberrant gene silencing, cannot fully rescue the progressive 

sterility of prg-1 mutants (Figure 4A). Although, unexpectedly, mut-14 smut-1 mutants also 

displayed a progressive loss of fertility (Figure 4A).

To confirm that loss of WAGO-class 22G-RNAs underlies the progressive sterility of mut-14 
smut-1 mutants, we assessed the fertility of two independent deletion alleles of mut-16, a 

gene also critical for WAGO-class 22G-RNA production, across 57 or 80 generations (Reed 

et al., 2020; Zhang et al., 2011). Lines from both mut-16 mutant strains also displayed 

generational sterility, although some lines persisted for >50 generations (Figures 4B and 

4C). If aberrant gene silencing via 22G-RNAs is responsible for the progressive sterility of 

prg-1 mutants, it is surprising that 22G-RNA-defective animals also become sterile across 

generations. It is not clear, however, if the progressive sterility of mut-14 smut-1 and mut-16 
mutants is related to the germline mortality observed in prg-1 mutants (Heestand et al., 

2018; Simon et al., 2014; Spichal et al., 2021).

Finally, we explored the relationship between aberrant rRNA and histone silencing and 

transgenerational sterility. We observed almost no change in histone and rRNA 22G-RNA 

levels in prg-1 mutants across 50 generations of continuous growth, but it is possible that 

the ancestral lines were already producing 22G-RNAs at steady-state levels (Figure S3B). 

We nevertheless examined mRNA levels in prg-1 mutants at one generation of growth (the 

ancestral population) and in the 3 surviving lines at 50 generations of continuous growth 

(these are the same datasets for prg-1 and wild-type described above). Histone mRNA levels 

did not dramatically change in prg-1 single mutants between generation 1 and 50 but were 

rescued at both time points by the mut-14 smut-1 mutations, consistent with similar findings 

from Barucci et al. (2020) (Figures 4D and 4E).

Of the three prg-1 lines that were still viable at 50 generations, one was very sick and 

sterile, one was moderately sick and went sterile after 10 more generations, and one was 

only mildly sick and was fertile even at generation 65 when we terminated the experiment 

(Figure 4A). Despite disparity in their health, histone mRNAs levels in each of the lines 

were striking similar (Figure 4E, lower plot). We also assessed the levels of each of the 

rRNA families at 1 and 50 generations using qRT-PCR (because we selected against rRNA 

in our RNA-seq libraries). We were unable to detect a consistent difference in rRNA levels 
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in prg-1 mutants at either time point and rRNA levels did not correlate with the health of 

the individual lines (Figures 4F and 4G). However, it is possible that the impact of reduced 

levels of histones or rRNAs is manifested over multiple generations without a further decline 

in their levels. Thus, despite a lack of supporting evidence, we cannot rule out that aberrant 

silencing of rRNAs or histones underlies the sterility of prg-1 mutants. Nevertheless, we 

propose that it may be a contributor rather than the underlying cause.

DISCUSSION

rRNAs and histone mRNAs are heavily targeted by PRG-1-piRNA complexes and yet it 

in the absence of piRNAs 22G-RNA production is upregulated rather than downregulated, 

suggesting that piRNAs somehow prevent, either directly or indirectly, overamplification of 

22G-RNAs (Shen et al., 2018). It is possible that PRG-1-piRNA complexes physically block 

association with the 22G-RNA machinery to prevent 22G-RNA amplification under normal 

conditions. This hints at a possible mechanism for piRNA-mediated 22G-RNA formation: 

rather than physically directing mRNAs into the 22G-RNA pathway, piRNAs may act as a 

sieve of sorts that temporarily traps RNAs in germ granules. Presumably the trapped RNAs 

are acted on by gene-licensing factors, such as CSR-1, or gene-silencing factors, such as 

the WAGO Argonautes, or both. Some factors, such as WAGO or RdRP complexes, may be 

