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Abstract
The potential rapid availability of large-scale clinical episode data during the next influenza

pandemic suggests an opportunity for increasing the speed with which novel respiratory

pathogens can be characterized. Key intervention decisions will be determined by both the

transmissibility of the novel strain (measured by the basic reproductive number R0) and its

individual-level severity. The 2009 pandemic illustrated that estimating individual-level

severity, as described by the proportion pC of infections that result in clinical cases, can

remain uncertain for a prolonged period of time. Here, we use 50 distinct US military popula-

tions during 2009 as a retrospective cohort to test the hypothesis that real-time encounter

data combined with disease dynamic models can be used to bridge this uncertainty gap.

Effectively, we estimated the total number of infections in multiple early-affected communi-

ties using the model and divided that number by the known number of clinical cases. Joint

estimates of severity and transmissibility clustered within a relatively small region of param-

eter space, with 40 of the 50 populations bounded by: pC, 0.0133–0.150 and R0, 1.09–2.16.

These fits were obtained despite widely varying incidence profiles: some with spring waves,

some with fall waves and some with both. To illustrate the benefit of specific pairing of rap-

idly available data and infectious disease models, we simulated a future moderate pan-

demic strain with pC approximately ×10 that of 2009; the results demonstrating that even

before the peak had passed in the first affected population, R0 and pC could be well esti-

mated. This study provides a clear reference in this two-dimensional space against which

future novel respiratory pathogens can be rapidly assessed and compared with previous

pandemics.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004392 September 24, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Riley P, Ben-Nun M, Linker JA, Cost AA,
Sanchez JL, George D, et al. (2015) Early
Characterization of the Severity and Transmissibility
of Pandemic Influenza Using Clinical Episode Data
from Multiple Populations. PLoS Comput Biol 11(9):
e1004392. doi:10.1371/journal.pcbi.1004392

Editor: Marcel Salathé, Pennsylvania State
University, UNITED STATES

Received: January 20, 2015

Accepted: June 9, 2015

Published: September 24, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Data Availability Statement: All data used in this
study are available directly from http://www.predsci.
com/~pete/research/plos-comp-biol-flu-severity/

Funding:Work performed by PR, MBN, JAL, DPB,
and SR was supported by the Defense Threat
Reduction Agency (DTRA), contract number:
HDTRA1-14-C-0031. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: PR, MBN, and JAL are paid
employees of Predictive Science Inc. David P. Bacon

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004392&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/
http://www.predsci.com/~pete/research/plos-comp-biol-flu-severity/
http://www.predsci.com/~pete/research/plos-comp-biol-flu-severity/


Author Summary

The ever-increasing availability of timely, large-scale clinical episode data can, in principle,
dramatically shorten the time required to characterize the transmission and severity of
novel respiratory pathogens, which, in turn, can be used to inform key intervention deci-
sions. We investigated 50 distinct military populations during the 2009 influenza pan-
demic to test the hypothesis that real-time encounter data combined with disease dynamic
models can be used to jointly determine the transmissibility of the novel strain (described
by the basic reproductive number R0) and its individual-level severity (described by the
proportion pC of infections that result in clinical cases). To illustrate the use of such a pro-
cedure, we simulated a future moderate pandemic strain with pC approximately ×10 that
of 2009, which demonstrated that even before the peak had passed in the first affected pop-
ulation, R0 and pC could be well estimated. These results provide a clear reference in this
two-dimensional space against which future novel respiratory pathogens can be rapidly
compared, establishing a firm baseline for describing the relative severity of future emerg-
ing respiratory pathogens.

Introduction
The increasing frequency with which large biomedical datasets are being made available is
often referred to as the advent of “big data” [1]. There is substantial potential for the detection
and characterization of emerging infectious diseases to benefit from the rapid availability of
reliable big data [2], with one obvious opportunity being the reduction of our reliance on senti-
nel clinical surveillance systems for respiratory illnesses [3]. Given that sentinel systems are
designed to estimate the frequency of clinical episodes, we should be able to improve our situa-
tional awareness during key phases of an outbreak by analysing detailed data on the clinical
episodes themselves.

