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Abstract

Cells decode information of signaling activation at a scale of tens of minutes by downstream
gene expression with a scale of hours to days, leading to cell fate decisions such as cell dif-
ferentiation. However, no system identification method with such different time scales
exists. Here we used compressed sensing technology and developed a system identifica-
tion method using data of different time scales by recovering signals of missing time points.
We measured phosphorylation of ERK and CREB, immediate early gene expression prod-
ucts, and mRNAs of decoder genes for neurite elongation in PC12 cell differentiation and
performed system identification, revealing the input—output relationships between signaling
and gene expression with sensitivity such as graded or switch-like response and with time
delay and gain, representing signal transfer efficiency. We predicted and validated the iden-
tified system using pharmacological perturbation. Thus, we provide a versatile method for
system identification using data with different time scales.

Author summary

The key points of this study are two-fold: The first point is the decoding mechanism for cell
differentiation. We previously demonstrated the encoding mechanism of cell fate decision
information by transient and sustained ERK activation in PC12 cells, and also identified
the decoding genes essential for cell differentiation in PC12 cells, including Metrnl, Dclk1,
and Serpinbla, denoted as LP (latent process) genes, which are the decoders of neurite
length information. Importantly, the expression levels of the LP genes, but not the phos-
phorylation level of ERK, correlate with neurite length. Thus, the decoding mechanism of
signaling activities by LP gene expression is a key issue for understanding the mechanism
of cell differentiation. Here we identified a selective NGF- and PACAP-signaling decoding
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system by LP gene expression for neurite extension by developing a system identification
method. The second point is the modeling. Cells decode information of signaling activation
at a scale of tens of minutes by downstream gene expression with a scale of hours to days,
leading to cell fate decisions such as cell differentiation. However, no system identification
method with such different time scales exists. Here we developed a signal recovery tech-
nique in the field of compressed sensing originally developed for image analysis to biologi-
cal sparse data of different time scales of signaling and gene expression.

Introduction

In intracellular signaling systems, information of an extracellular stimulus is encoded into
combinations of distinct temporal patterns of phosphorylation of intracellular signaling mole-
cules that are selectively decoded by downstream gene expression, leading to cell fate decisions
such as cell differentiation, proliferation, and death [1, 2]. For instance, in rat adrenal pheo-
chromocytoma PC12 cells, nerve growth factor (NGF) induces cell differentiation mainly
through sustained phosphorylation of ERK [3-6], whereas pituitary adenylate cyclase-activat-
ing polypeptide (PACAP) induces cell differentiation mainly through cAMP-dependent CREB
phosphorylation [7-11]. We showed that cell differentiation in PC12 cells can be divided into
two processes: a latent process (0-12 h after the stimulation) in preparation for neurite exten-
sion and a subsequent neurite extension process (12-24 h) [12]. We identified the three genes
essential for cell differentiation, Metrnl, Dclk1, and Serpinbla, which are induced during the
latent process and required for subsequent neurite extension, and named LP (latent process)
genes [9]. Although NGF and PACARP selectively induce the different combinations and tem-
poral patterns of signaling molecules, both growth factors commonly induce the LP genes [9].
The expression levels of LP genes, but not the phosphorylation level of ERK, correlate with
neurite length regardless of growth factors [9], indicating that the LP genes are the decoders of
neurite length. Thus, how the distinct patterns of signaling molecules are decoded by LP gene
expression is critical for understanding the unknown mechanism underlying cell differentia-
tion in PC12 cells. Decoding the combinations and temporal patterns of signaling molecules
by downstream gene expression is a general mechanism underlying various cellular functions
[1,2,13].

Mathematical modeling is useful for the analysis of decoding mechanisms [14]. If the sig-
naling pathways are well characterized, kinetic modeling based on biochemical reactions
reported in the literature is often used [15-17]. For example, growth factor-dependent ERK
activation in PCI12 cells has been modeled by the kinetic model based on prior knowledge of
pathway information [18-23]. In general, however, decoding by downstream genes involves
more complex processes such as transcription and translation and information on the precise
pathway is not available.

To identify decoding mechanisms by gene expression, the system identification method
(also referred to as data-driven modeling) was developed for identifying quantitative input-
output relationships from time series data without detailed knowledge of signaling pathways
[15-17, 24-26]. We previously developed a system identification method based on time series
data of signaling molecules and gene expression, denoted as the nonlinear autoregressive exog-
enous (NARX) model, and applied it to the signaling-dependent immediate early gene (IEG)
expression during cell differentiation in PC12 cells [10]. The NARX model involves the deter-
mination of lag-order numbers and use of the Hill equation and the linear autoregressive exog-
enous (ARX) model [10]. Determination of lag-order numbers infers the selection of input
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molecules (Input) for an output molecule (Output), which is referred to as the Input-Output (I-
O). The Hill equation characterizes sensitivity with a nonlinear dose-response curve [27]. The
linear ARX model characterizes temporal changes with time constant and gain, the latter of
which is an I-O amplitude ratio, and indicates signal transfer efficiency [28]. The advantages of
the NARX model rather than kinetic model is systematically presentation of model candidates
without prior knowledge of signaling pathway and less computational cost for parameter esti-
mation. However, the NARX model requires equally spaced dense time series data. If the time
scale between upstream and downstream are similar, such as signaling molecules (scale of tens
of minutes) and IEG expression (a few hours) in PC12 cells, it is not difficult to acquire a suffi-
cient number of equally spaced dense time series data [10]. However, if the time scale of
upstream and downstream molecules is largely different, such as signaling molecules (tens of
minutes) and LP gene expression (a day) [29], it is technically difficult to obtain sufficient
equally spaced dense time series data because of experimental and budget limitations.

Measuring gene expression often requires a longer time scale than measuring protein phos-
phorylation. Obtaining equally spaced dense time series data with a longer time scale is labor
and cost intensive, because, unlike live-cell imaging experiments, snapshot experiments such
as western blotting, RT-PCR, and quantitative image cytometry (QIC) [12] require the same
number of experiments as the number of time points. In addition, experimental noise and var-
iation increases as the number of experiments increases because differences in experimental
conditions such as plates, gels, reagents, and cell culture conditions increase as well. Therefore,
in reality, for a longer time scale experiment, unequally spaced sparse time series data rather
than equally spaced dense time series data are desired. For example, under conditions in
which stimulation by cell growth factors triggers rapid and transient phosphorylation and slow
and sustained gene expression, time series data should be obtained with dense time points dur-
ing the transient phase and eventually with sparse time points. The timing and dynamic char-
acteristics of temporal changes may differ between upstream and downstream molecules, such
that time points and intervals for measuring upstream and downstream molecules may be dif-
ferent. Thus, a system identification method using unequally spaced sparse time series data
with different time scale needs to be developed.