inefficient at displacing PRG-1-piRNA complexes from these trapped RNAs such that their 

ability to elicit an RNAi response is limited. The absence of PRG-1 could therefore enable 

access to the RNAi machinery and lead to runaway 22G-RNA amplification. This model 

may also explain why essentially all germline mRNAs are targeted by piRNAs, while only a 

subset is susceptible to RNAi (Reed et al., 2020; Shen et al., 2018; Wu et al., 2019). Perhaps 

a similar molecular sieve model could help to explain the role of the highly abundant 

pachytene piRNAs found in mice, which also have expansive gene targeting capacity (Ozata 

et al., 2019).

It is not clear why rRNAs and histone mRNAs are hypersusceptible to aberrant 22G-RNA 

production in the absence of piRNAs. Perhaps the sheer abundance of rRNAs and histone 

mRNAs overwhelms the cellular machinery that processes them. Without PRG-1 and 

polyA-binding proteins to help protect rRNAs and histones, 22G-RNAs may engage in a 

feedback loop that leads to runaway amplification by RNA-dependent RNA polymerases. It 

is possible that misprocessed RNAs can act as a trigger for RNAi-mediated gene silencing. 

Such misprocessing would presumably be more likely to occur the more abundant a 

transcript is and is possibly more likely for transcripts such as histones and rRNAs for which 

3’ end formation does not involve polyadenylation. Interestingly, a critical step in priming 

an RNA for 22G-RNA biogenesis is the addition of a polyUG tail (Shukla et al., 2020). 

This so-called pUGylation occurs on resected or cleaved mRNAs, indicating that polyA 

tails are first removed (Shukla et al., 2020; Tsai et al., 2015). rRNAs and histone mRNAs 

may be primed for pUGylation because they already lack polyA tails. In support of this, a 

recent paper published while this manuscript was under review showed that polyUG tails are 

added to histone mRNAs in prg-1 mutants (Shukla et al., 2021). Furthermore, it was shown 

that long-term multigenerational RNAi occurs in a subset of prg-1 mutants from the same 

population, demonstrating that there is stochasticity in the exogenous RNAi response as well 

as in endogenous RNAi (Shukla et al., 2021). The stochastic nature of aberrant 22G-RNA 
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production in prg-1 mutants may be the result of a small number of misprocessed transcripts 

arising in an individual and triggering runaway amplification that persists across generations. 

Perhaps piRNAs help to trap such misprocessed mRNAs in germ granules where they are 

acted on by the RNA decay machinery and in the absence of piRNAs they migrate into the 

cytoplasm where they may be more prone to trigger 22G-RNA biogenesis.

We showed that loss of mut-16 or mut-14 and smut-1 also leads to transgenerational 

sterility. Germline mortality was not observed in mut-7 or rde-2 mutants, which are also 

key components of the 22G-RNA machinery (Simon et al., 2014). This may reflect a more 

modest loss of 22G-RNAs in these mutants compared to mut-16 and mut-14 smut-1 mutants 

(Phillips et al., 2014). Whether the sterility of mut-16 and mut-14 and smut-1 is associated 

with their role downstream of piRNAs is unclear. It is possible that it is caused by something 

distinct, for example the accumulation of transposon-induced mutations, which likely occur 

at higher frequencies in mutator mutants than in piRNA mutants (Barucci et al., 2020; Reed 

et al., 2020; Wallis et al., 2019). That loss of both piRNAs and WAGO-class 22G-RNAs 

leads to a slower decline in fertility points to at least partially distinct and opposing roles for 

the two pathways in the germline and is consistent with aberrant gene silencing having an 

impact on the fitness of prg-1 mutants.

We previously showed that the presence of piRNAs or a 22G-RNA-based memory of 

piRNA activity is critical for fertility within a single generation (Phillips et al., 2015). 