Novel strains of influenza emerge periodically [4–6] and pose substantial challenges to
health planners in both civilian and military domains [7]. Primary among the issues that must
be considered during the early stages of a potential pandemic are the appropriate strengths of
possible interventions [8]. Effective interventions, such as vaccination, household-based quar-
antine and prophylactic use of antivirals, would likely eliminate a substantial proportion of
onwards transmission from any single infectious individual [9]. However, these interventions
incur considerable costs [10, 11], which may not be justified.

The transmissibility of an emergent strain in a particular population is quantified by the
basic reproductive number R0, defined to be the average number of secondary cases generated
by one typically infectious individual in an otherwise susceptible population [12]. If interven-
tions are in place before the arrival of a new virus, as they are likely to be for many populations
during a moderate or severe pandemic, their transmission-blocking efficacy can be thought of
as proportional reduction in R0. The same proportionate decrease in R0 is much more effective
in reducing the overall cumulative attack rate (CAR) for lower absolute values of R0 than for
higher absolute values (Fig 1A). Thus, estimates of R0 for pandemic influenza in the range 1.5
to 3 [13, 14] are important because they imply a high population efficacy for interventions that
reduce R0 by only modest proportions [9, 15], even if containment [16, 17] is not achieved.

Although reductions in the transmissibility of an infectious disease are almost always desir-
able, the 2009 pandemic demonstrated clearly that the degree to which costly interventions are
justified is also highly dependent on the individual-level severity of the emergent strain. Despite
being more difficult to measure than the case-based statistics, the clearest and most
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Fig 1. Transmissibility and severity of pandemic influenza. aRelationship between the total number of
individuals infected and the basic reproductive number R0. Arrows show the non-linear effect of a 20%
reduction in transmission: at lower reproductive numbers, the same intervention is much more effective. b
Severity pyramid for infectious disease. The strength of symptoms and ability to detect cases increases with
each level in the pyramid. cConceptual two-dimensional classification of pandemics in terms of basic
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transferrable measures of individual-level severity are those that use infection as their denomi-
nator. For example, the infection fatality rate (IFR) is defined to be the risk of death conditional
on infection (Fig 1B) [18]. If the IFR is low, as was the case during the 2009 pandemic [19],
expensive interventions are unlikely to be justified. However, IFRs vary considerably by strain:
in terms of IFR, both the 1918 H1N1 [20] and avian H5N1 (in humans) [21] are likely orders
of magnitude more severe than the 2009 pandemic strain. Since 2009, one-dimensional severity
scales for influenza pandemics based on the severity [22] have been replaced by more nuanced
two-dimensional approaches which are able to reflect the importance of both individual-level
severity and transmissibility [23, 24] (Fig 1C).

Here, we address the principal epidemiological challenge implied by these revised guidelines
for pandemic response: how best to characterize the transmissibility and individual-level severity
of an emergent strain in the shortest possible time. We extended a previous study of influenza-
like-illness (ILI) in the US military population [25] by developing a parsimonious epidemic
model of both infection and clinic attendance in multiple similar populations of approximately
known sizes. Our objective was to be able to improve the speed with which key disease dynamic
properties could be estimated from high quality clinical episode data, by extracting the maximum
possible information from early affected populations. Essentially, the shape of the epidemic
curve in each population allows us to fit a model and to infer unobserved numbers of infections.

Methods

Data
We extended our previous analysis of the Defense Medical Surveillance System (DMSS) data to
characterize the relationship between ILI cases and severe influenza at the level of an individual
military population, across the duration of the 2009 pandemic. We extracted 21,573 clinical
influenza episodes between April 1 2009 and June 30 2010 (using the most specific available
definition of ILI [25, 26]). Within these episodes, 315 cases were coded as severe influenza
(ICD-9 code 487). Each episode was assigned to a military population by the zip code (MPZs)
based on the clinic in which the episode occurred. In our analysis, we focus on the top-50
installations in terms of total number of ILI cases. These captured 13,794 episodes of clinical
influenza (64%) and 254 cases of severe influenza (81%).