To solve this problem, here we used the signal recovery technique based on a low-rank
approach proposed in the field of compressed sensing to generate a sufficient number of time
points for equally spaced dense time series data from unequally spaced sparse time series data
with different time points and intervals. We applied this nonlinear system identification
method to the signaling-dependent gene expression underlying cell differentiation in PC12
cells and identified the signaling-decoding system by gene expression.

Unequally spaced sparse time series data can be regarded as equally spaced dense time
series data with missing time points, and therefore we can generate equally spaced dense time
series data by applying a signal recovery technique, which has been studied in the field of com-
pressed sensing [30, 31]. Compressed sensing is a signal processing method for efficient data
acquisition by recovering missing signals/images from a small number of randomly sampled
signals including unequally spaced sparse data based on sparseness of a vector [32] or low
rankness of a matrix [33]. Both the sparse approach and the low-rank approach have been
applied to various fields, such as sampling and reconstructing magnetic resonance images [34,
35], super-resolution imaging [36, 37], image inpainting [38, 39], and collaborative filtering
[40]. In this study, we applied a matrix rank minimization algorithm [41] to recover missing
time points from unequally spaced time series data, and we generated equally spaced time
series data with the same time points from signaling and gene expression data with different
time scales. We previously developed a system identification method from equally spaced
dense time series data of signaling and gene expression using the NARX model [10]. We
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developed a new system identification method from unequally spaced sparse time series data
with different time scales by integrating this signal recovery method using the matrix rank
minimization algorithm [41] and the NARX model [10]. We applied the method to system
identification of signaling-dependent gene expression in cell differentiation in PC12 cells,
revealing a selective signaling-decoding mechanism by gene expression.

Results
Signal recovery using compressed sensing from unequally spaced data

In this study, we regarded unequally spaced sparse time series data as equally spaced dense
time series data with missing time points, and equally spaced time series data were generated
by restoring missing time points using a low-rank approach [41]. In the low-rank approach for
image recovery, we assumed that the value of each pixel is represented by a linear combination
of its neighbor pixels, which is mathematically represented by an autoregressive (AR) model.
Then a Hankel-like matrix composed of pixel values has a low rank because each column is
represented by the linear combination of the other columns (Fig 1 and S1A Fig). This means
that the Hankel-like matrix is a low-rank matrix whose rank is determined by the system
order. Missing data can be recovered by estimating missing elements of the matrix so that the
rank of this matrix [Y] is . When system order r is unknown, based on the idea that the system
can be described with as few parameters as possible, missing elements of this Hankel-like
matrix are recovered so as to minimize the rank of the matrix [Y]. Based on the low rankness
of the Hankel matrix, the signal recovery problem of the missing pixels can be formulated as a
matrix rank minimization problem, and we can restore an image by solving this problem [38,
39] (Fig 1).

We performed system identification from unequally spaced time series data of input mole-
cules (Inputs) and output molecules (Outputs). Although an AR model is used for image recov-
ery, we used an ARX model where the value at a time point is represented by a linear
combination of two kinds of signals, Inputs and Outputs. Therefore, we modified the rank-
minimization-based signal recovery method of the AR model to the ARX model and per-
formed system identification (Fig 1 and S1B Fig). Several methods for system identification
using a linear ARX model with signal recovery of missing points of input and output based on
matrix rank minimization have been proposed [42]. They can recover missing time series
input-output data even when missing time points of input are not equal to those of output.

However, we cannot directly apply the method because we used the NARX model rather
than the ARX model due to the nonlinearity of signaling-dependent gene expression [10, 43].
Therefore, by combining the nonlinear ARX system identification method [10] and the signal
recovery method based on the matrix rank minimization problem [41], we derived the signal
recovery algorithm applicable to the nonlinear ARX system and performed system identifica-
tion using recovered equally spaced time series input—output data (see “NARX Model and
Data Representation” and “Extension ARX system identification from unequally spaced time
series data to the NARX system” sections in Materials and methods).

System identification by integrating signal recovery and the NARX model

In the NARX model used in our previous work, time series data of Inputs are nonlinearly
transformed using the Hill equation, which are then used as inputs for the ARX model [10]
(Fig 2A). The Hill equation, which is nonlinear transformation function f(x) widely used in
biochemistry [27], can represent sensitivity with a graded or switch-like response by the values
of n and K (Fig 2A). The ARX model in the NARX model can represent how the Output effi-
ciently responds to the temporal change of the nonlinearly transformed Inputs by the time
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Fig 1. Signal recovery based on compressed sensing technology from unequally spaced data. (Top)
An example of recovered equally spaced image data from unequally spaced image data by the signal
recovery technique using rank minimization of the Hankel-like matrix Y composed of signals in pixels. We
assume that the value of each pixel is represented by a linear combination of those of its neighboring pixels,
which is mathematically represented by an autoregressive (AR) model. The original picture is published under
the Creative Commons Zero license in https://www.pexels.com/photo/animal-black-and-white-cute-funny-
164703/. (Bottom) An example of recovered equally spaced time series data from unequally spaced time
series data by the signal recovery technique using rank minimization of the Hankel-like matrices Yand U,
composed of time series data of input molecules (/nputs) and output molecules (Outputs), respectively. We
assume that the value at a certain time is represented not only by the linear combination of values of the
output molecule at past points but also by the linear combination of the values of the input molecule at past
points, which is mathematically represented by an autoregressive exogenous (ARX) model. The recovered
time series input—output data have the equally spaced time series data with the same time points even if the
missing time points of input and output are different.

https://doi.org/10.1371/journal.pcbi.1005913.g001

constant and gain (Fig 2A). Thus, from the estimated parameters of the Hill equation and
ARX model, the sensitivity with graded or switch-like response and the time constant and gain
are obtained, respectively. In this study, the parameters of this NARX model were estimated
using a signal recovery scheme based on a low-rank approach [41], as follows (Fig 2B, see
details in “Procedure for system identification by integrating signal recovery and the NARX
model” section in Materials and methods).
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Fig 2. System identification by integrating signal recovery and the NARX model. (A) The nonlinear ARX
(NARX) model consists of static nonlinear conversion of input signal by the Hill equation, followed by time
delay by ARX model. The former gives the sensitivity with a graded or switch-like response and the latter
gives the time constant. (B) Algorithm flowchart for system identification by integrating signal recovery and the
NARX model. See details in “Procedure for system identification by integrating signal recovery and the NARX
model” section in Materials and methods.