Reestablishing WAGO-class 22G-RNA production in animals that lack piRNAs leads to 

immediate and highly penetrant sterility. Interestingly, sterility is accompanied by aberrant 

silencing of essential genes and widespread mis-sorting of mRNAs between the CSR-1 and 

WAGO pathways (de Albuquerque et al., 2015; Phillips et al., 2015). It is possible that 

the aberrant gene silencing we observed in this study is the same phenomenon but kept in 

check to a greater degree by a functional WAGO pathway and a memory of piRNA activity. 

Perhaps the progressive loss of fertility in piRNA mutants is a result of both desilencing of 

potentially harmful genes and aberrant silencing of beneficial genes. The stochastic nature 

of both gain and loss of 22G-RNAs in prg-1 mutants could explain why sterility ensues over 

differing numbers of generations for individuals derived from the same parental lines.

Limitations of study

We are not able to conclude whether aberrant gene silencing underlies the sterility of prg-1 
mutants. Because prg-1 sterility is at least partially rescued by disabling the endogenous 

RNAi pathway, aberrant gene silencing is likely a contributing factor. However, a direct link 

between aberrant silencing of a particular gene or class of genes, such as histones or rRNAs, 

and a downstream molecular phenotype, such as widespread promotion or suppression of 

gene expression, is lacking. Thus, it will be important to identify how the various roles 

identified for piRNAs in regulating gene expression contribute to germline immortality in 

C. elegans. Although aberrant silencing of essential genes may indeed underlie generational 

sterility, we believe that additional genetic or biochemical evidence will be needed to 

validate current models (Barucci et al., 2020; de Albuquerque et al., 2015; Phillips et al., 

2015; Wahba et al., 2021). The challenge in such studies will be to disentangle direct 

Montgomery et al. Page 11

Cell Rep. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



roles for piRNAs in regulating gene expression from indirect effects on gene expression 

associated with defects in germline development.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Taiowa Montgomery (tai.montgomery@colostate.edu).

Materials availability—All C. elegans strains generated in this study are available on 

request from the Lead Contact without restriction.

Data and code availability

• RNA-seq data have been deposited at GEO and are publicly available. Accession 

numbers are listed in the Key Resources Table.

• All original code has been deposited at GitHub and is publicly available as of the 

date of publication. DOIs are listed in the Key Resources Table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans strains—The Key Resources Table contains all C. elegans strains used in this 

study. Animals were grown at 20°C on nematode growth medium and fed E. coli OP50. 

Experiments were done using predominantly hermaphrodite adult stage animals (68–72 

hours post L1 synchronization or 96 hours post egg prep if not synchronized by starvation). 

No efforts were made to select for or against males.

METHOD DETAILS

Strain generation—prg-1(n4357) I; mut-7(pk720) III and mut-2(ne298) prg-1(n4357) I 
double mutants were generated by crossing prg-1(n4357) I males to mut-7(pk720) III or 

mut-2(ne298) I hermaphrodites.

RNA isolation—Animals were synchronized by bleach treatment and hatched in M9 

until arrested as L1 larvae, plated, and grown to gravid adult stage (68–72 hours post 

L1 synchronization). To prevent starvation, the 50 generation descendant lines were 

immediately plated on food after bleach treatment and grown to gravid adult stage (96 

hours). RNA isolation from gonads was done in Reed et al. (2020). Animals used for RNA 

isolation in this study were washed three times in M9 buffer, flash frozen in liquid nitrogen, 

and lysed in Trizol. RNA was isolated using two rounds of chloroform extraction followed 

by isopropanol precipitation and DNase treatment.
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mRNA-seq and total RNA-seq libraries—mRNA-seq and total RNA-seq libraries were 

prepared using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina as 

described (Reed et al., 2020), or the TruSeq Stranded Total RNA Library Prep Human/

Mouse/Rat kit following the manufacturer’s protocol. For mRNA-seq libraries, rRNA was 

depleted using the Ribo-Zero rRNA Removal Kit prior to library prep (this step was omitted 

for total RNA-seq libraries). Samples were sequenced on an Illumina sequencer (NextSeq 

500, High Output Kit, Single-End, 75 Cycles, or HiSeq, Paired-End, 150 Cycles).

mRNA-seq data analysis—Data analysis was done as described (Reed et al., 2020). 