We used the 5-digit zip code of the reporting clinic as a proxy with which to define military
installations: we do not explicitly represent military installations or bases, rather, we assume
that case reports from the same zip code are, effectively, from the same population.

Models
We considered a set of independent deterministic transmission models, one for each military
installation with a constant background rate of clinical report. For each, we solved the follow-
ing set of equations:

dS
dt

¼ �bðtÞSI
Ntotal

; ð1Þ

dI
dt

¼ bðtÞSI
Ntotal

� I
Tg

; ð2Þ

reproductive number (R0) and severity (pC), illustrating the likely impact of interventions, depending on where
the outbreak falls in this parameter space (see main text).

doi:10.1371/journal.pcbi.1004392.g001
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dR
dt

¼ I
Tg

; ð3Þ

bðtÞ ¼ bA if t1 � t < t1 þ Dt

bB otherwise

(
ð4Þ

where S represents the number of susceptible individuals, I is the number of infectious individ-
uals, R is the number of recovered individuals, Ntotal = S + I + R is the total active duty popula-
tion size at each installation, and Tg is the generation time, or in this model, the average time of
infection, which we keep fixed at 2.6 days. We found that estimates of R0 and pC were relatively
insensitive to the value of Tg assumed (See Supplementary Materials, S3 Fig).

The incidence (IR) is given by� ds
dt
, which computationally, is estimated by:

IR ¼ pC

Z tf

ts

bðtÞSðtÞIðtÞ
Ntotal

dt ð5Þ

where pC is the proportion of the infectious active duty population that present themselves to a
clinic with ILI-small symptoms, and the integral runs over a week from ts to tf.

The time-dependent term, β(t), changes from βA to βB at time t1 and returns to βA after an
interval Δt. Since β = R0/Tg, and the generation time, Tg is fixed, this is equivalent to allowing
the basic reproduction number, RA, to change at some point in time, t1, to a new value RB. Intu-
itively, this definition makes sense if we imagine some mechanism, such as school closures on
installations, the deployment of troops, or some other behavior modification to drive the effec-
tive contact rate down, and, hence, R0. For purposes of generality, however, we did not impose
any requirement that R0 decrease at this time.

Even during a pandemic, there are reasons other than influenza infection for cases to pres-
ent as ILI. Therefore, we also included a noise term. It was implemented as a constant added to
the model output for incidence during the optimization procedure, resulting in a total of seven
parameters (βA, βB, t1, Δt, pC, a background ILI noise term, and the week of ILI pandemic
onset).

We determined the joint posterior distribution for the model parameters using a Metropo-
lis-Hastings Markov Chain Monte Carlo (MCMC) procedure [27]. For each base we simulated
four MCMC chains each with 108 steps and a burn time of 2.5 × 107 steps. At each step a new
set of parameter values was sampled from a log-uniform distribution (the minimum and maxi-
mum allowed values for the parameters are summarized in S1 Table). Using this set of candi-
date parameters we generated a profile for the base and calculated the log-likelihood of the
profile. The values of the new and previous log-likelihood was used in a standard rejection
method to determine if the move should be accepted or rejected. Our MCMC chains had a typ-
ical acceptance rate of 20–40% and an effective sample size that was in the 200–2000 range
(depending on the base profile and the parameter).

We note that with this model structure, we make no strong assumptions about the variation
in infectiousness of individuals, other than that the distribution of infectiousness is approxi-
mately constant and well described by its mean. For example, it can be shown mathematically
that the presence of an unobserved additional infectious class, always present in a fixed propor-
tion to the observed infectious class, would not affect our parameter estimates or model
projections.
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Results
The relationship between mild and moderate clinical cases and severe clinical cases can be
measured directly from episode data (Fig 1). We used the ratio pS of severe influenza cases to
ILI cases as a proxy for the relationship between layers of the severity pyramid from clinical
cases upwards. The ratio pS could be described directly from the episode data, with our analyses
suggesting that, although the average of pS varied little through time, there was substantial vari-
ation by military population (defined by zip code, MPZ, see MATERIALS ANDMETHODS
and S1 Fig). For the period of the study, there were 315 severe influenza cases out of a total of
21,573 ILI cases, giving an average of 1.46% (95% CI ±0.16). Although there was some evidence
from fitting a smooth regression term that this ratio varied during the period of the epidemic,
the maximum amplitude of variation was small and an odds ratio of one fell within the 95%
confidence interval for most of the year. However, non-overlapping binomial confidence
bounds for point estimates of pS for individual MPZs suggested that differences between popu-
lations were significant and could not be explained simply by chance.

