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ABSTRACT
Objectives: This study analyzed an artificial intelligence (AI) deep learning 

method with a three-dimensional deep convolutional neural network (3D DCNN) in 
regard to diagnostic accuracy to differentiate malignant pleural mesothelioma (MPM) 
from benign pleural disease using FDG-PET/CT results.

Results: For protocol A, the area under the ROC curve (AUC)/sensitivity/
specificity/accuracy values were 0.825/77.9% (81/104)/76.4% (55/72)/77.3% 
(136/176), while those for protocol B were 0.854/80.8% (84/104)/77.8% 
(56/72)/79.5% (140/176), for protocol C were 0.881/85.6% (89/104)/75.0% 
(54/72)/81.3% (143/176), and for protocol D were 0.896/88.5% (92/104)/73.6% 
(53/72)/82.4% (145/176). Protocol D showed significantly better diagnostic 
performance as compared to A, B, and C in ROC analysis (p = 0.031, p = 0.0020, p = 
0.041, respectively).

Materials and Methods: Eight hundred seventy-five consecutive patients with 
histologically proven or suspected MPM, shown by history, physical examination 
findings, and chest CT results, who underwent FDG-PET/CT examinations between 
2007 and 2017 were investigated in a retrospective manner. There were 525 patients 
(314 MPM, 211 benign pleural disease) in the deep learning training set, 174 (102 
MPM, 72 benign pleural disease) in the validation set, and 176 (104 MPM, 72 benign 
pleural disease) in the test set. Using AI with PET/CT alone (protocol A), human visual 
reading (protocol B), a quantitative method that incorporated maximum standardized 
uptake value (SUVmax) (protocol C), and a combination of PET/CT, SUVmax, gender, 
and age (protocol D), obtained data were subjected to ROC curve analyses.

Conclusions: Deep learning with 3D DCNN in combination with FDG-PET/CT 
imaging results as well as clinical features comprise a novel potential tool shows 
flexibility for differential diagnosis of MPM.

INTRODUCTION

Malignant pleural mesothelioma (MPM) is a type of 
cancer induced by asbestos, though difficult to diagnose. 

Affected patients are known to have a poor prognosis, thus 
early testing to discriminate between benign and malignant 
pleural disease is important for effective treatment, as well 
as extending survival. Traditionally, chest radiography and 
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computed tomography (CT) imaging are used to examine 
patients with pleural diseases, while histological results 
are also employed. While cytologic evaluations of results 
obtained in pleural fluid and needle aspiration pleural 
biopsy tests show poor sensitivity for MPM diagnosis [1], 
improved diagnostic accuracy with use of an image-guided 
core needle biopsy procedures (67% with ultrasound 
guidance, 82% with CT guidance) has been reported 
[2]. Should a larger specimen be needed for diagnosis, 
open needle biopsy, video-assisted thoracoscopic surgery 
(VATS), and open biopsy [3] are available options. Of 
those, VATS has been shown to have a diagnostic rate of 
98%, though can be performed only when visceral and 
parietal pleural surfaces do not show adherence, while the 
chest wall seeding rate is 50% for VATS as compared to 
22% for image-guided biopsy examinations [1–3].

For MPM diagnosis, 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography 
(FDG-PET/CT) findings, which often include unilateral 
circumferential or near-circumferential pleural and fissural 
thickening indicating FDG avidity, are generally utilized. 
In fact, several groups have reported use of visual analysis 
or semiquantitative measurements (maximum standardized 
uptake value; SUVmax) to demonstrate the clinical utility 
of FDG-PET and PET/CT for discriminating MPM from 
inflammatory conditions and benign pleural tumors, with 
sensitivity, specificity, accuracy in those reports ranging 
from 60–100%, 62–100%, and 84–98%, respectively [4–
10]. In a meta-analysis of 407 patients with MPM and 232 
with benign pleural conditions, FDG-PET/CT findings 
were used for differentiation of MPM from benign pleural 
disease, with pooled sensitivity and specificity found to be 
81% and 74%, respectively, and an area under the receiver 
operating characteristic (ROC) curve value of 0.838 [11]. 
Furthermore, image-guided and surgical biopsy procedures 
can be planned by using FDG-PET/CT results, as sites 
with greatest FDG uptake and/or most accessible can be 
identified, and then targeted for obtaining tissue samples. 
On the other hand, for cases with sub-centimeter cancers, 
low-volume MPM, or low-grade MPM variants, FDG-
PET imaging has poor sensitivity, as PET/CT cameras 
currently available have a limited spatial resolution of 
approximately 5–6 mm [11, 12] and specificity can also be 
altered. Nevertheless, a variety of inflammatory conditions 
are revealed by FDG uptake, including pleuritis, chronic 
granulomatous inflammation, benign asbestosis plaque, 
parapneumonic effusion, and talc pleurodesis, as well as 
some benign mass types, such as solitary fibrous tumor.