Briefly, quality filtering was done with fastp (Chen et al., 2018). Reads were mapped to 

the C. elegans genome (Wormbase release WS230) using Star (Dobin et al., 2013). Reads 

aligning to each feature were counted using RSEM (Li and Dewey, 2011). Differential 

expression analysis was done using DESeq2 (Love et al., 2014). Plots were drawn in R, 

Excel, and IGV (Thorvaldsdóttir et al., 2013). See Table S6 for additional details.

sRNA-seq libraries—Small RNA libraries were prepared as described (Reed et al., 2020). 

Briefly, 16–30-nt RNAs were size selected on 17% denaturing polyacrylamide gels and 

treated with RNA polyphosphatase or RppH (Almeida et al., 2019b) to reduce 5′ di- and 

triphosphates to monophosphates to enable 5′ adaptor ligation. Sequencing libraries were 

prepared with the NEBNext Multiplex Small RNA Library Prep Set for Illumina. Libraries 

were size selected on 10% polyacrylamide gels and sequenced on an Illumina sequencer 

(NextSeq 500, High Output Kit, Single-End, 75 Cycles, or HiSeq, Paired-End, 150 Cycles).

sRNA-seq data analysis—Small RNA data analysis was done as described (Reed et 

al., 2020). Briefly, small RNAs were parsed from adapters, quality filtered, and mapped to 

the C. elegans genome (Wormbase release WS230) using CASHX v. 2.3 (Fahlgren et al., 

2009). Reads from specific features were counted using custom Perl scripts. Multimapping 

reads were normalized by the number of map sites. Differentially expressed small RNAs 

were identified using DESeq2 (Love et al., 2014). Plots were drawn in R, Excel, and IGV 

(Thorvaldsdóttir et al., 2013). See Table S6 for additional details.

Generational fertility assays—Generational fertility assays were modeled after the 

approach used by Simon et al. (2014) and Ahmed and Hodgkin (2000). 10 independent lines 

for each strain were monitored over multiple generations. At each generation, population-

level fertility was scored and 10 worms per line were transferred to new plates. Animals 

producing any number of offspring were considered fertile. If a line produced fewer than 10 

progeny all progeny were transferred.

qRT-PCR—Quantitative real-time PCR (qRT-PCR) was done as described (Reed et 

al., 2020) using SYBR Green or custom TaqMan assays. For SYBR Green qRT-PCR, 

iTaq Universal SYBR Green Supermix (Bio-Rad) was used with primers recognizing 

45S and rpl-32 (normalization). Custom TaqMan gene expression assays using TaqMan 

Fast Advanced Master Mix were used to detect 5.8S, 18S, and 26S/28S rRNAs, act-1 
(normalization), and 22G-RNAs derived from his-12 and 26S/28S rRNAs as well as 21UR-1 

and hsa-miR-1 (used for normalization). All assays included non-template controls and, 

when applicable, melting curve analyses were done. Average Ct values were calculated for 

Montgomery et al. Page 13

Cell Rep. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3–4 biological replicates from 3 technical replicate PCRs. Relative small RNA or rRNA 

levels were calculated using 2ˆ-ddCt (Livak and Schmittgen, 2001).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of each experiment can be found in the figures and figure legends. 

A significance threshold was set at p < 0.05 after correcting for multiple comparisons. 