To describe the key features of the lower portion of the severity pyramid, we extended a pre-
vious mechanistic model of influenza transmission in these MPZs [25]. In our earlier work, we
assumed a value of pC, the proportion of infections that resulted in ILI, and fitted only R0.
Here, we estimate pC and R0 jointly, by using known approximate size for each population (see
MATERIALS ANDMETHODS, Fig 2, S2 Table). As expected, estimates for the basic repro-
duction number R0 were similar to those in our previous work [25], although there were some
exceptions. Seven of the ten largest MPZs formed a distinct cluster within the R0-pC space,
within the ranges: R0 between 1.12–1.53 and pC between 0.052–0.15. Visually, the fit of these
models to ILI incidence data was good (S2 Fig).

The mechanistic model was able to capture a variety of epidemic profiles. For example,
among the seven bases with a large number of ILI cases closely clustered in pC−R0 space, the
degree to which each exhibited a double-peak epidemic profile varied considerably. MPZ
92055 (Camp Pendleton, CA; Fig 2B) exhibited a clear two-peak profile with a substantial early
wave during the spring of 2009 followed by a similar-sized fall wave. Our MCMC parameter
estimation routine (see MATERIALS ANDMETHODS) found solutions (S2 Table) in which
the first peak occurred because of a drop in R0 from supercritical 1.14 (95% CI 1.11–1.16) to
pracitcally zero (0.021 median and 95% CI 0.016–0.086). The second peak occurred once R0

had returned to its original level and the pool of susceptible individuals was depleted; the shape
of the second peak for Camp Pendleton was determined solely by the characteristics of the
remaining susceptible pool as saturation occurred. Conversely, reports of ILI fromMPZ 23708
(Portsmouth, VA; Fig 2C) clustered into a single clearly defined epidemic profile, with a peak
that appeared sharper than that of Camp Pendleton. The optimal solution for Portsmouth
included a drop in R0 from 1.40 (95% CI 1.35–1.48) to 1.12 (95% CI 1.08–1.17) that coincided
with the depletion of susceptibles. This drop in transmissibility was reversed shortly afterwards
to permit a slightly larger right tail to the incidence pattern.

Although it was reassuring that—despite substantial differences in their incidence profiles—
estimates of both R0 and pC clustered tightly for many MPZs, this was not always the case. We
consider here four populations out of the ten that fell outside the central area of pC—R0 space
denoted by the grey rectangle in Fig 2A. Our estimate of R0 of 2.65 (95% CI 2.50–2.78) for
MPZ 22134 (Quantico, VA; Fig 2C) was the highest of all 50 military installations, and resulted
in a much higher cumulative attack rate (CAR, see inset in Fig 2D). Given that estimated values
of pC of 0.025 (95% CI 0.022–0.027) for Quantico were within the range seen for other large
bases, it is plausible that, because of the large size and training focus of this particular popula-
tion, this model fit reflected genuine differences in epidemic dynamics: the pathogen spread
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more rapidly here because of the population structure. However, the same is probably not the
case for MPZ 29207 (Fort Jackson, SC; Fig 2E). The best fit model parameters for Fort Jackson
produced an unusual epidemic profile with a very rapid rise followed by a slow exponential
decay; only reproducing observed ILI patterns with a very high value for pC 0.88 (95% CI 0.41–
0.99). Hence, the estimated CAR for Fort Jackson was much lower than those estimated for
most other MPZs, and probably not realistic. Population MPZ 28130 (Fort Bragg, NC) had
similar dynamics to those of Fort Jackson, in having a high pC (0.87) and low R0 (1.07), also
likely driven by an aborted epidemic. Finally, for MPZ 39534 (Keesler Air Force Base, MS), a
large training facility, our model again finds a high value of pC (0.57) and low value of R0

(1.09). Overall, eight of the ten outliers in Fig 2A are characterized with medium-to-large pC
values and low-to-average R0 values with the remaining two outliers having large R0 values and
low pC values.

