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Mature B cells express B cell antigen receptor (BCR), toll-like receptors (TLR) and TNF
family receptors including CD40 and B-cell activating factor receptor (BAFFR). These
receptors transduce cellular signals to govern the physiological and pathological
processes in B cells including B cell development and differentiation, survival,
proliferation, and antibody-mediated immune responses as well as autoimmune
diseases and B cell lymphomagenesis. Effective antibody-mediated immune responses
require class switch recombination (CSR), a somatic DNA recombination event occurring
at the immunoglobulin heavy chain (Igh) gene locus. Mature B cells initially express IgM as
their BCR, and CSR enables the B cells to switch from expressing IgM to expressing
different classes of antibodies including IgG, IgA or IgE that exhibit distinct effector
functions. Here, we briefly review recent findings about how the signaling crosstalk of
the BCR with TLRs, CD40 and BAFFR regulates CSR, antibody-mediate immune
responses, and B cell anergy.

Keywords: B cell receptor, class switch recombination, activation-induced deaminase, tumor necrosis factor
receptor-associated factor-3, B cell homeostasis
INTRODUCTION

Antibody is also known as immunoglobulin (Ig), consisting of a heavy (IgH) and a light (IgL) chain.
Each IgH molecule is composed of an assembled variable (V) region and a constant (C) region.
Antigen contact is mediated by the V region, while the C region of IgH mediates effector functions
of antibodies. Productive V(D)J recombination at the Igh locus assembles the V region exon that is
located upstream of the Cµ IgH constant region exons, allowing generation of µ heavy chain mRNA
and µ heavy chain protein. The µ heavy chains pair with IgL chains that are produced from a
productively rearranged Igl locus to form IgM, which lead to generation of surface IgM+ B cells.
IgM+ B cells migrate to secondary lymphoid organs such as spleen or lymph nodes, where upon
encounter with antigens they are activated to undergo class switch recombination (CSR), a somatic
org March 2021 | Volume 12 | Article 6634431
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DNA recombination/deletion process that replaces Cµ with a
different set of IgH constant region exons (Figure 1).

In mice, there are 8 sets of CH exons organized as 5’–VDJ–
Cµ–Cd–Cg3–Cg1–Cg2b–Cg2a–Cϵ–Ca–3’. CSR is a DNA
rearrangement process that occurs to the 8 sets of CH exons at
the Igh locus (Figure 1). CSR allows the assembled V region to be
expressed first with Cµ exons and then with one of the sets of
downstream CH exons (referred to as CH genes), and enables
production of different IgH classes (e.g., IgG, IgE, and IgA)
encoded by corresponding CH genes (e.g., Cg, Cϵ, and Ca). The
detailed molecular mechanisms of CSR have been extensively
reviewed elsewhere (1–4). Briefly, to initiate CSR, B cells need to
express a specific enzyme, activation-induced cytidine deaminase
(AID) (5, 6). AID introduces DNA lesions to the evolutionarily
conserved switch (S) regions preceding each set of CH exons;
subsequently, AID-induced DNA lesions are converted into
double-stranded DNA breaks (DSBs) at the upstream donor Sµ
region and one of the downstream acceptor S regions (7). DSBs
at S regions are joined by non-homologous end-joining (NHEJ)
pathway including classical and alternative NHEJ (8–11), which
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eventually leads to the switching of the C regions of antibody
molecules . Of note, AID can potentially target al l
transcriptionally active genes and induces genome-wide
instability that contributes to B cell lymphomagenesis (12, 13).
Thus, AID poses a threat to the B cell genome and its expression
has to be tightly regulated. Consequently, AID expression is only
induced in activated B cells via integrated signals from the B cell
antigen receptor (BCR) and other co-receptors (3).