In recent years, A deep learning method that utilizes 
a deep convolutional neural network (DCNN) has received 
attention for image pattern recognition and artificial 
intelligence (AI) strategies. Neural networks are based 
on brain structure and function, and can be utilized for 
deep machine learning. Mimicking of the visual cortex 
in mammals can be done when processing data by use of 
an artificial neural network that contains hidden layers 

as well as a convolution layer, in which several types of 
filters are used to process images, and has been shown to 
be effective for image pattern recognition [13, 14]. While 
conventional machine learning algorithms require features 
extracted from images prior to learning, deep learning in 
contrast can extract meaningful features from images, and 
then compute inferences and decisions in an autonomous 
manner. Recent studies have shown that the performance 
of DCNN-based AI matched or exceeded the capabilities 
of trained experts in a variety of different medical fields 
[15, 16]. Thus, it is considered that this learning method 
has potential to provide diagnosis based on imaging 
without the need for an experienced radiologist. 

DCNNs are generally used with two-dimensional 
(2D) images in both medical and non-medical settings, 
whereas reports of applications for three-dimensional (3D) 
structures, e.g., segmentation of brain lesions, are limited 
[17]. In the present study, the usefulness of 3D DCNN was 
examined by extending a network typically used for 2D 
DCNN with a deep learning model that combined tabular 
data, such as gender, age, and SUVmax, obtained with 
3D DCNN is proposed. In addition, we investigated the 
diagnostic performance of a deep learning method based 
on 3D DCNN for discrimination of MPM from benign 
pleural disease using FDG-PET/CT imaging. 

RESULTS

MPM was diagnosed in 104 and benign pleural 
disease in 72 of the 176 patients in the test cohort (Table 1). 
Of the 104 MPM cases, cellular type was epithelial in 80, 
sarcomatoid in 11, biphasic in 9, and desmoplastic in 4. As 
for the 72 with benign disease, the diagnosis was benign 
asbestosis plaque, chronic fibrous pleuritis, benign pleural 
effusion, infectious (non-tuberculosis) pleuritis, chronic 
tuberculosis pleuritis/empyema, and active tuberculosis 
pleuritis in 31, 20, 14, 3, 3 and 1, respectively. 

Area under the curve (AUC) values obtained with 
receiver operating characteristic (ROC) analysis for 
protocols A, B, C, and D were 0.825, 0.854, 0.881, and 
0.896, respectively (Figure 1, Table 2). As compared 
to A, B, and C, protocol D had significantly better 
diagnostic performance (p = 0.031, p = 0.0020, p = 0.041, 
respectively). A significant difference was also noted 
between protocols B and C (p = 0.026), whereas none 
between protocols A and B (p = 0.38), or between A and C 
(p = 0.086) was observed. 