To assess the likely utility of this type of data stream to improve the speed of characteriza-
tion of a new strain in real time, we simulated infections and clinical attendance in two illustra-
tive populations and then estimated key parameters at different time points (Fig 3). Parameter
values for the simulated incidence were chosen to simulate a double and single peak profiles
similar to the 2009 ILI profiles of MPZs 92055 (Camp Pendleton, Fig 3A–3C) and 23708
(Portsmouth VA, Fig 3D–3F), other than that we used a of pC about ten times greater, to

Fig 2. Characterization of overall severity and individual base fits. a Estimates of R0 versus pC for top-50 military installations. The ten installations with
the largest number of ILI cases are colored red, installations 11 through 20 are colored blue, and the remaining 30 bases are colored cyan. The grey
box denotes the 40 installations with the smallest area in pC-R0 space. The histograms along the top and right show the distribution of pC and R0 values,
respectively. b-e Incidence rates for four military installations (red line), with model fits overlaid (blue line), illustrating: b a two-peak profile; c a single-peak
profile; d an anomalously high and narrow profile; and e a complex profile. The green line shows the value of the basic reproduction number and the
horizontal dashed grey line marks the critical value of 1.0. The inset in each panel shows the cumulative attack rate for the same time period.

doi:10.1371/journal.pcbi.1004392.g002
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increase the overall incidence. We considered first the simpler single peak profile (Fig 3D–3F
and S2 Movie in the Supplementary Materials). Initially, during the exponential phase of the
epidemic, unbiased point estimates of R0 were possible but only with considerable uncertainty
(Fig 3D). However, with this limited data, it was not yet possible to estimate pC or to make pre-
dictions for the peak number of ILI cases. Once the growth in incidence had slowed and was
clearly sub-exponential, uncertainty in parameter estimates and model predictions was greatly
reduced (Fig 3E). In relative terms, little additional information was contained in the additional
data gathered between the second and the third time points (Fig 3F).

We also considered a more challenging two-peak epidemic profile (Fig 3A–3C and S1
Movie in the Supplementary Materials). The model initially captures the profile of the first
wave well, but has no knowledge that a second, larger peak will occur (Fig 3A). However, when
the second wave begins the model is capable of immediately revising its favored trajectory and
estimating the duration and timing of the second peak. As soon as the exponential phase of the
second peak begins to saturate, the model is also able to predict the amplitude of the second
peak and the overall size of the epidemic. The uncertainty in the model predictions as a func-
tion of time during the outbreak is considered more thoroughly in the Supplementary Materi-
als (S4 Fig).

Discussion
Sentinel surveillance systems [28] that are designed to estimate the number of clinical episodes
currently occurring as a result of respiratory infection will soon become obsolete in many
healthcare systems. Near complete data on those episodes are already being gathered electroni-
cally in real-time at the point of care and will soon be made available for analysis within a short
period of time. Therefore, given the rapid global spread of 2009 pH1N1, it is likely that there
will be an opportunity to characterize the next pandemic strain using mathematical models
and “big data” from clinical episode reporting systems in highly-connected, well-resourced
populations such as the US military.

The proportion pC of infections that become clinical cases is a key unknown for any popula-
tion for which robust clinical episode data are available and can be estimated using a parsimo-
nious mechanistic model. Although an advantage of large episode datasets over data from
disjoint sentinel systems is that the same process captures both mild and severe illness, episode
datasets contain no information on mild or entirely asymptomatic infections. Therefore, we
used knowledge of the transmission process, captured by a mechanistic model, to estimate the
number of infections and hence calculate pC. Our specific methods will need modifying for less
homogeneous populations and for epidemics for which pre-existing immunity is an issue.
However, the general approach of using parsimonious mechanistic models to augment timely
clinical episode data by describing the underlying disease dynamics is likely to be useful in
many settings.