https://doi.org/10.1371/journal.pchi.1005913.9002
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To estimate the I-O relationship, we selected a combination of Inputs for each Output and
prepared a data set of all combinations of Inputs for each Output. Each data set was divided
into test dataset for one stimulation condition and training data set for the rest of two stimula-
tion conditions, leave-one-out (LOO) cross-validation was performed. We estimated the
parameters of the NARX model (the NARX parameters) for the training data set in each
Input-Output combination using the following method. First, the initial values of n and K are
given by n = 1 and a random number, respectively, and nonlinear transformation of input
unequally spaced time series data by using the Hill equation was performed (Fig 2B, step i). A
Hankel-like matrix was constructed from unequally spaced time series Output data and from
unequally spaced time series Inputs nonlinearly transformed by the Hill equation. Next, signal
recovery was performed with an iterative partial matrix shrinkage (IPMS) algorithm to mini-
mize the rank of the Hankel-like matrix composed of Output and Inputs transformed by the
Hill equation [41] (Fig 2B, step ii). The rank of the recovered Hankel-like matrix corresponds
to the lag order; from the recovered Hankel-like matrix, the parameters of the ARX model a
and b were uniquely obtained (Fig 2B, step iii; S1B Fig). Further estimation of n and K was per-
formed by using recovered data, ARX parameters obtained until step iii, and other combina-
tion of n and K given random numbers (Fig 2B, step iv). By using the inverse function of the
Hill equation, we recovered the missing time points data of input before transformation by the
Hill equation. For the other 200 combinations of # and K given by random numbers, we per-
formed simulation of the NARX model using the recovered data, ARX parameters obtained
until step iii, and the given combination of n and K.

We calculated the Akaike information criterion (AIC) from the residual sum of squares
between the experiment and simulation, number of parameters, and number of data to deter-
mine the parameters n and K. AIC is a measure of the relative quality of statistical models based
on the trade-off between the goodness-of-fit of the model and the complexity of the model [44].
In step iv, we selected the combination of #n and K with the minimum AIC and carried out sig-
nal recovery again using these n and K. We repeated steps i—iv 500 times, and selected the n and
Kand ARX parameters that minimize AIC for the training data set AIC4iine in total (Fig 2B,
step v). Let parameters with minimum AICj,4ine be parameters obtained from the training data
set (Fig 2B, step v). Once these parameters were obtained, test data (still unequally spaced time
series data) was added to the recovered Hankel-like matrix and signal recovery of the test data
was performed (Fig 2B, step vi). With the parameters of the NARX model estimated from the
training data set, we simulated the NARX model for test data and calculated RSS; ., the residual
sum of squares between experiment and simulation for test data set by stimulation condition s
(NGF, PACAP, or PMA) (Fig 2B, step vii).

Because RSS; ,, was obtained for each combination of training and test data set s, we took
the sum of RSS; , for test data set s as RSS; o0 (Fig 2B, step viii). We obtained the combination
of Inputs as the identified I-O relationship that minimizes RSS; oo for all combination of Inputs
(Fig 2B, step ix). The I-O relationship indicates that a set of Inputs are selected as upstream
molecules for each Output. In the final step, using this combination of input molecules, the
parameters of the final NARX model were estimated by the procedure from step i to step v
using all stimulation conditions as training data sets (Fig 2B, step x). Note that we used two dif-
ferent criterions AIC,4ining and RSS; 005 AICyainig to determine 1, k, and ARX parameters, and
RSS;1 00 to select Inputs in order to save computational cost.

These estimated NARX parameters were used for further study (Figs 3-6). The sensitivity
with graded or switch-like response was obtained from the parameters of the Hill equation,
and the gain and time constant were obtained from the parameters of the ARX model (Fig 2B,
see “Calculation of gain and time constant from the linear ARX model” section in Materials
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Fig 3. Transformation of Inputs by the Hill equation and signal recovery followed by the ARX model. Signal transformation in the
nonlinear ARX model of c-Fos is shown. The signals of pERK and pCREB were transformed by the Hill equations and recovered. Then the
transformed signals were temporally transformed by the linear ARX model. The sum of the transformed signals by the linear ARX model was
c-Fos, the final output of the nonlinear ARX model of c-Fos.

https://doi.org/10.1371/journal.pchi.1005913.g003

and methods). An example of the transformation of Inputs by the Hill equation and signal
recovery following the ARX model and simulated Output is shown in Fig 3 (also see S2 Fig).
We applied this method to identify the signaling-decoding system by gene expression underly-
ing cell differentiation in PC12 cells using unequally spaced time series data with different
time scales.

System identification of signaling-dependent gene expression

We stimulated PC12 cells by NGF, PACAP, and PMA and measured the amount of phosphor-
ylated ERK1 and ERK2 (pERK) and CREB (pCREB) and protein abundance of products of the
IEGs, such as c-Jun, c-Fos, Egrl, FosB, and JunB by using QIC [45] (Fig 4). We chose these
growth factors because they use different signaling pathways: NGF, PACAP, and PMA use
Ras-, cAMP-, and PKC-dependent signaling pathways, respectively [7, 11, 46, 47]. We also
measured mRNA expression of LP genes such as Metrnl, Dclkl1, and Serpinbla using qRT-PCR
(Fig 4). We measured the signaling molecules and gene expression with different sets of the
time points because of the different time scales of temporal changes in signaling molecules and
gene expression (Fig 4). Using the unequally spaced time series data with the different sets of
the time points, we performed the system identification using integration of signal recovery
and the NARX model (Fig 5A-5C).

Using these time series data sets, we selected three sets of Inputs—Outputs combinations
from upstream to downstream and performed system identification for each set (Fig 5A). The
system identification consists estimating the I-O relationship, dose-response by the Hill equa-
tion, and gain and time constant by the linear ARX model (Fig 3, see “Calculation of gain and
time constant from the linear ARX model” section in Materials and methods).
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Fig 4. Experimental data of growth factor—dependent changes of signaling molecules and gene expression in PC12 cells. PC12 cells
were stimulated with NGF (50 ng/ml, red), PACAP (100 nM, blue), or PMA (100 nM, green). Phosphorylation of signaling molecules, such as
ERK and CREB, the product of IEGs such as c-Jun, c-Egr1, c-Jun, FosB, and JunB, and mRNA expression of LP genes such as Metrnl,
Dclk1, and Serpinb1a were measured with different time points. These data were used for system identification by the NARX model in Fig 5C.

https://doi.org/10.1371/journal.pchi.1005913.g004

We selected pERK and pCREB as Input candidates for each Output, c-Jun, c-Fos, and Egrl,
based on previous studies [8-10] (Fig 5A). We selected pERK, pCREB, c-Jun, c-Fos, and Egrl
as Input candidates for each Output, FosB and JunB [8-10] (Fig 5A). We selected pERK,
pCREB, c-Jun, c-Fos, Egrl, FosB, and JunB as Input candidates for each Output, Metrnl, Ser-
pinbla, and Dclkl1 [9] (Fig 5A).

