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Abstract

Cells decode information of signaling activation at a scale of tens of minutes by downstream

gene expression with a scale of hours to days, leading to cell fate decisions such as cell dif-

ferentiation. However, no system identification method with such different time scales

exists. Here we used compressed sensing technology and developed a system identifica-

tion method using data of different time scales by recovering signals of missing time points.

We measured phosphorylation of ERK and CREB, immediate early gene expression prod-

ucts, and mRNAs of decoder genes for neurite elongation in PC12 cell differentiation and

performed system identification, revealing the input–output relationships between signaling

and gene expression with sensitivity such as graded or switch-like response and with time

delay and gain, representing signal transfer efficiency. We predicted and validated the iden-

tified system using pharmacological perturbation. Thus, we provide a versatile method for

system identification using data with different time scales.

Author summary

The key points of this study are two-fold: The first point is the decoding mechanism for cell

differentiation. We previously demonstrated the encoding mechanism of cell fate decision

information by transient and sustained ERK activation in PC12 cells, and also identified

the decoding genes essential for cell differentiation in PC12 cells, including Metrnl, Dclk1,

and Serpinb1a, denoted as LP (latent process) genes, which are the decoders of neurite

length information. Importantly, the expression levels of the LP genes, but not the phos-

phorylation level of ERK, correlate with neurite length. Thus, the decoding mechanism of

signaling activities by LP gene expression is a key issue for understanding the mechanism

of cell differentiation. Here we identified a selective NGF- and PACAP-signaling decoding
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system by LP gene expression for neurite extension by developing a system identification

method. The second point is the modeling. Cells decode information of signaling activation

at a scale of tens of minutes by downstream gene expression with a scale of hours to days,

leading to cell fate decisions such as cell differentiation. However, no system identification

method with such different time scales exists. Here we developed a signal recovery tech-

nique in the field of compressed sensing originally developed for image analysis to biologi-

cal sparse data of different time scales of signaling and gene expression.

Introduction

In intracellular signaling systems, information of an extracellular stimulus is encoded into

combinations of distinct temporal patterns of phosphorylation of intracellular signaling mole-

cules that are selectively decoded by downstream gene expression, leading to cell fate decisions

such as cell differentiation, proliferation, and death [1, 2]. For instance, in rat adrenal pheo-

chromocytoma PC12 cells, nerve growth factor (NGF) induces cell differentiation mainly

through sustained phosphorylation of ERK [3–6], whereas pituitary adenylate cyclase-activat-

ing polypeptide (PACAP) induces cell differentiation mainly through cAMP-dependent CREB

phosphorylation [7–11]. We showed that cell differentiation in PC12 cells can be divided into

two processes: a latent process (0–12 h after the stimulation) in preparation for neurite exten-

sion and a subsequent neurite extension process (12–24 h) [12]. We identified the three genes

essential for cell differentiation, Metrnl, Dclk1, and Serpinb1a, which are induced during the

latent process and required for subsequent neurite extension, and named LP (latent process)

genes [9]. Although NGF and PACAP selectively induce the different combinations and tem-

poral patterns of signaling molecules, both growth factors commonly induce the LP genes [9].

The expression levels of LP genes, but not the phosphorylation level of ERK, correlate with

neurite length regardless of growth factors [9], indicating that the LP genes are the decoders of

neurite length. Thus, how the distinct patterns of signaling molecules are decoded by LP gene

expression is critical for understanding the unknown mechanism underlying cell differentia-

tion in PC12 cells. Decoding the combinations and temporal patterns of signaling molecules

by downstream gene expression is a general mechanism underlying various cellular functions

[1, 2, 13].

Mathematical modeling is useful for the analysis of decoding mechanisms [14]. If the sig-

naling pathways are well characterized, kinetic modeling based on biochemical reactions

reported in the literature is often used [15–17]. For example, growth factor–dependent ERK

activation in PC12 cells has been modeled by the kinetic model based on prior knowledge of

pathway information [18–23]. In general, however, decoding by downstream genes involves

more complex processes such as transcription and translation and information on the precise

pathway is not available.

To identify decoding mechanisms by gene expression, the system identification method

(also referred to as data-driven modeling) was developed for identifying quantitative input–

output relationships from time series data without detailed knowledge of signaling pathways

[15–17, 24–26]. We previously developed a system identification method based on time series

data of signaling molecules and gene expression, denoted as the nonlinear autoregressive exog-

enous (NARX) model, and applied it to the signaling-dependent immediate early gene (IEG)

expression during cell differentiation in PC12 cells [10]. The NARX model involves the deter-

mination of lag-order numbers and use of the Hill equation and the linear autoregressive exog-

enous (ARX) model [10]. Determination of lag-order numbers infers the selection of input

System identification of signaling dependent gene expression
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molecules (Input) for an output molecule (Output), which is referred to as the Input-Output (I-
O). The Hill equation characterizes sensitivity with a nonlinear dose-response curve [27]. The

linear ARX model characterizes temporal changes with time constant and gain, the latter of

which is an I-O amplitude ratio, and indicates signal transfer efficiency [28]. The advantages of

the NARX model rather than kinetic model is systematically presentation of model candidates

without prior knowledge of signaling pathway and less computational cost for parameter esti-

mation. However, the NARX model requires equally spaced dense time series data. If the time

scale between upstream and downstream are similar, such as signaling molecules (scale of tens

of minutes) and IEG expression (a few hours) in PC12 cells, it is not difficult to acquire a suffi-

cient number of equally spaced dense time series data [10]. However, if the time scale of

upstream and downstream molecules is largely different, such as signaling molecules (tens of

minutes) and LP gene expression (a day) [29], it is technically difficult to obtain sufficient

equally spaced dense time series data because of experimental and budget limitations.

Measuring gene expression often requires a longer time scale than measuring protein phos-

phorylation. Obtaining equally spaced dense time series data with a longer time scale is labor

and cost intensive, because, unlike live-cell imaging experiments, snapshot experiments such

as western blotting, RT-PCR, and quantitative image cytometry (QIC) [12] require the same

number of experiments as the number of time points. In addition, experimental noise and var-

iation increases as the number of experiments increases because differences in experimental

conditions such as plates, gels, reagents, and cell culture conditions increase as well. Therefore,

in reality, for a longer time scale experiment, unequally spaced sparse time series data rather

than equally spaced dense time series data are desired. For example, under conditions in

which stimulation by cell growth factors triggers rapid and transient phosphorylation and slow

and sustained gene expression, time series data should be obtained with dense time points dur-

ing the transient phase and eventually with sparse time points. The timing and dynamic char-

acteristics of temporal changes may differ between upstream and downstream molecules, such

that time points and intervals for measuring upstream and downstream molecules may be dif-

ferent. Thus, a system identification method using unequally spaced sparse time series data

with different time scale needs to be developed.

To solve this problem, here we used the signal recovery technique based on a low-rank

approach proposed in the field of compressed sensing to generate a sufficient number of time

points for equally spaced dense time series data from unequally spaced sparse time series data

with different time points and intervals. We applied this nonlinear system identification

method to the signaling-dependent gene expression underlying cell differentiation in PC12

cells and identified the signaling-decoding system by gene expression.