Antibody CSR is essential for effective humoral immune
responses. Mature naïve B cells express IgM as surface BCR or
secrete IgM antibodies; however, effector functions of IgM are
rather limited (3, 14, 15). CSR enables B cells to produce isotype-
switched antibodies, such as IgG and IgA, that can combat
infectious pathogens or neutralize toxins much more effectively
than IgM. Consequently, more than 90% of current vaccines
deliver protective effects via eliciting isotype-switched antibodies
(16). On the other hand, defects in CSR lead to primary
immunodeficiency diseases (PID) such as Hyper-IgM
syndrome (HIGM) caused by genetic mutations in BCR or co-
receptor signaling components (e.g., CD19 or CD40) (17, 18). In
FIGURE 1 | Schematics of IgH CSR. The genomic configuration of the rearranged Igh locus in mouse. Variable (V) region exon is located upstream, and eight
different sets of CH exons are located downstream. AID introduces point mutations into V region exon during somatic hypermutation (SHM) (not depicted). To initiate
CSR, AID introduces U:G mismatches in the donor Sµ and the downstream acceptor Sg1 regions that are subsequently converted into DNA double-stranded breaks
(DSBs) by basic excision and mismatch repair pathways. Broken S regions are joined by non-homologous end-joining (NHEJ), whereas the intervening DNA is
excised as a circle. Active transcription is essential for both SHM/CSR with promoters depicted for V region, Sµ and Sg1 region (arrows). When CSR is completed,
originally expressed Cµ exons are replaced by Cg1 exons that are juxtaposed to the same V region exon. Therefore, naïve IgM+ B cells switch to activated IgG1+

B cells.
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addition, HIGM can be caused by mutations in AID or uracil
glycosylase that are essential enzymes to catalyze CSR (17, 18).
PID patients suffer from recurrent infections with a shorter life
expectancy (19–21). Hence, it is critical to better understand how
the signaling crosstalk of BCR and co-receptors regulates
antibody CSR.
CAN THE BCR INDUCE CSR IN THE
ABSENCE OF CO-STIMULATION?

Pathogen infection or antigen immunization activates multiple
receptors on B cells including BCR, CD40, toll-like receptors
(TLRs), B-cell activating factor receptor (BAFFR) and cytokine
receptors (e.g., IL-4R) depending on different antigen
characteristics. The prevailing view of CSR induction is that
the BCR cannot induce CSR in the absence of co-stimulation,
and the co-stimulatory signals are provided in the form of CD40
ligand (CD40L) expressed by activated T cells for T-cell
dependent (TD) antigens, or TLR ligands directly expressed by
pathogens or present in the adjuvants for T-cell independent (TI)
antigens. Given that it is not practically feasible yet to pinpoint
which and how individual receptor(s) induce CSR during in vivo
immunization, ex vivo CSR models have been established and
widely applied to study underlying mechanisms of CSR by
culturing purified B cells in the presence of different stimuli
and analyzing CSR level a few days after culture (2, 22).

It is well-known that engaging CD40 can induce CSR in the
presence of proper cytokines such as IL-4 (2, 22). TLRs can also
induce a low level of CSR in the presence of cytokines; moreover,
TLRs synergize with the BCR to induce a robust level of CSR
(23). In contrast, engaging the BCR cannot induce CSR in the
presence of cytokines such as IL-4 (23, 24). The BCR recognizes
antigen and activates multiple signaling pathways, including
nuclear factor kappa B (NF-kB) and phosphatidylinositol 3-
kinases (PI3K), to initiate antigen-specific humoral immune
response. Hence, it is counterintuitive why the BCR cannot
induce CSR in the presence of cytokines as CD40 does (3).
Basically, why does the BCR need co-stimulation to induce CSR
and what does co-stimulation do to enable the BCR to
induce CSR?