For c-Jun and Egr1, pERK was selected as an Input, and for c-Fos, pERK and pCREB were
selected as Inputs (Fig 5). For FosB, c-Jun and c-Fos were selected as Inputs, and for JunB,
PCREB was selected as Input (Fig 5B). For Metrnl, FosB, c-Fos and JunB were selected as an
Inputs; however, contributions of c-Fos and JunB were negligible (S2 Fig), indicating that FosB
is a main Input for Metrnl. For Serpinbla and Dclkl, JunB was selected as an Input (Fig 5B). It
is noteworthy that FosB and JunB, but not signaling molecules and other IEGs, were mainly
selected as Inputs of the LP genes and the inputs for Metrnl and Dclk1 were different despite
their similar temporal patterns.

We characterized the dose-response by the Hill equation and gain and time constant by
the linear ARX model (Fig 5C, Table 1). The dose-responses from c-Jun and c-Fos to FosB
showed typical switch-like responses, whereas others showed graded or weaker switch-like
responses. Note that the gain from the converted c-Jun to FosB was much smaller than that
from the converted c-Fos (Table 1), indicating that FosB is mainly regulated by c-Fos but
not c-Jun. The time constants for c-Jun, c-Fos, Egrl, Metrnl, and Dclk1 were less than 1 h,
whereas those for FosB, JunB, and Serpinbla were more than 100 min (Table 1), indicating
that induction of FosB and JunB temporally limit the overall induction of the LP genes from
signaling molecules. The transformation of Inputs by the Hill equation followed by the ARX
model is shown in S2 Fig. In addition, when we integrated these three sets of the NARX
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Fig 5. System identification of I-O relationships between the signaling, IEGs, and LP genes. (A) The sets of
combinations of Inputs and Outputs for system identification. (B) The identified I-O relationships. Arrows indicate
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the estimated /-O relationships for each set of inputs and outputs. The colors of the arrows indicate the same sets
of combinations of inputs and outputs as in (A). Dots, experimental data; pluses, the recovered signal data; solid
lines, simulation data of the NARX model; red, NGF stimulation; blue, PACAP stimulation; green, PMA stimulation.
(C) The dose-response curves obtained by the Hill equation. For each panel, conversion of Inputs by the identified
Hill equation is shown. The colors of the arrows and plotted lines indicate the same Inputs, respectively.

https://doi.org/10.1371/journal.pchi.1005913.9g005

model and simulated the response using only pERK and pCREB as Inputs, we obtained a
similar result (S3 Fig).

Prediction and validation of the identified system by pharmacological
perturbation

We validated the identified system by pharmacological perturbation. One of the key issues in
PC12 cell differentiation is whether ERK or CREB phosphorylation mediates expression of the
downstream genes [9, 11, 47]. Therefore, we selectively inhibited ERK phosphorylation by a
specific MEK inhibitor, trametinib [48-50] in PACAP-stimulated PC12 cells. We found that
PACAP-induced ERK phosphorylation, but not CREB phosphorylation, was specifically inhib-
ited by trametinib (Fig 6A, black dots).

For c-Jun, c-Fos, Egrl, and JunB, we recovered signals of the unequally spaced time
series data of Inputs and Output. For c-Jun, c-Fos, and Egrl, we simulated Outputs
responses using these recovered data and the identified NARX model (Fig 6A black lines,
see also “Simulation of the integrated NARX model” section in Materials and methods).
For other downstream molecules, FosB, JunB, Metrnl, Serpinbla, and Dclk1, we used the
recovered data of pCREB and the simulated time series data of c-Jun, c-Fos, and Egr1 as
Inputs for the identified NARX model (Fig 6A, black lines). The simulated time courses of
Outputs were similar with those in experiments, except those of FosB and Metrnl (Fig 6A,
black lines and black dots). In the simulation, FosB and Metrnl did not respond to PACAP
in the presence of trametinib, whereas in the experiment both molecules did so, suggesting
the possibility of failure of the system identification of FosB and/or Metrnl. Therefore, we
investigated whether FosB and Metrnl can be reasonably reproduced when experimental
and recovered data of c-Fos and c-Jun and of FosB, respectively, were used rather than the
simulated ones (Fig 6B). When experimental and recovered data were used as Inputs,
Metrnl, but not FosB, responded to PACAP in the presence of trametinib both in the simu-
lation and experiment (Fig 6B), indicating that the failure of the system identification of
FosB and Metrnl in Fig 6A arose from the failure of the system identification of FosB. Thus,
all Outputs except FosB showed similar responses in the experiment and simulation when
the experimental and recovered data were used as Inputs, indicating that in most cases the
identified system is validated by pharmacological perturbation.

Discussion

In this study, we identified the system from signaling molecules to gene expression using the
unequally spaced time series data for 720 min after the stimulation. Given that expression lev-
els of the LP genes were highly correlated with neurite length regardless of growth factors [9]
and expression continues for 720 min after the initial addition of NGF [12], the identified sys-
tem is the selective growth factor-signaling decoding system for neurite length information,
one of the most critical steps for cell differentiation in PC12 cells. We found that the LP genes
depends only on the IEGs (c-Fos, FosB and/or JunB) but not other upstream molecules, and
that the decay rates of the LP genes are fast. This means that the timing of the final decoding
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Fig 6. Prediction and validation of the identified system by pharmacological perturbation. (A) The predictive simulation
result and experimental result by PACAP stimulation in the presence (black) or absence (blue) of trametinib. Lines, simulation;
dots, experimental and recovered data. Experimental and recovered data of pERK and pCREB, and the simulated data of c-
Jun, c-Fos, Egr1, FosB, and JunB are given as Inputs, and simulation was performed using the NARX model in Fig 5 (see
“Simulation of the integrated NARX model” section in Materials and methods). In the experiment, PC12 cells were treated in the
absence (blue dots) or in the presence (black dots) of trametinib (10 uM) added at 30 min before stimulation with PACAP (100
nM). Note that the PACAP stimulation data are used, as in Fig 4. (B) Simulation using experimental and recovered data as
Inputs. For each set of the Inputs (left panel for each) and Outputs (right panel for each), the unequally spaced time series data
were recovered (pluses) (right panel for each), and the responses of Outputs were simulated by the NARX model identified in
Fig 5A-5C (solid lines) (right panel for each).

https://doi.org/10.1371/journal.pchi.1005913.g006

step for neurite elongation is not directly determined by the IEGs and LP genes, rather by the
steps from growth factors to the late IEGs.