Unequally spaced sparse time series data can be regarded as equally spaced dense time

series data with missing time points, and therefore we can generate equally spaced dense time

series data by applying a signal recovery technique, which has been studied in the field of com-

pressed sensing [30, 31]. Compressed sensing is a signal processing method for efficient data

acquisition by recovering missing signals/images from a small number of randomly sampled

signals including unequally spaced sparse data based on sparseness of a vector [32] or low

rankness of a matrix [33]. Both the sparse approach and the low-rank approach have been

applied to various fields, such as sampling and reconstructing magnetic resonance images [34,

35], super-resolution imaging [36, 37], image inpainting [38, 39], and collaborative filtering

[40]. In this study, we applied a matrix rank minimization algorithm [41] to recover missing

time points from unequally spaced time series data, and we generated equally spaced time

series data with the same time points from signaling and gene expression data with different

time scales. We previously developed a system identification method from equally spaced

dense time series data of signaling and gene expression using the NARX model [10]. We

System identification of signaling dependent gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005913 December 27, 2017 3 / 29

https://doi.org/10.1371/journal.pcbi.1005913


developed a new system identification method from unequally spaced sparse time series data

with different time scales by integrating this signal recovery method using the matrix rank

minimization algorithm [41] and the NARX model [10]. We applied the method to system

identification of signaling-dependent gene expression in cell differentiation in PC12 cells,

revealing a selective signaling-decoding mechanism by gene expression.

Results

Signal recovery using compressed sensing from unequally spaced data

In this study, we regarded unequally spaced sparse time series data as equally spaced dense

time series data with missing time points, and equally spaced time series data were generated

by restoring missing time points using a low-rank approach [41]. In the low-rank approach for

image recovery, we assumed that the value of each pixel is represented by a linear combination

of its neighbor pixels, which is mathematically represented by an autoregressive (AR) model.

Then a Hankel-like matrix composed of pixel values has a low rank because each column is

represented by the linear combination of the other columns (Fig 1 and S1A Fig). This means

that the Hankel-like matrix is a low-rank matrix whose rank is determined by the system

order. Missing data can be recovered by estimating missing elements of the matrix so that the

rank of this matrix [Y] is r. When system order r is unknown, based on the idea that the system

can be described with as few parameters as possible, missing elements of this Hankel-like

matrix are recovered so as to minimize the rank of the matrix [Y]. Based on the low rankness

of the Hankel matrix, the signal recovery problem of the missing pixels can be formulated as a

matrix rank minimization problem, and we can restore an image by solving this problem [38,

39] (Fig 1).

We performed system identification from unequally spaced time series data of input mole-

cules (Inputs) and output molecules (Outputs). Although an AR model is used for image recov-

ery, we used an ARX model where the value at a time point is represented by a linear

combination of two kinds of signals, Inputs and Outputs. Therefore, we modified the rank-

minimization-based signal recovery method of the AR model to the ARX model and per-

formed system identification (Fig 1 and S1B Fig). Several methods for system identification

using a linear ARX model with signal recovery of missing points of input and output based on

matrix rank minimization have been proposed [42]. They can recover missing time series

input–output data even when missing time points of input are not equal to those of output.

However, we cannot directly apply the method because we used the NARX model rather

than the ARX model due to the nonlinearity of signaling-dependent gene expression [10, 43].

Therefore, by combining the nonlinear ARX system identification method [10] and the signal

recovery method based on the matrix rank minimization problem [41], we derived the signal

recovery algorithm applicable to the nonlinear ARX system and performed system identifica-

tion using recovered equally spaced time series input–output data (see “NARX Model and

Data Representation” and “Extension ARX system identification from unequally spaced time

series data to the NARX system” sections in Materials and methods).

System identification by integrating signal recovery and the NARX model

In the NARX model used in our previous work, time series data of Inputs are nonlinearly

transformed using the Hill equation, which are then used as inputs for the ARX model [10]

(Fig 2A). The Hill equation, which is nonlinear transformation function f(x) widely used in

biochemistry [27], can represent sensitivity with a graded or switch-like response by the values

of n and K (Fig 2A). The ARX model in the NARX model can represent how the Output effi-

ciently responds to the temporal change of the nonlinearly transformed Inputs by the time

System identification of signaling dependent gene expression
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constant and gain (Fig 2A). Thus, from the estimated parameters of the Hill equation and

ARX model, the sensitivity with graded or switch-like response and the time constant and gain

are obtained, respectively. In this study, the parameters of this NARX model were estimated

using a signal recovery scheme based on a low-rank approach [41], as follows (Fig 2B, see

details in “Procedure for system identification by integrating signal recovery and the NARX

model” section in Materials and methods).

Fig 1. Signal recovery based on compressed sensing technology from unequally spaced data. (Top)

An example of recovered equally spaced image data from unequally spaced image data by the signal

recovery technique using rank minimization of the Hankel-like matrix Y composed of signals in pixels. We

assume that the value of each pixel is represented by a linear combination of those of its neighboring pixels,

which is mathematically represented by an autoregressive (AR) model. The original picture is published under

the Creative Commons Zero license in https://www.pexels.com/photo/animal-black-and-white-cute-funny-

164703/. (Bottom) An example of recovered equally spaced time series data from unequally spaced time

series data by the signal recovery technique using rank minimization of the Hankel-like matrices Y and U,

composed of time series data of input molecules (Inputs) and output molecules (Outputs), respectively. We

assume that the value at a certain time is represented not only by the linear combination of values of the

output molecule at past points but also by the linear combination of the values of the input molecule at past

points, which is mathematically represented by an autoregressive exogenous (ARX) model. The recovered

time series input–output data have the equally spaced time series data with the same time points even if the

missing time points of input and output are different.

https://doi.org/10.1371/journal.pcbi.1005913.g001

System identification of signaling dependent gene expression
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Fig 2. System identification by integrating signal recovery and the NARX model. (A) The nonlinear ARX

(NARX) model consists of static nonlinear conversion of input signal by the Hill equation, followed by time

delay by ARX model. The former gives the sensitivity with a graded or switch-like response and the latter

gives the time constant. (B) Algorithm flowchart for system identification by integrating signal recovery and the

NARX model. See details in “Procedure for system identification by integrating signal recovery and the NARX

model” section in Materials and methods.

https://doi.org/10.1371/journal.pcbi.1005913.g002
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To estimate the I-O relationship, we selected a combination of Inputs for each Output and

prepared a data set of all combinations of Inputs for each Output. Each data set was divided

into test dataset for one stimulation condition and training data set for the rest of two stimula-

tion conditions, leave-one-out (LOO) cross-validation was performed. We estimated the

parameters of the NARX model (the NARX parameters) for the training data set in each

Input–Output combination using the following method. First, the initial values of n and K are

given by n = 1 and a random number, respectively, and nonlinear transformation of input

unequally spaced time series data by using the Hill equation was performed (Fig 2B, step i). A

Hankel-like matrix was constructed from unequally spaced time series Output data and from

unequally spaced time series Inputs nonlinearly transformed by the Hill equation. Next, signal

recovery was performed with an iterative partial matrix shrinkage (IPMS) algorithm to mini-

mize the rank of the Hankel-like matrix composed of Output and Inputs transformed by the

Hill equation [41] (Fig 2B, step ii). The rank of the recovered Hankel-like matrix corresponds

to the lag order; from the recovered Hankel-like matrix, the parameters of the ARX model a
and b were uniquely obtained (Fig 2B, step iii; S1B Fig). Further estimation of n and K was per-

formed by using recovered data, ARX parameters obtained until step iii, and other combina-

tion of n and K given random numbers (Fig 2B, step iv). By using the inverse function of the

Hill equation, we recovered the missing time points data of input before transformation by the

Hill equation. For the other 200 combinations of n and K given by random numbers, we per-

formed simulation of the NARX model using the recovered data, ARX parameters obtained

until step iii, and the given combination of n and K.