Our recent study has shed light on this decade long puzzle by
revealing that there are negative regulatory mechanisms
restricting the BCR’s ability to induce CSR (25). We identified
two of such checkpoint molecules including TNF receptor
associated factor 2/3 (TRAF2 and TRAF3) (Figure 2). When
TRAF2 and/or TRAF3 are deleted in B cells, engaging the BCR
can induce CSR in the absence of co-stimulation (25). These data
demonstrate that the BCR has the ability to induce CSR;
however, this ability is normally restrained by checkpoint
molecules such as TRAF2 and TRAF3. Upon the deletion of
these checkpoint molecules, the BCR’s need for co-stimulation to
induce CSR can now be bypassed. We found that the BCR-
induced CSR in the absence of TRAF3 requires NF-kB2 in a B
cell-intrinsic manner (25). Mechanistically, TRAF3 restricted
BCR signaling by preventing the processing of BCR-induced
Frontiers in Immunology | www.frontiersin.org 3
NF-kB2 precursor (p100) into active NF-kB2 (p52);
consequently, TRAF3 deletion resulted in more active NF-kB2
(p52) upon anti-IgM/IL-4 stimulation (25). Of note, NF-kB2
activation is specifically required for the BCR signaling to induce
CSR but not for CD40 or TLR4 (25, 26), suggesting that TRAF3
restricts NF-kB2 activation to specifically limit the BCR’s ability
to induce CSR. Furthermore, we found that TRAF3 also
inhibited BCR proximal signaling; as such, B-cell intrinsic
deletion of TRAF3 led to elevated BCR proximal signaling
strength, evidenced by increased phosphorylation of Bruton
tyrosine kinase (BTK) and spleen tyrosine kinase (Syk) and
enhanced calcium flux upon antigen or anti-IgM stimulation
(25). While our recent study addressed how TRAF3 inhibits the
BCR signaling, it remains unknown how TRAF2 regulates the
BCR signaling intensity either singularly or cooperatively
with TRAF3.
HOW DO TRAF2 AND TRAF3
DIFFERENTIALLY INFLUENCE CSR AND
HOW DOES THE BCR COOPERATE WITH
CO-RECEPTORS TO INDUCE CSR?

Both TRAF2 and TRAF3 are adaptor molecules of TNF receptors
(TNFRs) including CD40 and BAFFR and function to transmit
signaling downstream of TNFRs (27). In resting B cells, TRAF2,
TRAF3 and cellular inhibitor of apoptosis protein1/2 (cIAP1/2)
form a complex to suppress NF-kB inducing kinase (NIK)
activity by mediating NIK degradation (Figure 2). In activated
B cells upon CD40 or BAFFR stimulation, TRAF3 can be
degraded (25, 28, 29), thereby allowing NIK accumulation that
eventually activates NF-kB2 (Figure 2). Although TRAF2 and
TRAF3 both serve as adaptors of TNFRs and their individual
knockout (KO) mice exhibited similar phenotypes (30–32),
TRAF2 and TRAF3 play distinct roles in mediating CSR and
in vivo antibody responses against TD or TI antigens.

With regard to CD40-induced CSR, we found that TRAF2 is
required for CD40-induced AID expression and IgG1 CSR
because TRAF2 plays an essential role in CD40-induced NF-
kB1 activation (33). Consistently, B-cell intrinsic deletion of
TRAF2 significantly impaired in vivo IgG antibody responses
against TD antigens (33), given that TD antigen-induced IgG
antibody responses need CD40/CD40L interaction. Contrary to
the essential role of TRAF2 in CD40-induced CSR, TRAF3 is
completely dispensable for CD40-induced AID expression and
CSR (33). As such, B-cell intrinsic TRAF3 deletion did not affect
IgG antibody responses against TD antigens in vivo (32, 33).