We previously identified the systems leading from pERK and pCREB to the IEGs using the
equally spaced dense time series data with a uniform 3-min interval during 180 min [10]. The
identified I-O relationships in this study are the same, except for the inputs of FosB and JunB.
In this study, for FosB c-Jun was selected as an Input in addition to c-Fos. However, the gain
from the converted c-Jun to FosB was much smaller than that from the converted c-Fos
(Table 1), indicating that the effect of c-Jun is negligible. For JunB, c-Fos was not selected as an
Input in this study, whereas c-Fos was selected in the previous study [10]. The gain from the
converted c-Fos to JunB at lower frequency was much smaller than that from the converted
pCREB [10], indicating that the effect of c-Fos is negligible in the previous study. Thus, the
identified I-O relationships in this study are consistent with our previous work.

The estimated NARX parameters were also generally consistent with those in our previous
study [10]. The peak of c-Fos by NGF stimulation was approximately 0.9, whereas it was
approximately 0.6 in our previous study [10]. The difference may come from the difference in
the algorithm for parameter estimation, because of the procedure of signal recovery is included
in this study. Overall, the inferred the I-O relationship, the Hill equation, and the linear ARX
model in this study are consistent with our earlier observations, indicating that system identifi-
cation using unequally spaced time series data can give the same performance as using equally
spaced time series data and that the system is time invariant during 720 min. Furthermore, the
identified system can reasonably reproduce the time series data using extrapolated data with

Table 1. The identified /O relationships, parameters of the Hill equation, and gain and time constant calculated from the linear ARX model in

Fig 4.

Input
pERK

l-Orelationship

Output

Serpinbia

Hill equation Linear ARX model

K (EC50) n (Hill coefficient) Gain Time constant (min)

0.9999 1 4.4315 56.4
__________________________________________________ 02274 1276 1A% 208

0.7189 6.118 0.8218 22

0.998 1.225 3.2058 21.3
__________________________________________________ 0792 8179 ... 46 418

0.0813 78.58 0.1215 6.5

0.9733 1.58 2.9857 108.9
__________________________________________________ 00048 €07 0847 168
__________________________________________________ 05098 801 1M26_ 07

0.8735 89.61 0.2128 21.7

0.3161 7.594 0.8797 275.4

0.2584 2.234 0.6889 4

Dclk1

https://doi.org/10.1371/journal.pchi.1005913.t001
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trametinib, except for FosB. Taken together, these results demonstrate the validity of the pre-
dicted response of the identified systems. The reason for the failure of system identification of
FosB is unclear, but it may reflect the failure of parameter estimation due to the insufficient
number of experimental data points, the limitation of the NARX model structure, or the exis-
tence of unknown regulatory molecules. Further studies are necessary to address these issues.

Some of the recovered time series data is noisy such as Metrnl (Fig 5B), and these are possi-
bly remedied by transforming the output of ARX model with the Hill equation instead of the
inputs. However, doing so may result not only in an increasing of computational cost, but also
in mathematically another two problems. First, the signal recovery cannot be applied within
the present framework based on IPMS. Second, the parameter estimation of ARX model
becomes harder. The problems are essentially due to the difficulty of optimization, caused by
the fact that the tuning parameters are inside nonlinear function. We carried out multiple-
input and single-output (MISO) system identification in this study. As another improvement
approach of this study method, there is multiple-input and multiple-output (MIMO) system
identification. Although MIMO can be applicable, there is the combination problem between
the outputs. In this study, our MISO system identification was calculated in 452 combinations,
but the combinations for MIMO will be increased to 1003 combinations. Also, as the number
of parameters increases about twice, the cost of parameter estimation becomes more expen-
sive. Therefore, we employed MISO system identification in this study. Both the MIMO
approach and transforming outputs of ARX model are future works.

One key issue is whether ERK and/or CREB mediates cell differentiation through down-
stream gene expression in PC12 cells [9, 11, 47]. We previously found that the LP genes are
not induced by NGF in the presence of U0126, another MEK inhibitor [9], and that the MEK
inhibitor blocks NGF-induced phosphorylation of both ERK and CREB in PC12 cells [8, 9,
51]. By contrast, the MEK inhibitor blocked phosphorylation of ERK, but not CREB, in
PACAP-stimulated PC12 cells [8, 51] (Fig 6), suggesting that PACAP induces phosphorylation
of CREB through a cAMP-dependent pathway, rather than the ERK pathway. These results
demonstrate that NGF selectively uses the ERK pathway, whereas PACAP selectively uses the
cAMP pathway for induction of the LP genes. Considering that LP genes are the common
decoders for neurite length in PC12 cells regardless of growth factors [9], the identified system
in this study (except for FosB) reveals the selective NGF- and PACAP-signaling decoding
mechanisms for neurite length information.

Recently, fluorescence resonance energy transfer probes, optogenetics, and microfluidic
devices have been developed to achieve observation and time control of ERK phosphorylation
temporal patterns. These methods allow us to focus on quantitative relationships between vari-
ous ERK phosphorylation temporal patterns and phenotypes such as cell differentiation [13,
21, 29, 52-55]. Although the relationship between signal transduction and phenotype has been
extensively studied, it remains unclear how the signaling molecules quantitatively regulate the
downstream gene expressions over a longer time scale, leading to cell fate decisions. In this
study, we revealed the quantitative regulatory mechanism between signaling activation at a
short time scale (tens of minutes) and gene expression at a longer time scale (day) by using a
system identification method integrating a signal recovery technique and the NARX model
based on compressed sensing.

A linear or spline interpolation is often used to convert unequally spaced time course data
into equally spaced time course data in biological data analysis. However, such interpolation
methods are not likely to be reliable because the interpolation methods ignore biochemical
property of molecular network. By contrast, the interpolation used in this study is based on the
NARX model, which reflects biochemical property. Thus, the proposal method in this study is
biologically more plausible than a linear or spline interpolation.
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There are obscure points for an application of this method to biological data analysis. The
relationship between a number of observed time points and accuracy of signal recovery is the-
oretically unknown. In addition, how to select time points is also unknown. Intuitively, dense
time points may be required for transient response, while sparse time points may be sufficient
for sustained response. Further study is necessary to address this issue.