There was a substantial degree of variation in our estimates of pC, which could arise from
the process of reporting these cases, or from structural uncertainty in the model, and may cast
doubt on the utility of our results. However, given that good health information has been avail-
able for our study population for many years, we would argue that it is likely to remain avail-
able for many years and that our results establish a clear baseline that will be of considerable
use during the next pandemic. Should a similar future study of an emerging influenza strain
find significantly higher values for pC, even against this background of unexplained popula-
tion-level variance, that would be very strong evidence that the new strain was significantly
more severe than the 2009 strain. Model variants could be tested on both old and new datasets
to reduce the potential impact of structural bias on the overall conclusion.
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More generally, variation in our results raises the challenging concept that key disease
parameters such as R0 and pC are not universal for respiratory infections and, as with many
other ecological descriptors, depend on the time, host, and environment. Although this must
be true to some degree, the public health significance of measurable variation in parameters

Fig 3. Characterizing a model strain of pandemic influenza in real time for a single population. a-c Three frames illustrating stochastic predictions for
an outbreak based on parameters that give a typical two-peak profile (such as that of MPZ-92055), but increasing pC by about an order of magnitude. The
grey lines give individual simulation realizations while the green line shows the ensemble average. The data contributing to the realizations is marked in red.
The insets show the evolution of computed pC, RA, and RB as more simulated data are added to the predictions. The red line is our median estimate and the
blue lines are the 95% confidence intervals. d-f Analogous frames for a typical single-peaked outbreak such as that of MPZ-23708, but again increasing pc by
about an order of magnitude.

doi:10.1371/journal.pcbi.1004392.g003
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such as R0 is less clear [29]. This study and other recent work [30] is starting to tease out good
explanations for location-to-location variation for influenza. The concept of location-specific
transmissibility is much more widely accepted for other infections such as HIV [31].

The inverse of pC is the multiplier required to calculate the number of infections when the
number of cases are known. Our estimate of the multiplier is between x7 and x19 (based on
median point estimates for pC for the most similar seven populations in the ten largest ILI pro-
files). These values are substantially lower and have less associated uncertainty than estimated
multipliers for the civilian population in the US [32] and elsewhere [33]. This apparent incon-
sistency is likely driven by the slightly different objectives of our study compared to other
examples. We were not attempting to directly link laboratory-confirmed cases with the total
number of clinical cases: it is notoriously difficult to obtain temporally unbiased laboratory
data for an epidemic because the capacity for testing is often highly constrained. Rather, we
have described the relationship between all clinical cases (according to a consistent definition
and a near-complete dataset) and model-estimated infections. Therefore, for populations for
which clinical cases can be observed directly, the infections-to-cases multiplier we have
described here is likely more appropriate.

Good knowledge of pC (or the multiplier) early in a pandemic would remove key uncertain-
ties and allow the IFR to be estimated directly from case data. Together with knowledge of
transmissibility, an accurate estimate of the IFR would allow the formulation of an appropriate
response [23, 24]. In particular, if transmissibility is low, there would be a reasonable chance of
future local containment, or highly effective mitigation [9], and knowledge of the IFR would
become crucial. The benefits arising from either containment or effective mitigation for a high
IFR could be enormous and thus justify the rapid allocation of substantial resources.

We chose to present individual-level severity in terms of the IFR, rather than the case fatality
rate (CFR). For any given population and reporting system, the IFR is closely related to the
CFR. However, for most respiratory pathogens many infections do not become cases ensuring
that the CFR is substantially lower than the IFR. Also, the probability of becoming a recorded
case, conditional on a specific set of symptoms, varies tremendously for civilian populations
from place to place within the same country and also from country to country [18].