However, in the context of BCR-induced CSR, both TRAF2
and TRAF3 function as checkpoint molecules to prevent the
BCR from inducing AID expression and CSR (25). This
conclusion is supported by several important observations:
(1) B cell-intrinsic TRAF2 deletion promotes the BCR-induced
CSR ex vivo; (2) B cell-intrinsic TRAF3 deletion also promotes the
BCR-induced CSR ex vivo, which occurs completely independent
of any potential developmental effects; and (3) double deletion of
TRAF2 and TRAF3 leads to a higher level of BCR-induced CSR
March 2021 | Volume 12 | Article 663443
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than either single deletion does (25). In line with these
observations, B-cell intrinsic deletion of TRAF2 or TRAF3
increased in vivo IgG antibody responses against TI antigens (33).

Of note, TI antigens can activate B cells in the absence of T
cell help. Consistent with TRAF3’s role in restricting the BCR’s
ability to induce CSR, we envision that increased IgG antibody
responses against TI antigens are caused by elevated BCR
signaling intensity in vivo upon TI antigen immunization in
the absence of TRAF2 or TRAF3. However, this point remains to
be determined; in addition, it remains unknown whether
TRAF2/TRAF3 double KO mice will develop more robust IgG
antibody responses against TI antigens. It is noteworthy that
TRAF2 and TRAF3 play distinct roles in CD40-induced CSR and
TD antigen-mediated responses, whereas they both function as
checkpoints for BCR-induced CSR. Taken together, these studies
highlight the complexity and fine-tuning potential of antibody-
mediated immune responses that may have important
implications for vaccine design of different types of antigens,
such as TD vs. TI antigens.
Frontiers in Immunology | www.frontiersin.org 4
If the BCR has the ability to induce CSR, why do B cells need
co-stimulation and what does co-stimulation provide in the
context of CSR induction? We suggest that CD40 aids BCR-
induced CSR in vivo by inducing TRAF3 degradation (Figure 2),
which is supported by our ex vivo studies showing that anti-
CD40/IL-4 stimulation caused TRAF3 degradation in B cells
(25). Subsequently, transient degradation of TRAF3 will allow
NF-kB2 activation, AID expression and CSR induction. Once
CD40 co-stimulation ceases, TRAF3 expression would resume
and CSR would be terminated. However, this notion still needs to
be tested in an in vivo setting. Regarding the role of BAFFR in
CSR induction, our recent studies also suggest that BAFFR’s
function is to degrade TRAF3, thus permitting the BCR to induce
CSR (25) (Figure 2), although this point still needs to be
confirmed experimentally. Nevertheless, this idea is supported
by the observations that BAFF/IL-4 cannot induce a robust level
of CSR, whereas BAFF/IL-4/anti-IgM induced a much higher
level of IgG1 CSR that is not significantly enhanced in TRAF3
conditional KO B cells (25).
FIGURE 2 | A proposed model of signaling crosstalk for the BCR to induce CSR. Ag stimulation of BCR activates proximal signaling elements, Syk, BTK and
PLCg2, leading to transcription factor NF-kB1 activation. NF-kB1 p50/RelA complex is required for AID transcription. NF-kB1 p50/RelA also induces NF-kB2 p100
transcription. TRAF2/3 restrict BCR proximal signaling strength. TRAF2 and TRAF3 also block NIK activity. Thus, Syk/BTK/PLCg2 complex cannot signal to generate
transcription factor NF-kB2 p52 that is required for AID expression. Removal of TRAF3 and/or TRAF2 leads to NIK accumulation, which activates IKKa pathway,
resulting in NF-kB2 p100 being processed into active NF-kB2 p52. NF-kB2 p52/RelB complex and NF-kB1 p50/RelA together with additional factors initiate AID
transcription. AID protein initiates CSR by targeting Igh locus. During humoral immune responses, CD40, BAFF-R as well as cell surface and intracellular TLRs are
activated by corresponding ligands, CD40L, BAFF or TLR ligand (TLR-L), respectively. TRAF3/TRAF2 are recruited to cell membrane where TRAF3 is degraded by
CD40 and BAFF-R signaling or sequestrated by TLRs. As a consequence, NIK and NF-kB2 complex can be activated. NF-kB2 activation allows the BCR to induce
CSR. Thus, the critical function of co-stimulatory signals is to degrade or sequestrate TRAF3 to permit NF-kB2-dependent BCR-induced CSR essential for in vivo
antibody responses. It is worthy of note that TRAF3 restricts Syk, BTK and PLCg2 hyper-activation upon Ag stimulation that may be especially important for
maintaining autoreactive B-cell anergy.
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TLRs have been shown to synergize with the BCR to induce
CSR by enhancing NF-kB2 activation, and such synergistic
effects depend on a regulatory subunit of PI3Ks, p85 (23).
However, the catalytic subunits of PI3Ks inhibit AID
expression and CSR induced by CD40 (34), TLR4 (24) and
BCR. Thus, the precise mechanisms remain elusive about how
TLRs and the BCR synergize to enhance NF-kB2 activation to
promote CSR. TLRs can bind TRAF3 via their adaptors myeloid
differentiation primary response protein (MYD88) and TIR-
domain-containing adapter-inducing interferon-b (TRIF). In
contrast, TLRs do not induce TRAF3 degradation like CD40
does, because TRAF3 is required for TLR-induced cytokine
production (35). Hence, we suggest that TLRs may sequester
TRAF3 via adaptors MYD88 and/or TRIF, thereby releasing NIK
that eventually activates NF-kB2 (p52) to induce AID expression
and CSR (Figure 2).
WHAT ARE THE CONSEQUENCES OF
BCR CHECKPOINT REMOVAL?