To determine sensitivity, specificity, and accuracy 
of the visual reading analysis (protocol B), grades of 5, 
4, and 3 were considered as positive, and grades of 2 
and 1 as negative. Sensitivity, specificity, and accuracy 
for protocol B were 80.8% (84/104), 77.8% (56/72), and 
79.5% (140/176), respectively (Table 2). As compared to 
benign pleural disease, the mean SUVmax value for MPM 
was significantly greater (5.89 ± 3.96 vs. 0.98 ± 1.92, p 
< 0.0001). To discriminate MPM from benign pleural 
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disease, a best discriminative SUVmax cut-off of 2.23 
was used based on ROC curve analysis, with sensitivity, 
specificity, and accuracy for protocol C of 85.6% (89/104), 
75.0% (54/72), and 81.3% (143/176), respectively. For 
protocol A, we used a best discriminative output cut-off 
value of 0.333, and calculated sensitivity, specificity, 
and accuracy to be 77.9% (81/104), 76.4% (55/72), and 
77.3% (136/176), respectively. As for protocol D, the best 
discriminative output value cut-off was determined to 
be 0.438, and those values were 88.5% (92/104), 73.6% 
(53/72), and 82.4% (145/176), respectively. The protocol 

D sensitivity was significantly higher than that of protocol 
A and B (p = 0.0026, p = 0.013, respectively), while 
protocol D accuracy was significantly higher as compared 
to protocol A (p = 0.0077). Findings obtained for two 
representative cases are shown in Figures 2 and 3.

DISCUSSION

An AI subset is machine learning, in which a 
computer without specific programming is used to analyze 
relationships among existing data and then perform tasks 

Table 1: Patient and tumor characteristics of three data sets
Training data Validation data Test data

MPM benign MPM benign MPM benign

Patients (n) 314 211 102 72 104 72

Sex

 Male/Female 259/55 190/21 84/18 64//8 85/19 69//3

Age

 Mean (y) 68.5 ± 9.2 70.5 ± 10.3 67.1 ± 8.3 71.8 ± 10.1 67.8 ± 9.9 70.3 ± 9.3

 Range (y) 31–89 28–91 50–86 42–89 37–87 45–92

MPM

 Epithelial 237 77 80

 Sarcomatoid 41 13 11

 Biphasic 24 8 9

 Desmoplastic 12 4 4

MPM stage

I 76 26 26

I 69 18 19

III 83 29 30

IV 86 29 29

Benign pleural disease 

 Benign asbestosic plaque 78 28 31

 Chronic fibrous pleuritis 68 18 20

 Benign pleural effusion 31 15 14

 Infectious (non-tuberculosis) pleuritis 12 4 3

 Chronic tuberculosis pleuritis/empyema 11 5 3

 Active tuberculosis pleuritis 10 1 1

 IgG4-related pleuritis 1 1 0

PET/CT machine

 Gemini GXL16 217 167 69 60 72 56

 Gemini TF64 62 29 23 10 21 13

 Ingenuity TF 15 8 2 0 4 2

 Discovery IQ 20 7 8 2 7 1

SUVmax

 Mean 6.39 ± 4.90 1.11 ± 1.68 6.19 ± 4.55 1.19 ± 2.25 5.89 ± 3.96 0.98 ± 1.92

 Range 0–46.8 0–9.08 0–21.3 0–12.25 0–15.3 0–11.84

Abbreviations: MPM: malignant pleural methothelioma; PET/CT: positron emission tomography/computed tomography; SUVmax: maximum standardized 
uptake value. 
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based on the results [13, 14]. This is the first known 
study to examine the diagnostic performance of AI with 
a DCNN method and use of FDG-PET/CT images for 
discrimination of MPM from benign pleural disease. The 
results showed that AI with only FDG-PET/CT imaging 
was inferior to visual reading by a trained expert and a 
quantitative method using SUVmax. However, with the 
combination of PET/CT imaging, SUVmax, gender, 
and age, AI outperformed human visual reading and 
a quantitative method with SUVmax. Thus, a DCNN 
model combined with FDG-PET/CT imaging and clinical 

features was found capable of distinguishing between 
MPM and benign pleural disease, and demonstrated 
superior diagnostic performance.