In molecular and cellular biology, molecular networks—the I-O relationship in this study—
are generally examined by gene disruption or pharmacological perturbation experiments,
meaning that the I-O relationship is examined using static and qualitative data. In this study,
we used Inputs—Outputs time series data for system identification, allowing us to determine
the I-O relationship using dynamic and quantitative data. Our system identification method
does not require detailed knowledge of pathway information, which means that it can be used
as a pathway finder directly from time series data. Moreover, additional information such as
sensitivity with graded or switch-like response, time delay, and gain can be obtained. One of
the advantages of using time series data rather than static perturbation experiments is simulta-
neously obtaining the I-O relationship, sensitivity, and time constant, which characterize the
system behavior. This is based on the idea that input-output time series data implicitly include
information on the I-O relationship. However, we must note that the I-O relationship obtained
by using this method may be an apparent relationship inferred from time series data and is not
necessarily the direct I-O relationship. Therefore, the obtained I-O relationship should be vali-
dated by gene disruption or pharmacological perturbation experiments, as shown in Fig 6. In
addition, synergy induced by cross talk between signaling molecules is one of the most impor-
tant properties in signaling network. The NARX do not assume synergy induced by cross talk.
However, incorporation of synergy causes combinatorial problem and increases computa-
tional cost. Such synergistic effect should be incorporated in the future. To summarize the
above points, as caveats when using NARX model, estimated I-O relationships is phenomeno-
logical relationship, rather than direct interaction (Table 2). Furthermore, the possibility that
unknown molecules are upstream inputs cannot be ruled out. On the other hand, if the path-
way is unknown and the prior knowledge is not available, the model candidates can be pre-
pared systematically in the NARX model, which is suitable for estimating I-O relationships. In
particular, in the case of estimating I-O relationships including nonlinear biochemical reac-
tions without prior knowledge like in this study, the estimation of I-O relationships by ODE
model is difficult and NARX model is useful. We also compared the parameter estimation cost
between the NARX model for c-Jun, c-Fos and Egrl and ODE model in our previous study
because the model size can be considered similar [56], indicating that the parameter estimation
cost of NARX model in this study is relatively small. In addition to that, it is possible to apply
to unequally spaced time-series data in the NARX model developed in this study. Although it
is difficult to obtain the direct mechanistic interactions by the NARX model, the result of the
I-O relationships and time constants provide biological insight of decoding mechanism of the
upstream molecules by the LP genes.

Table 2. The comparison of NARX and ODE modeling frameworks.

NARX modeling in this study ODE modeling
Model candidates Systematic representation NOT obvious
Sampling design Unequally and equally spaced time series data Unequally and equally spaced time series data
Parameter estimation cost Small computational cost Large computational cost

7.9 hours of CPU time
for c-Jun, c-Fos and Egr1 estimation in this study

Biological interpretation Phenomenological relationship
https://doi.org/10.1371/journal.pcbi.1005913.t002

25 hours of CPU time
in our previous study [56]

Mechanistic interaction
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In conclusions, we have devised a system identification method using unequally spaced
sparse time series data by signal recovery. Because of technical and budget limitations in bio-
logical experiments, it is generally difficult to obtain sufficient numbers of equally spaced
dense time series data of molecules with different time scales. Thus far, system identification
based on time series data has been limited to phenomena with similar time scales. However,
our system identification method can solve this time-scale problem and can be applied to any
biological system with different time scales, such as the cell cycle, development, regeneration,
and metabolism involving ion flux, metabolites, phosphorylation, and gene expression.

Materials and methods
Reagent or resource

Information about reagents and resources can be found in Table 3.

Cell culture, QIC and gRT-PCR analysis

Culture and stimulation of PC12 cells by growth factors [10] and QIC [45] were performed as
previously described. Quantitative reverse transcription—polymerase chain reaction
(qQRT-PCR) was performed as previously described [9]. The sequences of the primers for the
LP genes are shown in S2 Table [9].

Parameter estimation

Parameter estimation was performed by using 2.6 GHz CPU (Xeon E5 2670) of the super com-
puter system of the National Institute of Genetics (NIG), Research Organization of Informa-
tion and Systems (ROIS). The CPU time was 7.9 hours for the parameter estimation of the
NARX model for c-Jun, c-Fos and Egr1, and that of ODE model in our previous study which
can be considered similar model size was 25 hours in the same condition [56] (Table 2).

NARX model and data representation

Assuming that the input molecules (Input) and output molecules (Output) signals satisfy the
following NARX model, Eqs (1) and (2), the system identification is performed by estimating
unknown parameters in the NARX model,

W= 2+ Ve, b (), K, (1)

n

u
ur + K’

flu,n,K) = (2)

where u}" and y{" are experimental values of Input and Output at time step k, p and q respec-
tively denote indices of Output and Input defined in the following sets,

p € P = {c-Jun, Egrl, c-Fos, FosB, JunB, Metrnl, Serpinbla, Dclk1A}, (3)
g€ M, C M = {pERK, pCREB, c-Jun, Egr1, c-Fos, FosB, JunB}, (4)

and s is an index of stimulation conditions defined as follows,

s € {NGF, PACAP, PMA}. (5)

M, is the index set of Input defined for each Output p € P (Fig 5A). The nonlinear function f
(x) in Eq (2) is the Hill equation that is one of the steady state solutions of biochemical reaction
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Table 3. Reagent and resource list.

REAGENT or RESOURCE

Antibodies

Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 204)
Rabbit anti-phospho-CREB (Ser 133)
Rabbit anti-c-Jun

Rabbit anti-c-Fos

Rabbit anti-Egr1

Rabbit anti-FosB

Rabbit anti-JunB

Alexa 488 goat anti-mouse IgG (H+L)
Alexa 546 goat anti-rabbit IgG (H+L)
Chemicals, Peptides, and Recombinant Proteins
DMEM

Fetal bovine serum

Horse serum

poly-L-lysine

NGF

PACAP

PMA

Trametinib

Can Get Signal immunostain solution A
Hoechst 33342

Power SYBR Green PCR Master Mix
Critical Commercial Assays

Agencourt RNAdvance Tissue Kit

High Capacity RNA-to-cDNA Kit
Experimental Models: Cell Lines

PC12 rat adrenal pheochromocytoma cells

Oligonucleotides

Primers for gRT-PCR, see S2 Table
Software and algorithms

Iterative partial matrix shrinkage algorithm
MATLAB

7300 System SDS software version 1.3.1.21
Other

Biomek NX Span-8 liquid handling system
Thermoshake heater-shaker

Robotic incubator STX-40

Celllnsite NTX

7300 Real Time PCR System

https://doi.org/10.1371/journal.pcbi.1005913.t003

SOURCE

Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Invitrogen

Invitrogen

Sigma

Sigma

Gibco

Sigma

R&D Systems
Sigma

Sigma
Selleckchem
Toyobo
Invitrogen
Applied Biosystems

Beckman Coulter
Applied Biosystems

Masato Nakafuku (Ohio)
Sasagawa et al., 2005

This paper

Konishi et al., 2014
MathWorks
Applied Biosystems

Beckman Coulter
Variomag

Liconic

Thermo Fisher Scientific
Applied Biosystem

IDENTIFIER

Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:

Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:
Cat:

Cat:
Cat:

N/A

N/A

http://dx.doi.org/10.1016/j.sigpro.2014.01.014

9106; RRID: AB_331768

9198; RRID: AB_2561044
9165; RRID: AB_2130165
2250; RRID: AB_2247211
4154; RRID: AB_2097035
2251; RRID: AB_2106903
3753; RRID: AB_2130002

A11029; RRID: AB_138404
A11035; RRID:AB_143051

D6046
172012
16050-122
P4707
1156-NG
A1439
P1585
S2673
NKB-501
H-3570
4367659

32646
4387406

https://www.mathworks.com/

N/A

N/A

Model number: 7100146-B

N/A
N/A
N/A

and widely used in the field of biology [27]. The coefficients af and &/, the orders m, and m, in

Eq (1), n, and K}, in Eq (2), and set M, are unknown parameters. For each molecule under

stimulation condition s (NGF, PACAP, and PMA), the unequally spaced time series data are

obtained in this study. We consider them as equally spaced time data u{" and y;" with missing
time points and identify the unknown NARX parameters after recovering missing time points
based on the low rankness of the Hankel-like matrix, which is described in the next section.
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Extension of ARX system identification from unequally spaced time
series data to the nonlinear ARX system

To deal with the nonlinear ARX system, we extend ARX system identification from unequally
spaced time series data to the nonlinear ARX system. First consider the simple case of the lin-
ear ARX model and then extend it to the NARX model. To perform system identification from
unequally spaced time series data, equally spaced time series data are generated by signal
recovery of unknown values of missing time points. Because the Input and Output data of a lin-
ear system are missing and the order of the system is unknown as in this study, the system
identification using the recovered Input and Output data based on the low rankness of the
Hankel-like matrix has been proposed [42]. This is a method to recover missing data by solv-
ing the matrix rank minimization problem and to generate equally spaced sampled data. In
this study, we apply this matrix rank minimization approach to simultaneously identify the
NARX model and recover missing data.

First, for simplicity, let us consider the case of the linear ARX model with single Input and
single Output described by

Yk = Z:n:ylaiyk—i + Z;n:ulbjuk—j T Vs (6)
where y, and uy, are the Output and Input at time step k, and vy is the noise. When only

{4 }1cq, and {yk}kegy are obtained, that is, the part of the Input and Output data {u,}; , and

{y:}o_,» we consider the problem of recovering unknown Input and Output data. Here, Q, and
Q, are index sets and are a subset of the set {1,2,...,N}. We define Hankel-like matrices Y and
Uby Eqs (7) and (8), where we assume that N is sufficiently larger than r.

N Y2 V3 E
Y2 V3 Y4 Ve
Y = V3 Y4 Vs Ve (7)
LYN—rs1 YN—ri2 VYN-ris =" YN
u, u, U u,
Uy U Uy U
U= U u, U U | (8)
LUn_yi1 Un_pyo Un_pyz -0 Uy |

Hankel-like matrices Y and U are matrices called Hankel matrices if they are square matrices,
and they are matrices in which the same components are entered from the lower left to the
upper right in the matrix. Considering v, = 0 in Eq (6), that is, considering an ideal case with-
out noise, Eq (9) holds for the matrix [Y U] in which the matrices Y and U are arranged hori-
zontally (S1B Fig).

rank[Y U] =m, +r < 2r 9)

Thus, the matrix [Y U] is a low-rank matrix whose rank is determined by the order of the sys-
tem. If m,, is known in Eq (9), the missing data can be recovered by restoring the unknown
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components of the matrix so that the rank of the matrix [Y U] becomes m,, + r. Because the
order m, is unknown in this study, we recover the unknown components so as to minimize
the rank of the matrix [Y U] based on the idea that it is better to describe the system with as
few parameters as possible. That is, the missing data are recovered by solving the matrix rank
minimization problem as follows,

Minimize rank[Y U]
subjectto y, =y, forallk € Q,

u, =, forallk € Q, (10)

where y, and #, are observed values. Eq (10) is a nonconvex optimization problem, which is generally a
Non-deterministic Polynomial time (NP)-hard problem in the field of the computational complexity the-
ory. Therefore, we relax this problem in Eq (11) in which the objective function is replaced by the nucleus
norm, the sum of the singular values of the matrix, and obtain a low-rank matrix by solving this optimiza-
tion problem with the iterative partial matrix shrinkage (IPMS) algorithm [41].

Minimize ||[Y U]

subjectto y, = y, forallk € Q,

u, =u, forallk e Q, (11)

where ||-||-  represents the sum of singular values that are smaller than the rth greater singular value. The
IPMS algorithm is a technique to provide a low-rank solution of Eq (10) by solving Eq (11) repeatedly for
increasing r by 1, starting at = 0, and provides recovered data with small energy loss after recovery and
less distortion by preferentially estimating from a singular value of a large value [41].

In the case of a multi-Input system, for each Input, a Hankel-like matrix U, corresponding
to the matrix U is generated, and by solving the matrix rank minimization problem of matrices
arrayed side by side such as [Y U ... U], Inputs and Output data can be similarly recovered.
Also, when data under multiple stimulation conditions are obtained, Input and Output data
can also be recovered by arranging the matrices vertically for each stimulation condition. For
example, when there is a data set of NGF stimulation and PACAP stimulation and simulation
condition s is s € {NGF,PACAP}, a matrix composed of y; and u; is vertically arranged for
each stimulation condition s to construct Y and U, and Input and Output data can be recovered
by solving the matrix rank minimization problem for [Y U].

(AT AT T ]
AEAT AT
yg\/GF yi\lGF yé\lGF yi\lg}-
v NGt WNorer INres w ”
[ ] yfACAP yé’ACAP ygACAP yf’ACAP ( )
ygACAP ygACAP yfACAP y’}"ﬁ%AP
ygACAP yi’ACAP yg’ACAP ygAé‘AP
R S, e
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B NGF NGF NGF NGF T
u 1 Mz MS u ,
NGF NGF NGF NGF
u2 M3 l/l4 ur+1
NGF NGF NGF NGF
u3 u4 ua') ur+2
NGF NGF NGF NGF
[U] _ Z'lN—rJrl uN—r+2 uN—r+3 uN (13)
- PACAP PACAP PACAP PACAP
u u u te u
1 2 3 r
PACAP PACAP PACAP PACAP
1/[2 1/[3 u4 ur+1
PACAP PACAP PACAP PACAP
1/L3 1/[4 M5 ur+2
PACAP PACAP PACAP PACAP
L uN—r+1 uN—r+2 uN—r+3 uN .