When TRAF3 is deleted specifically in B cells via CD19Cre (B-
TRAF3-KO), mice develop autoimmune manifestations
including splenomegaly, lymphocyte infiltration in liver and
immune-complex deposition in kidney at the age of 9-12
months (32). B-TRAF2-KO mice exhibit similar phenotypes to
B-TRAF3-KO mice in B cell development and survival as well as
lymph organ homeostasis (30–32). However, it remains
incompletely understood how TRAF3 deficiency leads to
autoimmune manifestations. Previous studies showed that B
cell hyperplasia in B-TRAF3-KO mice was independent of
BAFF-BAFFR signaling by using TACI-Ig, a soluble fusion
protein that blocks both BAFF and APRIL from binding to
their receptors (32). In addition, another study showed that the
expansion of marginal zone (MZ) B cells in B-TRAF2-KO mice
was independent of BAFF (30), suggesting that B-TRAF2-KO
phenotypes were also independent of BAFF receptor signaling.

Based on our data (25), we suggest that the phenotypes of
increased B cell number, splenomegaly, and autoimmune
manifestations in B-TRAF3-KO mice depend on BCR
signaling. We found that TRAF3-deficiency-mediated
lymphoid organ disorders and autoimmune manifestations
were rectified by attenuating BCR proximal signaling strength
using a BTK inhibitor, Ibrutinib (25). Importantly, autoimmune
phenotypes were completely rescued in B-TRAF3-KO mice by
introducing an antigen-specific BCR recognizing hen egg
lysozyme (HEL) (25). Given that B-TRAF3-KO mice do not
express HEL antigens, these HEL-specific B cells cannot receive
stimulatory signals from their BCR. We infer that introducing a
non-autoreactive BCR abrogates the abnormal expansion of B
cells and reduces the severity of autoimmunity. Furthermore, our
data showed that NF-kB2 is required for the expansion of B cells,
especially MZ B cells, and splenomegaly in B-TRAF3-KO mice
(25). TRAF3 restricted BCR signaling by preventing the
processing of BCR-induced NF-kB2 precursor (p100) into
active NF-kB2 (p52) upon anti-IgM/IL-4 stimulation (25).
Frontiers in Immunology | www.frontiersin.org 5
Taken together, these data suggest that the phenotypes of B-
TRAF3-KO mice largely attribute to dysregulated BCR
signaling pathway.