Benjamin-Hochberg corrected p values, calculated using the Wald test in DESeq2 (Love et 

al., 2014), are reported for differential expression analysis. Two-sample t tests were used 

when analyzing histone family mRNA levels and qRT-PCR results. Bonferroni corrections 

were applied to account for multiple comparisons. Pearson correlation coefficients were 

used to measure linear correlation between biological replicate RNA-seq datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Piwi/PRG-1 prevents aberrant gene silencing in C. elegans

• Aberrant gene silencing in piwi/prg-1 mutants can occur for at least 50 

generations

• rRNAs are misrouted into the endogenous RNAi pathway in piwi/prg-1 
mutants

• Both gain and loss of siRNAs are stochastic in piwi/prg-1 mutants
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Figure 1. Hyperaccumulation of 22G-RNAs and aberrant gene silencing in prg-1 mutants
(A) Rain shadow boxplots displaying normalized log2-transformed small RNA high-

throughput sequencing reads for each annotated coding gene in dissected distal gonads of 

wild-type, prg-1(n4357), and mut-16(pk710) mutants (n = 3 biological replicates for each 

strain). The values on the y axis are reverse transformed to reflect non-transformed values.

(B and C) Scatterplots displaying each gene as a function of normalized log2-transformed 

small RNA reads in wild-type and prg-1(n4357) (B) or henn-1(pk2295) (C) mutants. The 

axes are reverse transformed to reflect non-transformed values. Hyperaccumulators are 

classified as genes that yielded an average of >250 normalized reads and which were 

upregulated >5-fold in prg-1 mutants, as indicated by the dashed lines. Libraries are from 

dissected distal gonads (n = 3). Solid lines above and below the y = x lines indicate 2 and −2 

fold-changes.

(D) Scatterplot displaying each gene as a function of normalized log2-transformed 

mRNA high-throughput sequencing reads in wild-type and prg-1(n4357) (axes show non-

transformed values).

(E) mRNA and small RNA read distribution across a representative gene locus, alh-7, that 

hyperaccumulated 22G-RNAs in prg-1 mutants. Three biological replicates are shown for 

wild-type, prg-1(n4357), and mut-16(pk710).
See also Figure S1 and Tables S1 and S2.
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Figure 2. Aberrant production of 22G-RNAs from rRNAs in prg-1 mutants
(A and B) Scatterplots displaying each non-coding RNA as a function of normalized log2-

transformed small RNA high-throughput sequencing reads in wild-type and prg-1(n4357) 
(A) or mut-16(pk710) (B) mutants (axes values are reverse transformed to reflect non-

transformed values). rRNAs are circled. Libraries are from dissected distal gonads (n = 3 

biological replicates for each strain). Solid lines above and below the y = x lines indicate 2 

and −2 fold-changes.

(C) Small RNA read distribution across an rRNA locus. One representative of 3 biological 

replicates is shown for wild-type, prg-1(n4357), and mut-16(pk710).
(D) Antisense rRNA-derived small RNA size distribution in prg-1(n4357) mutants.

(E) Relative log2-transformed levels of a 26S/28S rRNA-derived 22G-RNAs in wild-type 

animals and various mutants as determined by TaqMan qRT-PCR (normalized to miR-1). 

The y axis shows log2-tranformed values. Error bars are mean ± SD (n = 3). Bonferroni-

corrected p value range: 2.8 × 10ˆ5 − 0.0049 (two-sample t tests).

(F) Scatterplots displaying each small RNA feature colored by class as a function of 

normalized log2-transformed small RNA reads in wild-type and mutant animals (axes are 

reverse transformed to reflect non-transformed values).

(G) Enrichment of rRNA-derived 22G-RNAs in FLAG::HRDE-1 co-immunoprecipitates 

relative to input cell lysates from wild-type and prg-1(n4357) mutants.

(H) Relative levels of a 26S/28S rRNA-derived 22G-RNA in wild-type and prg-1(tm872) 
mutant animals as determined by TaqMan qRT-PCR (normalized to miR-1). Error bars are 

mean ± SD (n = 3). The p value was calculated using a two-sample t test.
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(I) Normalized log2-transformed rRNA-derived 22G-RNA levels in wild-type and 

prg-1(n4357) and mut-16(pk710) mutant gonads. Error bars are mean ± SD (n = 3). p values 

were calculated using two-sample t tests followed by Bonferroni correction for multiple 

comparisons. The y axis shows log2-transformed values.