We calculated the Akaike information criterion (AIC) from the residual sum of squares

between the experiment and simulation, number of parameters, and number of data to deter-

mine the parameters n and K. AIC is a measure of the relative quality of statistical models based

on the trade-off between the goodness-of-fit of the model and the complexity of the model [44].

In step iv, we selected the combination of n and K with the minimum AIC and carried out sig-

nal recovery again using these n and K. We repeated steps i–iv 500 times, and selected the n and

K and ARX parameters that minimize AIC for the training data set AICtraining in total (Fig 2B,

step v). Let parameters with minimum AICtraining be parameters obtained from the training data

set (Fig 2B, step v). Once these parameters were obtained, test data (still unequally spaced time

series data) was added to the recovered Hankel-like matrix and signal recovery of the test data

was performed (Fig 2B, step vi). With the parameters of the NARX model estimated from the

training data set, we simulated the NARX model for test data and calculated RSSs
LOO, the residual

sum of squares between experiment and simulation for test data set by stimulation condition s
(NGF, PACAP, or PMA) (Fig 2B, step vii).

Because RSSsLOO was obtained for each combination of training and test data set s, we took

the sum of RSSsLOO for test data set s as RSSLOO (Fig 2B, step viii). We obtained the combination

of Inputs as the identified I-O relationship that minimizes RSSLOO for all combination of Inputs
(Fig 2B, step ix). The I-O relationship indicates that a set of Inputs are selected as upstream

molecules for each Output. In the final step, using this combination of input molecules, the

parameters of the final NARX model were estimated by the procedure from step i to step v

using all stimulation conditions as training data sets (Fig 2B, step x). Note that we used two dif-

ferent criterions AICtraining and RSSLOO; AICtrainig to determine n, k, and ARX parameters, and

RSSLOO to select Inputs in order to save computational cost.

These estimated NARX parameters were used for further study (Figs 3–6). The sensitivity

with graded or switch-like response was obtained from the parameters of the Hill equation,

and the gain and time constant were obtained from the parameters of the ARX model (Fig 2B,

see “Calculation of gain and time constant from the linear ARX model” section in Materials

System identification of signaling dependent gene expression
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and methods). An example of the transformation of Inputs by the Hill equation and signal

recovery following the ARX model and simulated Output is shown in Fig 3 (also see S2 Fig).

We applied this method to identify the signaling-decoding system by gene expression underly-

ing cell differentiation in PC12 cells using unequally spaced time series data with different

time scales.

System identification of signaling-dependent gene expression

We stimulated PC12 cells by NGF, PACAP, and PMA and measured the amount of phosphor-

ylated ERK1 and ERK2 (pERK) and CREB (pCREB) and protein abundance of products of the

IEGs, such as c-Jun, c-Fos, Egr1, FosB, and JunB by using QIC [45] (Fig 4). We chose these

growth factors because they use different signaling pathways: NGF, PACAP, and PMA use

Ras-, cAMP-, and PKC-dependent signaling pathways, respectively [7, 11, 46, 47]. We also

measured mRNA expression of LP genes such as Metrnl, Dclk1, and Serpinb1a using qRT-PCR

(Fig 4). We measured the signaling molecules and gene expression with different sets of the

time points because of the different time scales of temporal changes in signaling molecules and

gene expression (Fig 4). Using the unequally spaced time series data with the different sets of

the time points, we performed the system identification using integration of signal recovery

and the NARX model (Fig 5A–5C).

Using these time series data sets, we selected three sets of Inputs–Outputs combinations

from upstream to downstream and performed system identification for each set (Fig 5A). The

system identification consists estimating the I-O relationship, dose-response by the Hill equa-

tion, and gain and time constant by the linear ARX model (Fig 3, see “Calculation of gain and

time constant from the linear ARX model” section in Materials and methods).

Fig 3. Transformation of Inputs by the Hill equation and signal recovery followed by the ARX model. Signal transformation in the

nonlinear ARX model of c-Fos is shown. The signals of pERK and pCREB were transformed by the Hill equations and recovered. Then the

transformed signals were temporally transformed by the linear ARX model. The sum of the transformed signals by the linear ARX model was

c-Fos, the final output of the nonlinear ARX model of c-Fos.

https://doi.org/10.1371/journal.pcbi.1005913.g003
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We selected pERK and pCREB as Input candidates for each Output, c-Jun, c-Fos, and Egr1,

based on previous studies [8–10] (Fig 5A). We selected pERK, pCREB, c-Jun, c-Fos, and Egr1

as Input candidates for each Output, FosB and JunB [8–10] (Fig 5A). We selected pERK,

pCREB, c-Jun, c-Fos, Egr1, FosB, and JunB as Input candidates for each Output, Metrnl, Ser-
pinb1a, and Dclk1 [9] (Fig 5A).

For c-Jun and Egr1, pERK was selected as an Input, and for c-Fos, pERK and pCREB were

selected as Inputs (Fig 5). For FosB, c-Jun and c-Fos were selected as Inputs, and for JunB,

pCREB was selected as Input (Fig 5B). For Metrnl, FosB, c-Fos and JunB were selected as an

Inputs; however, contributions of c-Fos and JunB were negligible (S2 Fig), indicating that FosB

is a main Input for Metrnl. For Serpinb1a and Dclk1, JunB was selected as an Input (Fig 5B). It

is noteworthy that FosB and JunB, but not signaling molecules and other IEGs, were mainly

selected as Inputs of the LP genes and the inputs for Metrnl and Dclk1 were different despite

their similar temporal patterns.

We characterized the dose-response by the Hill equation and gain and time constant by

the linear ARX model (Fig 5C, Table 1). The dose-responses from c-Jun and c-Fos to FosB

showed typical switch-like responses, whereas others showed graded or weaker switch-like

responses. Note that the gain from the converted c-Jun to FosB was much smaller than that

from the converted c-Fos (Table 1), indicating that FosB is mainly regulated by c-Fos but

not c-Jun. The time constants for c-Jun, c-Fos, Egr1, Metrnl, and Dclk1 were less than 1 h,

whereas those for FosB, JunB, and Serpinb1a were more than 100 min (Table 1), indicating

that induction of FosB and JunB temporally limit the overall induction of the LP genes from

signaling molecules. The transformation of Inputs by the Hill equation followed by the ARX

model is shown in S2 Fig. In addition, when we integrated these three sets of the NARX

Fig 4. Experimental data of growth factor–dependent changes of signaling molecules and gene expression in PC12 cells. PC12 cells

were stimulated with NGF (50 ng/ml, red), PACAP (100 nM, blue), or PMA (100 nM, green). Phosphorylation of signaling molecules, such as

ERK and CREB, the product of IEGs such as c-Jun, c-Egr1, c-Jun, FosB, and JunB, and mRNA expression of LP genes such as Metrnl,

Dclk1, and Serpinb1a were measured with different time points. These data were used for system identification by the NARX model in Fig 5C.

https://doi.org/10.1371/journal.pcbi.1005913.g004
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Fig 5. System identification of I-O relationships between the signaling, IEGs, and LP genes. (A) The sets of

combinations of Inputs and Outputs for system identification. (B) The identified I-O relationships. Arrows indicate

System identification of signaling dependent gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005913 December 27, 2017 10 / 29

https://doi.org/10.1371/journal.pcbi.1005913


model and simulated the response using only pERK and pCREB as Inputs, we obtained a

similar result (S3 Fig).