Other recent studies have also investigated deep 
learning methods for diagnosis and prognosis prediction in 
patients with malignant tumors using FDG-PET/CT images, 
and reported their usefulness. Wang et al. [18] performed 
an evaluation of the diagnostic performance of FDG-PET/
CT imaging for mediastinal lymph node metastasis in non-
small lung cancer patients, which included pre-treatment 
results, and for human doctors found that sensitivity, 

Figure 1: ROC curves for four protocols. Orange line: AI with PET/CT imaging alone (protocol A), red line: human visual reading 
(protocol B), green line: quantitative method using SUVmax (protocol C), blue line: AI with combined PET/CT imaging, SUVmax, gender, 
and age (protocol D). AUC values those protocols were 0.825, 0.854, 0.881, and 0.896, respectively. Protocol D showed significantly better 
diagnostic performance than protocol A, B, and C (p = 0.031, p = 0.0020, and p = 0.041, respectively).

Table 2: Diagnostic performance of four protocols
Sensitivity Specificity Accuracy AUC

95% CI 95% CI 95% CI 95% CI
AI with imaging 77.9% (81/104) 76.4% (55/72) 77.3% (136/176) 0.825

69.9–85.9% 66.2–86.2% 71.1–83.5% 0.728–0.892
Human visual reading 80.8% (84/104) 77.8% (56/72) 79.5% (140/176) 0.854

73.1–88.5% 68.2–87.4% 73.6–85.5% 0.775–0.908

Quantitative method using SUVmax 85.6% (89/104) 75.0% (54/72) 81.3% (143/176) 0.881

78.8–92.3% 65.0–85.0% 75.5–87.0% 0.802-0.931
AI with combined imaging, SUVmax, 
sex, and age 88.5% (92/104) 73.6% (53/72) 82.4% (145/176) 0.896

82.3–94.6% 63.4–83.8% 76.8–88.0% 0.818–0.943

Abbreviations: AUC: area under the receiver-operating-characteristic curves; CI: confident interval; AI: artificial intelligence; 
SUVmax: maximum standardized uptake value. 
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Figure 2: Representative case: 77-year-old male with right malignant pleural mesothelioma (epithelial type). (A) 
Maximum intensity projection (MIP) from FDG-PET, (B) Axial FDG-PET, (C) axial CT, and (D) fused FDG-PET/CT. Pleural effusion in 
the right pleural cavity was noted, while no FDG uptake was observed. The diagnosis was negative with protocol A (output value 0.127), B 
(grade 2), and C, whereas it was positive with protocol D (output value 0.448). VATS showed the sample to be positive, a malignant pleural 
mesothelioma (epithelial type).

Figure 3: Representative case: 72-year-old male with right malignant pleural mesothelioma (epithelial type). (A) 
Maximum intensity projection (MIP) from FDG-PET, (B) axial FDG-PET, (C) axial CT, and (D) fused FDG-PET/CT. In the bilateral 
pleural cavity, pleural thickening, plaque, and calcification with effusion were seen, with weak FDG uptake (SUVmax 2.56) observed in 
the right thickened pleura (arrow). The case was diagnosed as negative with protocol B (grade 2). In contrast, protocol C and the AI models 
(protocol A with output value of 0.407, protocol D with output value of 0.649) indicated a positive diagnosis. VATS showed the sample to 
be positive, a malignant pleural mesothelioma (epithelial type).
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specificity, and accuracy were 73%, 90%, and 82%, 
respectively, while those for a deep learning method were 
84%, 88%, and 86%, respectively. In a study by Shen et 
al. [19], patients with definitive uterine cervical cancer and 
treated by chemoradiotherapy were enrolled, and the authors 
evaluated local relapse and distant metastasis predictions 
by deep learning using pre-treatment FDG-PET/CT results. 
For prediction of local relapse, they reported  sensitivity, 
specificity, and accuracy values for deep learning of 71%, 
93%, and 89%, respectively, while for distant metastasis 
those were 77%, 90%, and 87%, respectively. Furthermore, 
Pavic et al. [20] evaluated a radiomics model for predicting 
outcome in MPM patients using pre-treatment FDG-
PET/CT images, and noted concordance index values for 
progression-free survival for their training and validation 
cohorts of 0.67 and 0.66, respectively.