Generally, peaks in incidence occurred because of the partial depletion of the susceptible
population. However, our model results provide hints where this may not have been the case.
For 10 of the top-50 military installations (i.e., 20%), the peak in incidence coincided with a
drop in R(t). In six of these cases, the drop was modest, only just decreasing to below 1.0; how-
ever, for four installations (92055 (first wave), 39534, 87117, and 96319), the drop was signifi-
cant. Without knowledge of the personnel activities during the 2009–2010 interval, we could
only speculate on the possible behavioral changes that might have been responsible for these
variations. We can, however, rule out a change in the total population at each base; a reduction
of which could drive the extinction of the outbreak. To do this, we estimated the total number
of visits to each clinic from the DMSS database, regardless of diagnosis, and used it as a proxy,
proportional to the total population of that installation. Although we identified several installa-
tions where this number varied significantly during 2009–2010, none of them coincided with
the four cases for which R(t) dropped substantially at the peak. Thus, we can rule out variations
in base population as a driving factor behind the outbreak dynamics.

The model was able to reproduce the two wave patterns (spring and autumn) seen at a num-
ber of the installations (See Supplementary Materials, S2 Fig). Generally, this was accomplished
by modulation of R(t); At the peak of the first wave, R(t) decreased, rising again just prior to
the start of the second wave (e.g., MPZ-98431). In one case (MPZ-92134), R(t) increased dur-
ing the second wave to accommodate a second wave that was larger than the first.
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Our results suggest a substantial degree of variation in the proportion of each base infected
and in per infection severity. If these differences are maintained from one influenza season to
the next, knowledge of that variation could be valuable for fine tuning the allocation of scarce
resources such as anti-virals and pre-pandemic vaccine. However, there were a number of sub-
stantial sources of uncertainty that we were not able to represent to the best possible accuracy
in these analyses (see below). Therefore, we intend to focus more on the characterization of
intrinsic transmissibility differences per population in future studies when data are available
for multiple seasons.

Perhaps the most significant source of uncertainty in our results lies in the estimate for the
total population at each military installation (Ntotal), the “denominator data”. Our method for
estimating these sizes relied on the use of the total number of visits to a clinic for all causes as a
proxy for the total number of active duty personnel at that location [25]. Although the linear
relationship between this and the publicly-released population sizes of the installations was
clear, there were notable exceptions. While Ntotal may not be well known for all installations
within the civilian domain, it is, or can be well determined within the military, and, thus, can
be accurately estimated when necessary.

Additionally, we did not include age-classes explicitly in this study, largely because of a lack
of good denominator data. We examined age-specific incidence for each population and found
no material differences (not shown). Hence, there was no need to test an age-stratified version
of the model for this population. However, it is likely that the epidemic dynamics we observe in
our study population were influenced by age effects in the surrounding civilian population.
Therefore, we suggest that our absolute estimates of transmissibility likely reflect the wider
population while our results for severity are specific to the age group within our study. While
this age group is not traditionally the one most affected by influenza, it is an economically
important age group. Also, our study population can form a valuable bench mark for year-on-
year or pandemic-on-pandemic comparative assessment of severity. While age-dependent
effects are likely to be less important within the military population than in civilian popula-
tions, due to a narrow range of ages in the military (18–45 years old), they clearly will have
some impact. Again, as with the “denominator data,” age-specific information for each installa-
tion is undoubtedly available to military planners and could be incorporated into our analysis.

The visualization of model-derived evidence is an important aspect of the communication of
key public health messages. Our visual descriptions of the simulation study presented the fol-
lowing items in a fully integrated format: currently available data, model fit, key model parame-
ter estimates, and model projections. We suggest that this approach to the communication of
real-time analysis during an outbreak may facilitate the comparison of results from parallel
model-based studies. Although we have used only a single flexible model in this study, there is
no reason that this visualization approach could not be extended to model ensembles [34].

It could be argued that public health intelligence based on a proprietary military data source
is of only limited utility. However, in an era where the value of big data is recognized, we must
accept that the highest quality and most timely data will very rarely be immediately open
access. Therefore, it is important not to fully conflate the need for increased access to timely
data and the need to extract the maximum actionable information from such data. An accurate
assessment of a novel influenza strain would be of considerable value independently of the
detailed data on which the assessment is made. We believe that the analysis and data presented
here—together with the structure of the author group—suggest a genuine commitment to
making better use of high-value national resources for improved health decision making across
both civilian and military populations.
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Supporting Information
S1 Table. Minimum and maximum values for the seven parameters used in the study.
(PNG)