(J) Pie chart displaying the proportion of all WAGO-class 22G-RNA reads from features 

classified as 22G-RNA hyperaccumulators (>250 reads on average and >5-fold increase in 

22G-RNA levels in prg-1 mutants relative to wild-type) or non-hyperaccumulators. WAGO-

class features were expanded to include the hyperaccumulators that are not classified as 

WAGO targets.

See also Figure S2 and Table S3.
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Figure 3. Stochasticity of 22G-RNA production in prg-1 mutants
(A and B) Scatterplots displaying each gene as a function of normalized log2-transformed 

small RNA high-throughput sequencing reads in wild-type and prg-1(n4357) (A) or 

prg-1(tm872) (B) mutants (whole gravid adult animals, n = 3 biological replicates). The 

values on the axes are reverse transformed to reflect non-transformed values. Solid lines 

above and below the y = x lines indicate 2 and −2 fold-changes.

(C) Scatterplot displaying each gene classified as a 22G-RNA hyperaccumulator as a 

function of log2-transformed fold-change 22G-RNA levels in prg-1(n4357) or prg-1(tm872) 
relative to wild-type (whole gravid adult animals, n = 3). Genes that yielded >10 reads on 
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average in at least one prg-1 mutant strain but that were not classified as hyperaccumulators 

are shown in gray. The axes reflect non-transformed values. The numbers of genes in 

each quadrant are shown. Dashed lines mark the 5-fold-change cutoff used to classify 

hyperaccumulators in the two prg-1 strains.

(D) Schematic illustrating the generational assay used in this study. mut-14(mg464) 
smut-1(tm1301) and prg-1(n4357); mut-14(mg464) smut-1(tm1301) strains were also 

included but for simplicity are not shown.

(E and F) Scatterplots displaying each gene as a function of normalized log2-transformed 

small RNA high-throughput sequencing reads in the ancestral population and descendant 

lines of prg-1(n4357) mutants (E) or wild-type animals (F) (whole gravid adult animals, n = 

3). The axes show non-transformed values.

(G) mRNA and small RNA read distribution across a representative gene locus, immp-2. 

Three biological replicates or lines are shown for wild-type and prg-1(n4357).
(H) Plots displaying normalized log2-transformed small RNA reads for several genes in each 

wild-type and prg-1(n4357) mutant line after 50 generations of continuous growth (y axis 

shows log2-transformed values).

(I) Scatterplot displaying genes classified as 22G-RNA hyperaccumulators that were 

downregulated at the mRNA level as a function of mRNA fold-change in prg-1 mutants 

relative to wild-type at generations 1 (ancestral population) and 50 (descendant lines) of 

continuous growth.

(J and K) Bar plots displaying relative levels of each small RNA in the parental wild-

type and prg-1 mutant lines and in the ~F5 progeny of crosses between wild-type males 

and prg-1(n4357) hermaphrodites (n = 1) (J) and prg-1(n4357) males and wild-type 

hermaphrodites (n = 2) (K). Error bars in (K) are mean ± SD.

See also Figure S3 and Tables S4 and S5.
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Figure 4. Progressive sterility in piRNA- and 22G-RNA-deficient mutants
(A) Generational fertility of wild-type and prg-1(n4357), mut-14(mg464) smut-1(tm1301), 
and prg-1(n4357); mut-14(mg464) smut-1(tm1301) mutants. 10 lines for each strain were 

scored for fertility across 65 generations. The percentages of lines that were fertile at each 

generation are shown. RNA was isolated whole gravid adults from 3 lines per strain for 

RNA-seq at generations 1 (ancestral population) and 50 (descendant lines).