The present study has several limitations. The 
retrospective design and use of cases treated at a single 
institution may limit generalization of the findings, 
while statistical errors may also be inevitable. It will be 
necessary to conduct a prospective multicenter study 
to validate the results. Furthermore, during the period 
of the study, a variety of scanners were used, and the 
reconstruction algorithm and acquisition parameters 
differed. Also, a single experienced reader made visual 
evaluations of the FDG-PET/CT images rather than a 
consensus approach with two readers. Finally, while 
various methods have been proposed to determine regions 
with the greatest impact for AI decision making [21], the 
present findings indicate that localization was not precise 
and the hints provided were not always correct. For 
collaboration between AI and clinician findings, additional 
methods should be considered and then validated with a 
larger dataset.

MATERIALS AND METHODS

Patients

Approval for this retrospective study was received 
from a local review board (No. 3456), which waived the 
requirement for patient-informed consent. Consecutive 
patients with histologically proven or suspected MPM 
based on history, physical examination, and chest CT 
findings (pleural thickening, fluid, plaque, calcification) 
underwent an FDG-PET/CT examination at our institution. 
As the examinations were performed on an intention-to-
diagnose basis, all necessary procedures for obtaining a 
pathologic diagnosis were performed and cases of benign 
pleural disease were followed for at least three years. 
Histological diagnosis of MPM was determined based on 
results of a surgical biopsy performed during a VATS or 
thoracotomy examination, or CT-guided needle biopsy 
procedure. Benign pleural disease diagnosis was obtained 
from results of surgical biopsy specimens obtained during 
VATS or CT-guided needle biopsy, as well as results of 

cytologic evaluations of pleural fluid and needle aspiration 
pleural biopsy specimens, or of clinical and radiological 
follow-up examinations performed for at least three 
years. The pathologic examinations consisted of cytology, 
histology, and immunohistochemistry methods, depending 
on the diagnosis and diagnostic procedure. Patients with 
metastatic pleural disease or original malignant pleural 
disease other than MPM, as well as those who previously 
underwent a talc pleurodesis procedure were excluded 
from the present study.

The study cohort included 875 patients (751 males, 
124 females; mean age 69.1 years; range 28-92 years) who 
underwent examinations from January 2007 to December 
2017. MPM was diagnosed in 520 and benign pleural 
disease in 355 (Table 3). Cellular type for the 520 MPM 
cases was epithelial in 394, sarcomatoid in 65, biphasic in 
41, and desmoplastic in 20. As for the 355 patients with 
benign disease, the diagnosis was benign asbestosis plaque 
in 137, chronic fibrous pleuritis in 106, benign pleural 
effusion in 60, infectious (non-tuberculosis) pleuritis in 
19, chronic tuberculosis pleuritis/empyema in 19, active 
tuberculosis pleuritis in 12, and IgG4-related pleuritis in 2.

FDG-PET/CT

Four different PET/CT scanners (Gemini GXL16, 
Gemini TF64, or Ingenuity TF, Philips Medical Systems, 
Eindhoven, The Netherlands; Discovery IQ, GE 
Healthcare, Waukesha, WI, USA) were available for 
FDG-PET/CT examinations during the time of the study. 
The patient was asked to fast for five hours prior to the 
scan. Blood glucose was determined immediately before 
injection of FDG at 4.0 MBq/kg body weight for the 
GXL16, 3.0 MBq/kg body weight for the TF64, or 3.7 
MBq/kg body weight for the Ingenuity TF and Discovery 
IQ. All in the present cohort had a glucose level in blood 
lower than 160 mg/dL. Approximately 60 minutes after 
injection, static emission images were obtained. Helical 
CT scan imaging was performed from the top of the head 
to mid-thigh for attenuation correction and anatomic 
localization using the following parameters: tube voltage 
120 kV (all four scanners), effective tube current auto-
mA up to 120 mA (GXL16) 100 mA (TF64), 155 mA 
(Ingenuity TF) or 15~390 mA [Smart mA: noise Index: 
25] (Discovery IQ), gantry rotation speed 0.5 seconds, 
detector configuration 16 × 1.5 mm (GXL16), 64 × 
0.625 mm (TF64 and Ingenuity TF), or 16 × 1.25 mm 
(Discovery IQ), slice thickness 2 mm, and transverse field 
of view 600 mm (GXL16, TF64, Ingenuity TF) or 700 
mm (Discovery IQ). Immediately following completion 
of CT scanning, PET imaging was performed from the 
head to mid-thigh for 90 (GXL16, TF64, Ingenuity TF) 
or 180 (Discovery IQ) seconds per bed position in three-
dimensional mode, during which the patient was instructed 
to breathe normally. For reconstruction of attenuation-
corrected PET images, a line-of-response row-action 
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maximum likelihood algorithm was used for the GXL16, 
while for the TF64 and Ingenuity an ordered-subset 
expectation maximization (OSEM) iterative reconstruction 
algorithm (33 subsets, 3 iterations) was used, and Q.Clear 
block sequential regularized expectation maximization 
(BSREM) (β = 400) was used for the Discovery IQ.