Prediction and validation of the identified system by pharmacological

perturbation

We validated the identified system by pharmacological perturbation. One of the key issues in

PC12 cell differentiation is whether ERK or CREB phosphorylation mediates expression of the

downstream genes [9, 11, 47]. Therefore, we selectively inhibited ERK phosphorylation by a

specific MEK inhibitor, trametinib [48–50] in PACAP-stimulated PC12 cells. We found that

PACAP-induced ERK phosphorylation, but not CREB phosphorylation, was specifically inhib-

ited by trametinib (Fig 6A, black dots).

For c-Jun, c-Fos, Egr1, and JunB, we recovered signals of the unequally spaced time

series data of Inputs and Output. For c-Jun, c-Fos, and Egr1, we simulated Outputs
responses using these recovered data and the identified NARX model (Fig 6A black lines,

see also “Simulation of the integrated NARX model” section in Materials and methods).

For other downstream molecules, FosB, JunB, Metrnl, Serpinb1a, and Dclk1, we used the

recovered data of pCREB and the simulated time series data of c-Jun, c-Fos, and Egr1 as

Inputs for the identified NARX model (Fig 6A, black lines). The simulated time courses of

Outputs were similar with those in experiments, except those of FosB and Metrnl (Fig 6A,

black lines and black dots). In the simulation, FosB and Metrnl did not respond to PACAP

in the presence of trametinib, whereas in the experiment both molecules did so, suggesting

the possibility of failure of the system identification of FosB and/or Metrnl. Therefore, we

investigated whether FosB and Metrnl can be reasonably reproduced when experimental

and recovered data of c-Fos and c-Jun and of FosB, respectively, were used rather than the

simulated ones (Fig 6B). When experimental and recovered data were used as Inputs,
Metrnl, but not FosB, responded to PACAP in the presence of trametinib both in the simu-

lation and experiment (Fig 6B), indicating that the failure of the system identification of

FosB and Metrnl in Fig 6A arose from the failure of the system identification of FosB. Thus,

all Outputs except FosB showed similar responses in the experiment and simulation when

the experimental and recovered data were used as Inputs, indicating that in most cases the

identified system is validated by pharmacological perturbation.

Discussion

In this study, we identified the system from signaling molecules to gene expression using the

unequally spaced time series data for 720 min after the stimulation. Given that expression lev-

els of the LP genes were highly correlated with neurite length regardless of growth factors [9]

and expression continues for 720 min after the initial addition of NGF [12], the identified sys-

tem is the selective growth factor–signaling decoding system for neurite length information,

one of the most critical steps for cell differentiation in PC12 cells. We found that the LP genes

depends only on the IEGs (c-Fos, FosB and/or JunB) but not other upstream molecules, and

that the decay rates of the LP genes are fast. This means that the timing of the final decoding

the estimated I-O relationships for each set of inputs and outputs. The colors of the arrows indicate the same sets

of combinations of inputs and outputs as in (A). Dots, experimental data; pluses, the recovered signal data; solid

lines, simulation data of the NARX model; red, NGF stimulation; blue, PACAP stimulation; green, PMA stimulation.

(C) The dose-response curves obtained by the Hill equation. For each panel, conversion of Inputs by the identified

Hill equation is shown. The colors of the arrows and plotted lines indicate the same Inputs, respectively.

https://doi.org/10.1371/journal.pcbi.1005913.g005
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step for neurite elongation is not directly determined by the IEGs and LP genes, rather by the

steps from growth factors to the late IEGs.

We previously identified the systems leading from pERK and pCREB to the IEGs using the

equally spaced dense time series data with a uniform 3-min interval during 180 min [10]. The

identified I-O relationships in this study are the same, except for the inputs of FosB and JunB.

In this study, for FosB c-Jun was selected as an Input in addition to c-Fos. However, the gain

from the converted c-Jun to FosB was much smaller than that from the converted c-Fos

(Table 1), indicating that the effect of c-Jun is negligible. For JunB, c-Fos was not selected as an

Input in this study, whereas c-Fos was selected in the previous study [10]. The gain from the

converted c-Fos to JunB at lower frequency was much smaller than that from the converted

pCREB [10], indicating that the effect of c-Fos is negligible in the previous study. Thus, the

identified I-O relationships in this study are consistent with our previous work.

The estimated NARX parameters were also generally consistent with those in our previous

study [10]. The peak of c-Fos by NGF stimulation was approximately 0.9, whereas it was

approximately 0.6 in our previous study [10]. The difference may come from the difference in

the algorithm for parameter estimation, because of the procedure of signal recovery is included

in this study. Overall, the inferred the I-O relationship, the Hill equation, and the linear ARX

model in this study are consistent with our earlier observations, indicating that system identifi-

cation using unequally spaced time series data can give the same performance as using equally

spaced time series data and that the system is time invariant during 720 min. Furthermore, the

identified system can reasonably reproduce the time series data using extrapolated data with

Fig 6. Prediction and validation of the identified system by pharmacological perturbation. (A) The predictive simulation

result and experimental result by PACAP stimulation in the presence (black) or absence (blue) of trametinib. Lines, simulation;

dots, experimental and recovered data. Experimental and recovered data of pERK and pCREB, and the simulated data of c-

Jun, c-Fos, Egr1, FosB, and JunB are given as Inputs, and simulation was performed using the NARX model in Fig 5 (see

“Simulation of the integrated NARX model” section in Materials and methods). In the experiment, PC12 cells were treated in the

absence (blue dots) or in the presence (black dots) of trametinib (10 μM) added at 30 min before stimulation with PACAP (100

nM). Note that the PACAP stimulation data are used, as in Fig 4. (B) Simulation using experimental and recovered data as

Inputs. For each set of the Inputs (left panel for each) and Outputs (right panel for each), the unequally spaced time series data

were recovered (pluses) (right panel for each), and the responses of Outputs were simulated by the NARX model identified in

Fig 5A–5C (solid lines) (right panel for each).

https://doi.org/10.1371/journal.pcbi.1005913.g006

Table 1. The identified I-O relationships, parameters of the Hill equation, and gain and time constant calculated from the linear ARX model in

Fig 4.

I-O relationship Hill equation Linear ARX model

Input Output K (EC50) n (Hill coefficient) Gain Time constant (min)

pERK c-Jun 0.9999 1 4.4315 56.4

pERK c-Fos 0.2274 1.276 1.137 20.8

pCREB c-Fos 0.7189 6.118 0.8218 22

pERK Egr1 0.998 1.225 3.2058 21.3

c-Fos FosB 0.792 81.79 4.682 413

c-Jun FosB 0.0813 78.58 0.1215 6.5

pCREB JunB 0.9733 1.58 2.9857 108.9

c-Fos Metrnl 0.9948 60.7 0.8347 16.8

FosB Metrnl 0.5998 3.01 1.1256 10.7

JunB Metrnl 0.8735 89.61 0.2128 21.7

JunB Serpinb1a 0.3161 7.594 0.8797 275.4

JunB Dclk1 0.2584 2.234 0.6889 4

https://doi.org/10.1371/journal.pcbi.1005913.t001
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trametinib, except for FosB. Taken together, these results demonstrate the validity of the pre-

dicted response of the identified systems. The reason for the failure of system identification of

FosB is unclear, but it may reflect the failure of parameter estimation due to the insufficient

number of experimental data points, the limitation of the NARX model structure, or the exis-

tence of unknown regulatory molecules. Further studies are necessary to address these issues.