(B and C) Generational fertility of wild-type and mut-16(pk710) (B) or mut-16(ram18) (C) 

mutants. 10 lines for each strain were scored for fertility across 80 or 57 generations as 

indicated. The percentages of lines that were fertile at each generation are shown.

(D and E) Bar plots displaying relative mRNA levels for each histone family based on 

normalized RNA-seq counts after 1 (ancestral population) or 50 generations of continuous 

growth (descendant lines). Error bars are mean ± SD (n = 3). p values were calculated 

using two-sample t tests followed by Bonferroni correction for multiple comparisons. The 

lower circles-plot in (E) shows relative mRNA levels for each histone family in each of 3 

prg-1(n4357) mutant lines colored by their health.

(F) Relative rRNA levels as determined by qRT-PCR in wild-type and prg-1(n4357) 
mutants at 1 and 50 generations of growth. Error bars are mean ± SD (n = 3). p values 

were calculated using two-sample t tests followed by Bonferroni correction for multiple 

comparisons.

(G) The circles-plot shows relative rRNA levels as determined by qRT-PCR for each rRNA 

family in each of 3 prg-1(n4357) mutant lines colored by their health. rRNA levels are 

represented by dCT ([mean cycle threshold for each rRNA – mean cycle threshold for actin] 
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from 3 technical replicates). A 1 unit reduction in the dCT value would correspond to a 

2-fold increase in rRNA levels.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Escherichia coli: OP50 Gary Ruvkun (Harvard 
Medical School)

N/A

Chemicals, peptides, and recombinant proteins

Trizol Life Technologies Cat# 15596018

RNA 5′ polyphosphatase Illumina Cat# RP8092H

NEBNext 2X PCR Master Mix New England Biolabs Cat# M0541L

TURBO DNase Life Technologies Cat# AM2238

TURBO DNA-free Kit Thermo Fisher Scientific Cat# AM1907

SuperScript III Reverse Transcriptase Thermo Fisher Scientific Cat# 18080044

Applied Biosystems TaqMan Fast Advanced Master Mix Thermo Fisher Scientific Cat# 4444557

Taqman MicroRNA Reverse Transcription Kit Thermo Fisher Scientific Cat# 4366596

RNA 5′ Pyrophosphohydrolase New England Biolabs Cat# M0356S

Acrylamide/Bis 19:1, 40% (w/v) solution Thermo Fisher Scientific Cat# AM9022

AMPure XP Beads Beckman Coulter Cat# A63881

Critical commercial assays

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina New England Biolabs Cat# E7760S

TruSeq Stranded Total RNA Library Prep Human/Mouse/Rat kit Illumina Cat# 20020596

RNA Clean & Concentrator Zymo Research Cat# R1015

Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) Illumina Cat# MRZH11124

NEBNext Small RNA Library Prep Kit for Illumina New England Biolabs Cat# E7300S, E7580S

TURBO DNA-free Kit Thermo Fisher Scientific Cat# AM1907

SuperScript III Reverse Transcriptase Thermo Fisher Scientific Cat# 18080044

Applied Biosystems TaqMan Fast Advanced Master Mix Thermo Fisher Scientific Cat# 4444557

Taqman MicroRNA Reverse Transcription Kit Thermo Fisher Scientific Cat# 4366596

iTaq Universal SYBR Green Supermix Bio-Rad Cat# 1725121

Custom TaqMan Gene Expression Assay: actin: 
probe_sequence1:CCTTACGGATATCAATGTCG

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: actin: fwd_sequence: 
CACGAGACTTCTTACAACTCCATCA

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: actin: rev_sequence: 
AGAACAGTGTTGGCGTACAAGT

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 5.8 s rRNA: probe_sequence1: 
AAGCGTCTGCAATTCG

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 5.8 s rRNA: fwd_sequence: 
AGCTTGCTGCGTTACTTACCA

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 5.8 s rRNA: rev_sequence: 
GCGTTCGAAATTTCACCACTCT

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 18S rRNA: probe_sequence1: 
CTACGGTCCACGAATTT