Data set

For analysis, FDG-PET/CT DICOM images were 
converted using the TFS-01 viewing software package 
(Toshiba Medical Systems, Tochigi, Japan) to JPEG 
format at 512 × 512 pixels. Patient number, gender, age, 
histopathology of MPM or benign pleural disease, PET/
CT device, and harmonized lesion SUVmax from training, 
validation, and test data are presented in Table 1. Training 
and validation data were distributed at a ratio of 3:1 (i.e., 
525:174 cases) and the remaining 176 cases were used 
for test data. Random numbering was used to randomly 
distribute the cases, with 314 MPM and 211 benign cases 

used as the training set, and 102 MPM and 72 benign cases 
as the validation set. For the test phase, 104 MPM and 
72 benign cases were used. We compared four datasets, 
including AI with PET/CT imaging alone (protocol A), 
human visual reading (protocol B), a quantitative method 
using SUVmax (protocol C), and AI combined with PET/
CT imaging, SUVmax, gender, and age (protocol D).

Deep learning with DCNN

A two-stage model was employed. The first stage 
was a classification model using a 3D DCNN and a neural 
network model of tabular data (NNMT), while for the 
second stage, a neural network was utilized to classify 
MPMs and non-MPMs based on feature descriptors 
(Figures 4 and 5).

A 3D extended version of the VGG12 network 
structure was used as a 3D DCNN classification model 
for the first stage, as suggested by the Visual Geometry 
Group at the University of Oxford in ILSVRC2014. After 

Figure 4: Scheme for proposed AI with PET/CT imaging alone (3D DCNN classification model, protocol A) and neural 
network model of table data. For the 3D DCNN, a 3D extended model based on VGG12 was utilized. A neural network model of 
tabular data was used to identify gender, age, and SUVMax in the combined network model. Abbreviations: DCNN: deep convolutional 
neural network; MPM: malignant pleural mesothelioma. 

Figure 5: Scheme for proposed AI with combined PET/CT imaging, SUVmax, gender, and age (protocol D). For the 
combined network model, feature descriptors just before the final output layer of the classification model of 3D DCNN and the neural 
network model of tabular data were combined to create the final two class classifications of MPM and non-MPM. Abbreviations: DCNN: 
deep convolutional neural network; MPM: malignant pleural mesothelioma; NNMT: neural network model of tabular data. 
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extracting the chest part, PET DICOM images were used 
as input data, then formatted as 3D data and resized to 
36 × 72 × 72 pixels. Training of the 3D DCNN was done 
with 3D data from training data cases, with output results 
of the validation data used to indicate the end of training 
(protocol A). The NNMT was comprised of two dense 
layers, with tabular data (gender, age, SUVmax) used 
as input and two classes as output. Thereafter, training/
validation data were used to train the NNMT.