Some of the recovered time series data is noisy such as Metrnl (Fig 5B), and these are possi-

bly remedied by transforming the output of ARX model with the Hill equation instead of the

inputs. However, doing so may result not only in an increasing of computational cost, but also

in mathematically another two problems. First, the signal recovery cannot be applied within

the present framework based on IPMS. Second, the parameter estimation of ARX model

becomes harder. The problems are essentially due to the difficulty of optimization, caused by

the fact that the tuning parameters are inside nonlinear function. We carried out multiple-

input and single-output (MISO) system identification in this study. As another improvement

approach of this study method, there is multiple-input and multiple-output (MIMO) system

identification. Although MIMO can be applicable, there is the combination problem between

the outputs. In this study, our MISO system identification was calculated in 452 combinations,

but the combinations for MIMO will be increased to 1003 combinations. Also, as the number

of parameters increases about twice, the cost of parameter estimation becomes more expen-

sive. Therefore, we employed MISO system identification in this study. Both the MIMO

approach and transforming outputs of ARX model are future works.

One key issue is whether ERK and/or CREB mediates cell differentiation through down-

stream gene expression in PC12 cells [9, 11, 47]. We previously found that the LP genes are

not induced by NGF in the presence of U0126, another MEK inhibitor [9], and that the MEK

inhibitor blocks NGF-induced phosphorylation of both ERK and CREB in PC12 cells [8, 9,

51]. By contrast, the MEK inhibitor blocked phosphorylation of ERK, but not CREB, in

PACAP-stimulated PC12 cells [8, 51] (Fig 6), suggesting that PACAP induces phosphorylation

of CREB through a cAMP-dependent pathway, rather than the ERK pathway. These results

demonstrate that NGF selectively uses the ERK pathway, whereas PACAP selectively uses the

cAMP pathway for induction of the LP genes. Considering that LP genes are the common

decoders for neurite length in PC12 cells regardless of growth factors [9], the identified system

in this study (except for FosB) reveals the selective NGF- and PACAP-signaling decoding

mechanisms for neurite length information.

Recently, fluorescence resonance energy transfer probes, optogenetics, and microfluidic

devices have been developed to achieve observation and time control of ERK phosphorylation

temporal patterns. These methods allow us to focus on quantitative relationships between vari-

ous ERK phosphorylation temporal patterns and phenotypes such as cell differentiation [13,

21, 29, 52–55]. Although the relationship between signal transduction and phenotype has been

extensively studied, it remains unclear how the signaling molecules quantitatively regulate the

downstream gene expressions over a longer time scale, leading to cell fate decisions. In this

study, we revealed the quantitative regulatory mechanism between signaling activation at a

short time scale (tens of minutes) and gene expression at a longer time scale (day) by using a

system identification method integrating a signal recovery technique and the NARX model

based on compressed sensing.

A linear or spline interpolation is often used to convert unequally spaced time course data

into equally spaced time course data in biological data analysis. However, such interpolation

methods are not likely to be reliable because the interpolation methods ignore biochemical

property of molecular network. By contrast, the interpolation used in this study is based on the

NARX model, which reflects biochemical property. Thus, the proposal method in this study is

biologically more plausible than a linear or spline interpolation.
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There are obscure points for an application of this method to biological data analysis. The

relationship between a number of observed time points and accuracy of signal recovery is the-

oretically unknown. In addition, how to select time points is also unknown. Intuitively, dense

time points may be required for transient response, while sparse time points may be sufficient

for sustained response. Further study is necessary to address this issue.

In molecular and cellular biology, molecular networks—the I-O relationship in this study—

are generally examined by gene disruption or pharmacological perturbation experiments,

meaning that the I-O relationship is examined using static and qualitative data. In this study,

we used Inputs–Outputs time series data for system identification, allowing us to determine

the I-O relationship using dynamic and quantitative data. Our system identification method

does not require detailed knowledge of pathway information, which means that it can be used

as a pathway finder directly from time series data. Moreover, additional information such as

sensitivity with graded or switch-like response, time delay, and gain can be obtained. One of

the advantages of using time series data rather than static perturbation experiments is simulta-

neously obtaining the I-O relationship, sensitivity, and time constant, which characterize the

system behavior. This is based on the idea that input–output time series data implicitly include

information on the I-O relationship. However, we must note that the I-O relationship obtained

by using this method may be an apparent relationship inferred from time series data and is not

necessarily the direct I-O relationship. Therefore, the obtained I-O relationship should be vali-

dated by gene disruption or pharmacological perturbation experiments, as shown in Fig 6. In

addition, synergy induced by cross talk between signaling molecules is one of the most impor-

tant properties in signaling network. The NARX do not assume synergy induced by cross talk.

However, incorporation of synergy causes combinatorial problem and increases computa-

tional cost. Such synergistic effect should be incorporated in the future. To summarize the

above points, as caveats when using NARX model, estimated I-O relationships is phenomeno-

logical relationship, rather than direct interaction (Table 2). Furthermore, the possibility that

unknown molecules are upstream inputs cannot be ruled out. On the other hand, if the path-

way is unknown and the prior knowledge is not available, the model candidates can be pre-

pared systematically in the NARX model, which is suitable for estimating I-O relationships. In

particular, in the case of estimating I-O relationships including nonlinear biochemical reac-

tions without prior knowledge like in this study, the estimation of I-O relationships by ODE

model is difficult and NARX model is useful. We also compared the parameter estimation cost

between the NARX model for c-Jun, c-Fos and Egr1 and ODE model in our previous study

because the model size can be considered similar [56], indicating that the parameter estimation

cost of NARX model in this study is relatively small. In addition to that, it is possible to apply

to unequally spaced time-series data in the NARX model developed in this study. Although it

is difficult to obtain the direct mechanistic interactions by the NARX model, the result of the

I-O relationships and time constants provide biological insight of decoding mechanism of the

upstream molecules by the LP genes.

Table 2. The comparison of NARX and ODE modeling frameworks.

NARX modeling in this study ODE modeling

Model candidates Systematic representation NOT obvious

Sampling design Unequally and equally spaced time series data Unequally and equally spaced time series data

Parameter estimation cost Small computational cost

7.9 hours of CPU time

for c-Jun, c-Fos and Egr1 estimation in this study

Large computational cost

25 hours of CPU time

in our previous study [56]

Biological interpretation Phenomenological relationship Mechanistic interaction

https://doi.org/10.1371/journal.pcbi.1005913.t002
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In conclusions, we have devised a system identification method using unequally spaced

sparse time series data by signal recovery. Because of technical and budget limitations in bio-

logical experiments, it is generally difficult to obtain sufficient numbers of equally spaced

dense time series data of molecules with different time scales. Thus far, system identification

based on time series data has been limited to phenomena with similar time scales. However,

our system identification method can solve this time-scale problem and can be applied to any

biological system with different time scales, such as the cell cycle, development, regeneration,

and metabolism involving ion flux, metabolites, phosphorylation, and gene expression.

Materials and methods

Reagent or resource

Information about reagents and resources can be found in Table 3.