Anergy is an important mechanism to maintain B cell
tolerance via unresponsiveness of the BCR to antigen
stimulation (36). Anergic autoreactive B cells express a low
level of surface IgM that does not induce calcium flux when
stimulated with specific antigens or agonist anti-IgM (37, 38).
We employed a bone marrow chimera system to establish an
anergic autoreactive model by transferring B cells with HEL-
specific BCR into ML5 transgenic mice that constitutively
express HEL antigens, and showed that B cell anergy was well
maintained in this model (25), consistent with prior studies (37,
39, 40). In contrast, we found that autoreactive B cell anergy was
broken by TRAF3-deficiency in HEL-specific B cells evidenced
by enhanced calcium flux upon HEL antigen stimulation (25). If
anergy is properly maintained, secreted anti-HEL IgM
production should be reduced, and surface IgM expression
downregulated, a classic anergy phenotype, upon HEL
stimulation. However, TRAF3-deficiency enables HEL-specific
B cells to produce a high level of anti-HEL IgM and fail to
downregulate surface IgM expression (25). We think that
TRAF3-deficiency breaks B cell anergy possibly via elevating
BCR proximal signaling strength, which is supported by our
findings that TRAF3 deletion enhances BCR-induced
phosphorylation of Syk and BTK as well as phospholipase
Cg2-dependent calcium flux (25); however, it remains to be
addressed how TRAF3 restricts BCR proximal signaling strength.
DISCUSSION

Our recent studies discover novel checkpoint molecules,
including TRAF2 and TRAF3, that were not appreciated
previously. We found that these checkpoint molecules function
to restrict the ability of the BCR to induce AID expression and
CSR. However, additional questions remain to be addressed.
Deletion of TRAF2 or TRAF3 in B cells enhances BCR-induced
calcium flux (25), an early functional output of the BCR
signaling. What mechanisms are employed by TRAF2 and
TRAF3 to restrict BCR signaling intensity? Are there other
signaling components of the BCR and co-receptor pathways
that can also function as checkpoints and similarly affect the
ability of the BCR to induce aberrant AID expression? How do
TRAF2 and TRAF3 cooperate to restrain BCR-induced CSR
since double deficiency of TRAF2 and TRAF3 does not further
increase AID expression but significantly enhances CSR level
compared to either single deficiency? Does TRAF2 deficiency
break autoreactive B cell anergy as TRAF3 does? Addressing
these questions may allow us to develop new strategies to rescue
defective antibody responses in CD40-deficient mouse model or
human PID patients, and to better treat autoimmunity or B cell
lymphoma by modulating BCR signaling pathways.

Our data show that B cells from B-TRAF3-KO mice
proliferate more robustly than control B cells upon BCR
engagement (25). One unique characteristics of germinal
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center (GC) B cells is their hyperproliferative capacity in the dark
zone of GCs where somatic hypermutation (SHM) is thought to
occur (41). Prior studies also showed that B-TRAF3-KO mice
developed spontaneous GC formation (32). Thus, we speculate
that TRAF2 and TRAF3 may also play a critical role in regulating
SHM and antibody affinity maturation, which is the outcome of
GC reaction.

Taken together, our studies present a new concept that
may better explain how signaling components of the BCR
and co-receptor pathways assure robust humoral immune
responses while simultaneously preserve B cell homeostasis and
prevent malignancy by fine-tuning the BCR signaling intensity. We
propose that when BCR signaling intensity is increased to a level
sufficient to induce AID expression and CSR, it may disrupt
autoreactive B cell tolerance and perturb B cell homeostasis.
Moreover, AID can induce DSBs and mutations in Ig and non-Ig
genes that may initiate B cell genomic instability and
lymphomagenesis. Thus, it may be critical to restrain the BCR
from inducing AID expression in the absence of co-stimulation
because this could serve as a protective mechanism that prevents
overstimulated self-reactive B cells from turning cancerous.
Frontiers in Immunology | www.frontiersin.org 6
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