The 3D DCNN and NNMT trained in the first stage 
were then used for the second stage. The 3D DCNN 
was inputted with 3D data and the NNMT with tabular 
data from the same cases, then feature descriptors were 
extracted just prior to the output layer for each network. 
The two feature descriptors were then inputted to a 
combined network model that consisted of two dense 

layers (protocol D) and training/validation data were 
used to train the model. Since both the 3D DCNN and 
combined network model provided output probabilities 
for MPM and non-MPM, the non-MPM probability was 
determined as the final score and used for subsequent 
comparisons. Therefore, output values for the 3D DCNN 
and combined network model were continuous values 
between 0 and 1.

All data processing was performed with a 
workstation (CPU: Core i7-9800X at 3.80 GHz, RAM 
64 GB, GPU: TITAN RTX), with Python (version 3.6.8) 
(http://www.python.org) as the programming language and 
TensorFlow (version 2.2) (http://tensorflow.org/) as the 
deep learning framework. The optimizer used was Adam, 
with a learning rate of 1.0 × 10–5. Network training was 
performed with a batch size of 16 and up to 100 epochs, 

Table 3: Patient and tumor characteristics
Patients (n) N %

Number 875

Sex

Male/Female 751/124 85.8/14.2

Age

Mean (y) 69.1 ± 9.6

Range (y) 28–92

Malignant pleural mesothelioma 520 59.4

Epithelial 394 45.0

Sarcomatoid 65 7.4

Biphasic 41 4.7

Desmoplastic 20 2.3

Stage of malignant pleural mesothelioma

I 128 24.6

II 106 20.4

III 142 27.3

IV 144 27.7

Benign pleural disease 355 40.6

 Benign asbestosic plaque 137 15.7

 Chronic fibrous pleuritis 106 12.1

 Benign pleural effusion 60 6.9

 Infectious (non-tuberculosis) pleuritis 19 2.2

 Chronic tuberculosis pleuritis / empyema 19 2.2

 Active tuberculosis pleuritis 12 1.4

 IgG4-related pleuritis 2 0.23

http://www.python.org
http://tensorflow.org/
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and was stopped when loss of the validation set was not 
improved. For each epoch, all training set structures were 
processed. After constructing the models, the accuracy of 
protocol A (AI with PET/CT imaging alone) and protocol 
D (AI with PET/CT imaging, SUVmax, gender, and age 
combined) was examined using the test image sets for the 
ability to distinguish MPM from benign pleural lesions.

Radiologist review

A single board-certified nuclear medicine expert with 
12 years of experience with oncologic FDG-PET/CT, and 
without knowledge regarding the clinical or histopathologic 
data of the cohort reviewed all FDG-PET/CT images in a 
retrospective manner. For assessment of MPM, diagnostic 
certainty was graded as 1 (definitely absent), 2 (probably 
absent), 3 (possibly present), 4 (probably present), or 5 
(definitely present) based on visual analysis (protocol B). 
Additionally, semiquantitative analysis was performed 
using SUVmax, defined as maximum concentration in the 
target lesion (injected dose/body weight) (protocol C). The 
commercially available GI-PET software package (AZE 
Co., Ltd., Tokyo, Japan), developed to harmonize SUVs 
obtained with different PET/CT systems using phantom data 
[22], was used. To evaluate whether SUVmax differentiated 
MPM from benign pleural disease and identify the best 
cutoff value, ROC curve analysis was performed.

Statistical analysis

To calculate the area under the ROC curve (AUC), 
analyses to determine the performance of the four 
protocols for distinguishing MPM from benign pleural 
disease were performed using the test data. Using 
Cochran’s Q test, the test data set was used to calculate 
sensitivity, specificity, and accuracy for differentiating 
MPM from benign pleural disease. Differences between 
any two protocols were tested using McNemar’s test with 
Bonferroni correction. Statistical analyses were performed 
using SAS, version 9.3 (SAS Institute Inc., Cary, NC, 
USA), with p < 0.05 considered to be significant.

CONCLUSIONS

For differential diagnosis of MPM, 3D DCNN deep 
learning with the combination of FDG-PET/CT imaging and 
clinical features is a novel tool that is flexible and potentially 
useful. For assisting radiologists with diagnosis of MPM 
cases, the combined network model noted in the present study 
used with FDG-PET/CT is considered to be very helpful. 
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