Cell culture, QIC and qRT-PCR analysis

Culture and stimulation of PC12 cells by growth factors [10] and QIC [45] were performed as

previously described. Quantitative reverse transcription–polymerase chain reaction

(qRT-PCR) was performed as previously described [9]. The sequences of the primers for the

LP genes are shown in S2 Table [9].

Parameter estimation

Parameter estimation was performed by using 2.6 GHz CPU (Xeon E5 2670) of the super com-

puter system of the National Institute of Genetics (NIG), Research Organization of Informa-

tion and Systems (ROIS). The CPU time was 7.9 hours for the parameter estimation of the

NARX model for c-Jun, c-Fos and Egr1, and that of ODE model in our previous study which

can be considered similar model size was 25 hours in the same condition [56] (Table 2).

NARX model and data representation

Assuming that the input molecules (Input) and output molecules (Output) signals satisfy the

following NARX model, Eqs (1) and (2), the system identification is performed by estimating

unknown parameters in the NARX model,

yp;s
k ¼

Pmy
i¼1a

p
i y

p;s
k� i þ

P
q2Mp

Pmu
j¼1

bp
j f ðu

q;s
k� j; np;KpÞ; ð1Þ

f u; n;Kð Þ ¼
un

un þ Kn
; ð2Þ

where uq;s
k and yp;s

k are experimental values of Input and Output at time step k, p and q respec-

tively denote indices of Output and Input defined in the following sets,

p 2 P ¼ fc-Jun;Egr1; c-Fos; FosB; JunB;Metrnl; Serpinb1a;Dclk1Ag; ð3Þ

q2Mp �M ¼ fpERK; pCREB; c-Jun;Egr1; c-Fos; FosB; JunBg; ð4Þ

and s is an index of stimulation conditions defined as follows,

s 2 fNGF;PACAP; PMAg: ð5Þ

Mp is the index set of Input defined for each Output p 2 P (Fig 5A). The nonlinear function f
(x) in Eq (2) is the Hill equation that is one of the steady state solutions of biochemical reaction
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and widely used in the field of biology [27]. The coefficients ap
i and bp

j , the orders my and mu in

Eq (1), np and Kp in Eq (2), and set Mp are unknown parameters. For each molecule under

stimulation condition s (NGF, PACAP, and PMA), the unequally spaced time series data are

obtained in this study. We consider them as equally spaced time data uq;s
k and yp;s

k with missing

time points and identify the unknown NARX parameters after recovering missing time points

based on the low rankness of the Hankel-like matrix, which is described in the next section.

Table 3. Reagent and resource list.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 204) Cell Signaling Technology Cat: 9106; RRID: AB_331768

Rabbit anti-phospho-CREB (Ser 133) Cell Signaling Technology Cat: 9198; RRID: AB_2561044

Rabbit anti-c-Jun Cell Signaling Technology Cat: 9165; RRID: AB_2130165

Rabbit anti-c-Fos Cell Signaling Technology Cat: 2250; RRID: AB_2247211

Rabbit anti-Egr1 Cell Signaling Technology Cat: 4154; RRID: AB_2097035

Rabbit anti-FosB Cell Signaling Technology Cat: 2251; RRID: AB_2106903

Rabbit anti-JunB Cell Signaling Technology Cat: 3753; RRID: AB_2130002

Alexa 488 goat anti-mouse IgG (H+L) Invitrogen Cat: A11029; RRID: AB_138404

Alexa 546 goat anti-rabbit IgG (H+L) Invitrogen Cat: A11035; RRID:AB_143051

Chemicals, Peptides, and Recombinant Proteins

DMEM Sigma Cat: D6046

Fetal bovine serum Sigma Cat: 172012

Horse serum Gibco Cat: 16050–122

poly-L-lysine Sigma Cat: P4707

NGF R&D Systems Cat: 1156-NG

PACAP Sigma Cat: A1439

PMA Sigma Cat: P1585

Trametinib Selleckchem Cat: S2673

Can Get Signal immunostain solution A Toyobo Cat: NKB-501

Hoechst 33342 Invitrogen Cat: H-3570

Power SYBR Green PCR Master Mix Applied Biosystems Cat: 4367659

Critical Commercial Assays

Agencourt RNAdvance Tissue Kit Beckman Coulter Cat: 32646

High Capacity RNA-to-cDNA Kit Applied Biosystems Cat: 4387406

Experimental Models: Cell Lines

PC12 rat adrenal pheochromocytoma cells Masato Nakafuku (Ohio)

Sasagawa et al., 2005

N/A

Oligonucleotides

Primers for qRT-PCR, see S2 Table This paper N/A

Software and algorithms

Iterative partial matrix shrinkage algorithm Konishi et al., 2014 http://dx.doi.org/10.1016/j.sigpro.2014.01.014

MATLAB MathWorks https://www.mathworks.com/

7300 System SDS software version 1.3.1.21 Applied Biosystems N/A

Other

Biomek NX Span-8 liquid handling system Beckman Coulter N/A

Thermoshake heater-shaker Variomag Model number: 7100146-B

Robotic incubator STX-40 Liconic N/A

CellInsite NTX Thermo Fisher Scientific N/A

7300 Real Time PCR System Applied Biosystem N/A

https://doi.org/10.1371/journal.pcbi.1005913.t003
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Extension of ARX system identification from unequally spaced time

series data to the nonlinear ARX system

To deal with the nonlinear ARX system, we extend ARX system identification from unequally

spaced time series data to the nonlinear ARX system. First consider the simple case of the lin-

ear ARX model and then extend it to the NARX model. To perform system identification from

unequally spaced time series data, equally spaced time series data are generated by signal

recovery of unknown values of missing time points. Because the Input and Output data of a lin-

ear system are missing and the order of the system is unknown as in this study, the system

identification using the recovered Input and Output data based on the low rankness of the

Hankel-like matrix has been proposed [42]. This is a method to recover missing data by solv-

ing the matrix rank minimization problem and to generate equally spaced sampled data. In

this study, we apply this matrix rank minimization approach to simultaneously identify the

NARX model and recover missing data.

First, for simplicity, let us consider the case of the linear ARX model with single Input and

single Output described by

yk ¼
Pmy

i¼1aiyk� i þ
Pmu

j¼1
bjuk� j þ vk; ð6Þ

where yk and uk are the Output and Input at time step k, and vk is the noise. When only

fukgk2Ou
and fykgk2Oy

are obtained, that is, the part of the Input and Output data fukg
N
k¼1

and

fykg
N
k¼1

, we consider the problem of recovering unknown Input and Output data. Here, Ou and

Oy are index sets and are a subset of the set {1,2,. . .,N}. We define Hankel-like matrices Y and

U by Eqs (7) and (8), where we assume that N is sufficiently larger than r.
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Hankel-like matrices Y and U are matrices called Hankel matrices if they are square matrices,

and they are matrices in which the same components are entered from the lower left to the

upper right in the matrix. Considering vk = 0 in Eq (6), that is, considering an ideal case with-

out noise, Eq (9) holds for the matrix [Y U] in which the matrices Y and U are arranged hori-

zontally (S1B Fig).

rank½Y U� ¼ my þ r < 2r ð9Þ

Thus, the matrix [Y U] is a low-rank matrix whose rank is determined by the order of the sys-

tem. If my is known in Eq (9), the missing data can be recovered by restoring the unknown
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components of the matrix so that the rank of the matrix [Y U] becomes my + r. Because the

order my is unknown in this study, we recover the unknown components so as to minimize

the rank of the matrix [Y U] based on the idea that it is better to describe the system with as

few parameters as possible. That is, the missing data are recovered by solving the matrix rank

minimization problem as follows,

Minimize rank½Y U�

subject to yk ¼ �yk for all k 2 Oy

uk ¼ �uk for all k 2 Ou; ð10Þ

where �yk and �uk are observed values. Eq (10) is a nonconvex optimization problem, which is generally a

Non-deterministic Polynomial time (NP)-hard problem in the field of the computational complexity the-

ory. Therefore, we relax this problem in Eq (11) in which the objective function is replaced by the nucleus

norm, the sum of the singular values of the matrix, and obtain a low-rank matrix by solving this optimiza-

tion problem with the iterative partial matrix shrinkage (IPMS) algorithm [41].