S2 Table. Model fit parameters for the top-50 MPZs.
(PDF)

S1 Fig. Relationship between severe influenza and influenza-like-illness (ILI). a shows: ratio
of severe influenza cases to ILI (pS) per week (red line, left y-axis); pS for the 20 largest military
populations by zip code (MPZ) with the y-location of each MPZ defined by the peak ILI inci-
dence (vertical lines show 95% binomial confidence bounds); and total number of ILI per week
(grey lines, renormalized to a maximum value of six for convenience of comparison). b shows
a fitted spline from a logistic generalized additive model of date as risk factor for an ILI being
severe influenza (shaded region is 95% confidence interval).
(EPS)

S2 Fig. Influenza incidence (i.e, the number of reported ILI cases per week) observed (red)
and model fit (blue) as a function of time during the 2009 pandemic for the top-50 military
installations. The value of the basic reproduction number is shown in green. A value of 1.0 is
indicated by the dashed grey line. The inset shows a box plot of pC and R0, obtained from the
MCMC chain, with the whiskers extending to the extreme values. The military installations are
ordered by the total number of ILI cases reported.
(PDF)

S3 Fig. The sensitivity of the model results to the particular value of Tg chosen was explored
by computing solutions with Tg assumed to be 20% higher (3.12 days, green) and 20%
lower (2.08 days, blue) than the canonical value of 2.6 days (red). Panel A summarizes the
value of R0 obtained for each military installation (represented as base index for simplicity—
see S2 Table to transform from base index to MPZ) for the three values of Tg, demonstrating
that our results are, for the most part, not sensitive to the precise value of Tg assumed. One
notable exception is base 23604 (base index 30), which corresponds to Ft. Eustis, an army
school located in Newport News, Virginia. Panel B summarizes the values of pC, also estimated
using the three values of Tg, and again demonstrating relatively little sensitivity. For both R0

and Tg, the trends from one base to the next generally track well. Additionally, and as intui-
tively expected, increasing Tg correlates with an increase in R0 and a decrease in pC. Finally, in
panel C, we compare the median AICc scores computed for each model solution, which sug-
gests that the quality of the model is not obviously affected by our choice of Tg.
(EPS)

S4 Fig. The uncertainty of the model predictions is shown in two ways. (a) The 95% confi-
dence intervals are shown for military installation 23708 as a function of time by running the
fitting procedure using data from the first three weeks, then four weeks, then five weeks, etc.,
until the full 66 weeks are used. The red curve shows the mean value and the grey line, together
with the y-axis on the right-hand-side indicates the ILI profile. Thus, the accuracy substantially
improves one week after the exponential rise portion of the outbreak is observed. (b) A second
measure of the uncertainty can be estimated from the model’s ability to predict the peak week
within ±1 week (e.g., [34]). Here we show results using 250 random selections from the
MCMC chains for the same MPZ (23708). The panels show histograms for the MCMC forecast
peak timing for predictions made with 3, 6, 9, etc., data points. The actual peak for this installa-
tion occurred at week 43 and is marked in green. The red vertical line marks the average of the
MCMC ensembles (each of which is shown in blue). Thus, we conclude that only about 3
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weeks before the peak occurs do all the predictions collapse down to what will be the observed
peak week. This is consistent and complementary to the results shown in (a).
(PDF)

S1 Movie. Movie (from which the frames D-F in Fig 3 were extracted) illustrating stochastic
predictions for an outbreak based on parameters that give a typical two-peak profile (such
as that of MPZ-92055), but increasing pC by about an order of magnitude. The grey lines
give individual simulation realizations while the green line shows the ensemble average. The
data contributing to the realizations is marked in red. The insets show the evolution of com-
puted pC, RA, and RB as more simulated data are added to the predictions. The red line is our
median estimate and the blue lines are the 95% confidence intervals.
(MOV)

S2 Movie. Analogous to S1 Movie but for a typical single-peaked outbreak such as that of
MPZ-23708, and again increasing pc by about an order of magnitude. Frames A-C in Fig 3
were extracted from this movie.
(MOV)
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