Thermo Fisher Scientific Cat# 4331348
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REAGENT or RESOURCE SOURCE IDENTIFIER

Custom TaqMan Gene Expression Assay: 18S rRNA: fwd_sequence: 
TTCGTATCATTACGCGAGAGGTG

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 18S rRNA: rev_sequence: 
CGCTGTTGGGCGTCTCA

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 28S rRNA: probe_sequence1: 
TTAGTCGCTCAAAGACCG

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 28S rRNA: fwd_sequence: 
GCGGTAACGCATTCGAACTTG

Thermo Fisher Scientific Cat# 4331348

Custom TaqMan Gene Expression Assay: 28S rRNA: rev_sequence: 
GGAGTCCGTTCCTTAACTAGAGAAG

Thermo Fisher Scientific Cat# 4331348

TaqMan MicroRNA Assay: miR-1 Assay ID 000385 Thermo Fisher Scientific Cat# 4427975

Custom TaqMan MicroRNA Assay (his-12 22G-RNA): Target Sequence: 
GTTACCGGCCAACTCGAGAACC

Thermo Fisher Scientific Cat# 4427975

Custom TaqMan MicroRNA Assay (28S rRNA 22G-RNA): Target Sequence: 
GAAGAAAACTCTAGCTCGGTCT

Thermo Fisher Scientific Cat# 4427975

Custom TaqMan MicroRNA Assay (21UR-1): Target Sequence: 
TGGTACGTACGTTAACCGTGC

Thermo Fisher Scientific Cat# 4427975

Deposited data

Raw and analyzed NGS data This Paper GEO: GSE179811

Raw and analyzed NGS data Reed et al., 2020 GEO: GSE141243

Raw and analyzed NGS data Svendsen et al., 2019 GEO: GSE137734

Experimental models: organisms/strains

C. elegans: Bristol Strain N2 Caenorhabditis Genetics 
Center

Strain N2

C. elegans: NL4415[henn-1(pk2295)] Kamminga et al., 2012 N/A

C. elegans: SX922 [prg-1(n4357)] Caenorhabditis Genetics 
Center

Strain SX922

C. elegans: NL1810[mut-16(pk710)] Caenorhabditis Genetics 
Center

Strain NL1810

C. elegans: GR1948[mut-14(mg464) smut-1(tm1301)] Phillips et al., 2015 N/A

C. elegans: GR2070[prg-1(n4357); mut-14(mg464) smut-1(tm1301)] Phillips et al., 2015 N/A

C. elegans: TAM24[mut-16(ram18[ko(302-4051])] Reed et al., 2020 N/A

C. elegans: WM161[prg-1(tm872)] Caenorhabditis Genetics 
Center

Strain WM161

Oligonucleotides

Primer for RT-PCR: 45S rRNA Forward: CAACTGGCAAGAGTAGTGAC Integrated DNA 
Technologies

N/A

Primer for RT-PCR: 45S rRNA Reverse: CTCGTGAACAA4CGTCTACTG Integrated DNA 
Technologies

N/A

Primer for RT-PCR: rpl-32 Forward: CATGAGTCCGACAGATACCG Integrated DNA 
Technologies

N/A

Primer for RT-PCR: rpl-32 Reverse: ACGAAGCGGGTTCTTCTGTC Integrated DNA 
Technologies

N/A

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

CASHX v. 2.3 Fahlgren et al., 2009 N/A

DESeq2 v. 1.30.1 Love et al., 2014 DOI: https://bioconductor.org/
packages/DESeq2

RSEM v. 1.3.0 Li and Dewey, 2011 https://deweylab.github.io/
RSEM/

Star v. 2.5.0a Dobin et al., 2013 https://github.com/alexdobin/
STAR

Fastp v. 0.20.1 Chen et al., 2018 https://github.com/OpenGene/
fastp

RNA-seq workflow This Paper DOI: https://zenodo.org/
record/5641385
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