Minimize k½Y U�k
�;r

subject to yk ¼ �yk for all k 2 Oy

uk ¼ �uk for all k 2 Ou; ð11Þ

where k�k� ,r represents the sum of singular values that are smaller than the rth greater singular value. The

IPMS algorithm is a technique to provide a low-rank solution of Eq (10) by solving Eq (11) repeatedly for

increasing r by 1, starting at r = 0, and provides recovered data with small energy loss after recovery and

less distortion by preferentially estimating from a singular value of a large value [41].

In the case of a multi-Input system, for each Input, a Hankel-like matrix Ul corresponding

to the matrix U is generated, and by solving the matrix rank minimization problem of matrices

arrayed side by side such as [Y U1 . . . UL], Inputs and Output data can be similarly recovered.

Also, when data under multiple stimulation conditions are obtained, Input and Output data

can also be recovered by arranging the matrices vertically for each stimulation condition. For

example, when there is a data set of NGF stimulation and PACAP stimulation and simulation

condition s is s 2 {NGF,PACAP}, a matrix composed of ys
k and us

k is vertically arranged for

each stimulation condition s to construct Y and U, and Input and Output data can be recovered

by solving the matrix rank minimization problem for [Y U].
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In the NARX model used in this study, because the observed Input data is nonlinearly trans-

formed using the nonlinear function f in Eq (2) and the Input data after transformation and

the Output data follow the ARX system, signal recovery and system identification can be per-

formed on the nonlinearly transformed Input data and Output data by the above method.

Based on this idea, we performed nonlinear ARX system identification.

Procedure for system identification by integrating signal recovery and

the NARX model

To estimate an I-O relationship, we prepare data sets of all combinations of input molecules

(Inputs) for each output molecule (Output). For each data set, leave-one-out cross-validation is

performed by preparing all combinations with only one test data set and the rest as the training

data set. We have three stimulation conditions, NGF, PACAP, and PMA, and use two of them

as the training data set and the other one as the test data set. Therefore, there are three combi-

nations to divide the test and training data sets.

In nonlinear systems such as the NARX model in this study, even if all the Input and Output
data are known, obtaining np and Kp is a nonconvex optimization problem, for which it is diffi-

cult to obtain an exact solution. Therefore, np and Kp are estimated by 500 trials with multiple

random initial values. By repeating the following procedures from step i to step v, np and Kp

are estimated so as to minimize the AIC for the training data set, while Inputs and Output of

the NARX model are recovered. Subsequently, signal recovery of the test data set is performed

in step vi, and the residual sum of square (RSS) is calculated for a test data set in step vii. Step

vii is performed with all three combinations of training and test data sets, and take the sum of

RSS for test data sets. Step viii is performed with all combinations of Input, and then in step ix

a combination of Input with the minimum sum of RSS for test data sets is selected. This combi-

nation of Inputs is used for the I-O relationship. Using the combination of the Input molecules

in step x and the data set of all stimulation conditions as the training data set, we estimate the

parameters of the NARX model, which is used as the finally obtained NARX model (Figs 5

and 6).

Step i: Nonlinear transformation of Input data by the Hill equation. uq;s
k , which is Input q

at time step k under the stimulation condition s, is transformed into xq;s
k ¼ f ðuq;s

k Þ by Eq (2),

the Hill equation. The initial values of np and Knp
p are given by np = 1 and a uniform random

number between 0 to 1, respectively, for each Input q. Using the observed Output yp;s
k and the
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nonlinearly transformed Input xq;s
k , the following Hankel-like matrix is constructed for Output

p while assigning the previous closest observation value to the initial value of missing points.

Note that this is a notation in the case of a single Input. Hereafter, two training data sets and

one test data set are referred as training 1 and training 2 and test, respectively.
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Step ii: Signal recovery of training data. Solve the matrix [Y U] rank minimization prob-

lem of Eq (11) by the IPMS algorithm and recover converted Input data xq;s
k and Output data

yp;s
k . Note that, in the case of multi-Input, for each Input, a matrix Ul corresponding to the

matrix U is generated, and by solving the matrix rank minimization problem of matrices

arrayed side by side such as [Y U1 . . . UL], Inputs and Output data can be similarly recovered.

Step iii: Calculate ARX parameters, a and b. Based on the relationship between the Han-

kel-like matrix and ARX parameters (S1B Fig), obtain the ARX parameters ap
i and bp

j in Eq (1)

for Output p and each Input q using the recovered transformed Input data xq;s
k and Output data

yp;s
k . The order of the system, the lag order of the ARX model, is determined based on the

matrix rank obtained in step ii.

Step iv: Estimate np and Knp
p using the recovered data and ARX parameters. Using the

inverse function f of Eq (2), recover the missing time point data of Input before transformation

by using Eq (2). To reduce computational cost by repeating IPMS algorithm, the recovered xq;s
k
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and yp;s
k are reused in this step. For the recovered xq;s

k and yp;s
k , np in Eq (2) is given again by uni-

form random numbers >1 and�100 and Knp
p �0.001 and�1, and 200 combinations of np

and Knp
p are generated. For each combination, perform simulation of the ARX model and cal-

culate AIC for the training data set, AICtraining. Select the combination of np and Knp
p with the

minimum AICtraining. Using this np and Knp
p , Input and Output data in the matrix [Y U] com-

posed of Y and U in Eqs (14) and (15) is recovered again by the IPMS algorithm. Note that dur-

ing IPMS process, AIC not but RSS is used because numbers of lag order change due to the

change of matrix rank.

Step v: Select NARX parameters with the minimum AICtraining. Repeat steps i to iv 500

times. Select np and Knp
p and ARX parameters that minimize AICtraining.

Step vi: Signal recovery of test data. Using the np, Knp
p and ARX parameters selected in

step v, add test data to the recovered matrix [Y U] in Eqs (14) and (15) like in Eqs (16) and

(17). Test data are also recovered by solving the test data added matrix [Y U] rank minimi-

zation problem with the IPMS algorithm. Note that training data sets have already been

recovered until step v. Therefore, with the training data fixed, IPMS was applied to the

matrix combining the test data, and signal recovery of only test data is performed in this

step.

½Y� ¼

ytraining 1

1 ytraining 1

2 ytraining 1

3 � � � ytraining 1
r

ytraining 1

2 ytraining 1

3 ytraining 1

4 � � � ytraining 1

rþ1

ytraining 1

3 ytraining 1

4 ytraining 1

5 � � � ytraining 1

rþ2

..

. ..
. ..

. . .
. ..

.

ytraining 1

N� rþ1 ytraining 1

N� rþ2 ytraining 1

N� rþ3 � � � ytraining 1

N

ytraining 2

1 ytraining 2

2 ytraining 2

3 � � � ytraining 2
r

ytraining 2

2 ytraining 2

3 ytraining 2

4 � � � ytraining 2

rþ1

ytraining 2

3 ytraining 2

4 ytraining 2

5 � � � ytraining 2

rþ2

..

. ..
. ..

. . .
. ..

.

ytraining 2

N� rþ1 ytraining 2

N� rþ2 ytraining 2

N� rþ3 � � � ytraining 2

N

ytest
1

ytest
2

ytest
3

� � � ytest
r

ytest
2

ytest
3

ytest
4

� � � ytest
rþ1

ytest
3

ytest
4

ytest
5

� � � ytest
rþ2

..

. ..
. ..

. . .
. ..

.

ytest
N� rþ1

ytest
N� rþ2

ytest
N� rþ3

� � � ytest
N

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð16Þ

System identification of signaling dependent gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005913 December 27, 2017 22 / 29

https://doi.org/10.1371/journal.pcbi.1005913
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Step vii: NARX model simulation and calculate RSSs
LOO for test data set s. Simulate the

test data using equally spaced time series data recovered in step vi and parameters of the Hill

equation and ARX parameters. Calculate the RSSsLOO, the residual sum of square for the stimu-

lation condition of the test data set.

Step viii: Calculate RSSLOO by taking the sum of RSSs
LOO for each stimulation s. Perform

steps i to vii for all three combinations of training and test data sets. Let RSSLOO be the sum of

RSSsLOO for each stimulation s of test data set.

Step ix: Obtain the Input combination with minimum RSSLOO. Perform steps i to viii for

all combinations of Inputs. Select the combination of Inputs with the minimum RSSLOO for the

I-O relationship.

Step x: Estimate the NARX model with signal recovery using all data sets. Using the

combination of Input determined in step ix, estimate the NARX parameter with signal recov-

ery by the procedure from steps i to v using all stimulation conditions as training data sets.

Note that, when simulating with the ARX model, set the value of Output to 0 before time 0,

otherwise the value of the Output obtained by the simulation is used to obtain the next time

value. For stimulation in Fig 6, signal recovery was performed by step vi using experimental

data with trametinib as the test data set.
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Calculation of gain and time constant from the linear ARX model

Gain and time constant τ were calculated from the frequency response function obtained from

the linear ARX model. For simplicity, we consider here the case of a single Input single Output
ARX model like Eq (6), which can be re-described as follows,

yk � a1yk� 1 � a2yk� 2 � � � � � amy
yk� my

¼ b1uk� 1 þ b2uk� 2 þ � � � þ bk� mu
; ð18Þ

and its Z-transform are given by

ðyk � a1z� 1 � a2z� 2 � � � � � amy
z� myÞyðzÞ

¼ ðb1z� 1 þ b2z� 2 þ � � � þ bmu
z� muÞuðzÞ:

ð19Þ

Then a discrete-time transfer function, a function to convert Input to Output through the

system, G(z) can be described using these ARX parameters,

G zð Þ ¼
yðzÞ
uðzÞ

¼
b1z� 1 þ b2z� 2 þ � � � þ bmu

z� mu

1 � a1z� 1 � a2z� 2 � � � � � amy
z� my

; ð20Þ

To consider the frequency response function and calculation of gain and phase, z is substi-

tuted by iω,

G ioð Þ ¼
ib1o

� 1 � b2o
� 2 þ � � � þ bmu

ðioÞ� mu

1 � ia1o
� 1 þ a2o

� 2 � � � � � iamy
ðioÞ� my ð21Þ

gain ¼ jGðioÞj; phase ¼ ffGðioÞ ð22Þ

where i is an imaginary unit and ω is frequency. Therefore, gain and phase can be calculated

from ARX parameters. The frequency response curve and phase diagram at each Input and

Output of the identified linear ARX model are shown in S4 Fig. Note that gain indicated in

Table 1 is steady-state gain. From the frequency response function, cutoff frequency fcutoff, an

inverse of time constant τ, is obtained by calculating the frequency at which the gain corre-

sponds to 1ffiffi
2
p of the steady-state gain. Because Eq (23) is established between fcutoff and the time

constant τ, we can obtain τ from the ARX parameters through the above procedure.

t ¼
1

2pfcutoff
ð23Þ

Simulation of the integrated NARX model

The simulation of the integrated NARX model was performed as follows. Experimental and

recovered data of pERK and pCREB, and the simulated data of c-Jun, c-Fos, Egr1, FosB, and

JunB were given as Input data and simulation was performed using the NARX model in Fig 5.

Supporting information

S1 Fig. Estimation of AR or ARX parameters by rank minimization of Hankel-like matrix.

(A) Estimation of AR parameters by rank minimization of Hankel-like matrix. When the sig-

nal y follows an AR model, y1 is represented by the linear sum from y2 to yr where r is lag

order. This relationship can be expressed using AR parameters as the first row of the above

matrix equation. Similarly, y2 is represented by the linear sum from y3 to yr+1 as expressed in

the second row. Therefore, for number of data N, the matrix equation is established as shown

in the above formula. Given that this matrix equation holds, in the Hankel-like matrix below,
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the first column is represented by the linear sum of the second and subsequent columns, indi-

cating that the matrix is a low-rank matrix. Note that Hankel-like matrix is a one in which the

same components are entered from the lower left to the upper right here. Therefore, assuming

that y follows an AR model, in case that there is missing data in y, it can be recovered by mini-

mizing the rank of this Hankel-like matrix. Once the Hankel-like matrix is obtained, AR

parameters can be estimated by solving the above matrix equation. (B) Estimation of ARX

parameters by rank minimization of a Hankel-like matrix. In the case of ARX model with

input u added, the similar Hankel-like matrix composed of y and a Hankel-like matrix com-

posed of u, and the matrix equation of the above equation are established. Assuming that y and

u follow the ARX model, missing data in y and u can be recovered by minimizing the rank of

this Hankel-like matrix, and ARX parameters can be estimated by solving the above matrix

equation. Note that this method can be applicable for multiple inputs by increasing the num-

ber of Hankel-like matrices composed of u.

(TIF)

S2 Fig. Transformation of Inputs by the Hill equation followed by the ARX model for each

Output.
(TIF)

S3 Fig. Simulated responses in the integrated NARX model. Solid lines, the simulation

results by the integrated NARX model identified in Fig 5 using only pERK and pCREB as

Inputs (see “Simulation of the integrated NARX model” section in Materials and methods);

dots, experimental data; pluses, the recovered signal data; red, NGF stimulation; blue, PACAP

stimulation; green, PMA stimulation.

(TIF)

S4 Fig. Frequency response curve and phase diagram at each Input and Output of the

identified linear ARX model. Related to “Calculation of gain and time constant from the

linear ARX model” section in Materials and methods. The frequency response curves

(upper panel for each) and phase plots (lower panel for each) of the identified linear ARX

models in Fig 5A–5C are shown for each output. Arrows indicate the identified I-O rela-

tionships in Fig 5A–5C. The colors of the arrows and plotted lines indicate the same input

molecules, respectively. Gains and time constants of the linear ARX model are shown in

Table 1. Filter characteristics of frequency response curves of these outputs showed low-

pass filter characteristics.

(TIF)

S1 Table. The parameters of the linear ARX model in the NARX model identified in Fig

5A–5C.

(XLSX)

S2 Table. The primer sequences used for qRT-PCR.

(XLSX)
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