In the NARX model used in this study, because the observed Input data is nonlinearly trans-
formed using the nonlinear function fin Eq (2) and the Input data after transformation and
the Output data follow the ARX system, signal recovery and system identification can be per-
formed on the nonlinearly transformed Input data and Output data by the above method.
Based on this idea, we performed nonlinear ARX system identification.

Procedure for system identification by integrating signal recovery and
the NARX model

To estimate an I-O relationship, we prepare data sets of all combinations of input molecules
(Inputs) for each output molecule (Output). For each data set, leave-one-out cross-validation is
performed by preparing all combinations with only one test data set and the rest as the training
data set. We have three stimulation conditions, NGF, PACAP, and PMA, and use two of them
as the training data set and the other one as the test data set. Therefore, there are three combi-
nations to divide the test and training data sets.

In nonlinear systems such as the NARX model in this study, even if all the Input and Output
data are known, obtaining 7, and K, is a nonconvex optimization problem, for which it is diffi-
cult to obtain an exact solution. Therefore, 1, and K, are estimated by 500 trials with multiple
random initial values. By repeating the following procedures from step i to step v, n, and K,
are estimated so as to minimize the AIC for the training data set, while Inputs and Output of
the NARX model are recovered. Subsequently, signal recovery of the test data set is performed
in step vi, and the residual sum of square (RSS) is calculated for a test data set in step vii. Step
vii is performed with all three combinations of training and test data sets, and take the sum of
RSS for test data sets. Step viii is performed with all combinations of Input, and then in step ix
a combination of Input with the minimum sum of RSS for test data sets is selected. This combi-
nation of Inputs is used for the I-O relationship. Using the combination of the Input molecules
in step x and the data set of all stimulation conditions as the training data set, we estimate the
parameters of the NARX model, which is used as the finally obtained NARX model (Figs 5
and 6).

Step i: Nonlinear transformation of Input data by the Hill equation. u”", which is Input g
at time step k under the stimulation condition s, is transformed into x{* = f(u!*) by Eq (2),
the Hill equation. The initial values of 1, and K," are given by 1, = 1 and a uniform random
number between 0 to 1, respectively, for each Input g. Using the observed Output 7" and the
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nonlinearly transformed Input x*, the following Hankel-like matrix is constructed for Output
p while assigning the previous closest observation value to the initial value of missing points.
Note that this is a notation in the case of a single Input. Hereafter, two training data sets and
one test data set are referred as training 1 and training 2 and test, respectively.

training 1 training 1 training 1 training 1
1 2 3 U r
training 1 training 1 training 1 training 1
2 3 4 T r+1
training 1 training 1 training 1 training 1
3 4 5 T r+2
training 1 training 1 training 1 training 1
[Y] o N—r+1 N—r+2 N—r+3 N (14)
- training 2 training 2 training 2 training 2
1 2 3 e r
training 2 training 2 training 2 training 2
2 3 4 e r+1
training 2 training 2 training 2 training 2
3 4 5 e r+2
training 2 training 2 training 2 training 2
N—r+1 N—r+2 N—r+3 e N
training 1 training 1 training 1 training 1 T
1 x2 x3 .. xr
training 1 training 1 training 1 training 1
Xo X3 X e ol
training 1 training 1 training 1 training 1
X3 Xy 5 T X
training 1 training 1 training 1 training 1
[U] _ N—r+1 N—r+2 N—r+3 XN (15)
- training 2 training 2 training 2 ini
X g X g X 4 . x;mmmg 2
training 2 training 2 training 2 training 2
2 X3 Xy X
training 2 training 2 training 2 training 2
3 Xy 5 T X
training 2 training 2 training 2 training 2
N-r#1  XN-rp2 XNz 0 XN

Step ii: Signal recovery of training data. Solve the matrix [Y U] rank minimization prob-
lem of Eq (11) by the IPMS algorithm and recover converted Input data x{”* and Output data
¥4 Note that, in the case of multi-Input, for each Input, a matrix U, corresponding to the
matrix U is generated, and by solving the matrix rank minimization problem of matrices
arrayed side by side such as [Y U; . .. U], Inputs and Output data can be similarly recovered.

Step iii: Calculate ARX parameters, a and b. Based on the relationship between the Han-
kel-like matrix and ARX parameters (S1B Fig), obtain the ARX parameters a! and b/ in Eq (1)
for Output p and each Input q using the recovered transformed Input data x}° and Output data
¥4 The order of the system, the lag order of the ARX model, is determined based on the
matrix rank obtained in step ii.

Step iv: Estimate n, and K’ using the recovered data and ARX parameters. Using the
inverse function f of Eq (2), recover the missing time point data of Input before transformation
by using Eq (2). To reduce computational cost by repeating IPMS algorithm, the recovered x}*
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and y;” are reused in this step. For the recovered x{* and y;”, n, in Eq (2) is given again by uni-
form random numbers >1 and <100 and K;” >0.001 and <1, and 200 combinations of #,,

and K,” are generated. For each combination, perform simulation of the ARX model and cal-

culate AIC for the training data set, AIC;4ining. Select the combination of n, and K:P with the

minimum AIC,,4ning. Using this n, and K:” , Input and Output data in the matrix [Y U] com-
posed of Yand Uin Eqs (14) and (15) is recovered again by the IPMS algorithm. Note that dur-
ing IPMS process, AIC not but RSS is used because numbers of lag order change due to the

change of matrix rank.

Step v: Select NARX parameters with the minimum AIC;, ;;;ng. Repeat steps i to iv 500

times. Select 7, and K:” and ARX parameters that minimize AIC;ining-

Step vi: Signal recovery of test data. Using the n,, K,” and ARX parameters selected in
step v, add test data to the recovered matrix [Y U] in Eqs (14) and (15) like in Eqs (16) and
(17). Test data are also recovered by solving the test data added matrix [Y U] rank minimi-
zation problem with the IPMS algorithm. Note that training data sets have already been

recovered until step v. Therefore, with the training data fixed, IPMS was applied to the

matrix combining the test data, and signal recovery of only test data is performed in this

step.

r . training 1
1

training 1
2

training 1
3

training 1
N-r+1

training 2
1

training 2
2

[Y] — y;mining 2

training 2
N—r+1
test

4l
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Vs
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V3
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L yN—r+1
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e
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r . training 1 training 1 training 1 ini 7
X g X, g X g . xtmmmg 1
T
training 1 training 1 training 1 training 1
2 X3 Xy X
training 1 training 1 training 1 training 1
3 4 X5 T X
training 1 training 1 training 1 training 1
N—r+1 N—r+2 N—r+3 Tt XN
training 2 training 2 training 2 ini
| g X, 4 X 4 . xtmmmg 2
T
training 2 training 2 training 2 training 2
Xy X3 Xy X
_ training 2 training 2 training 2 training 2
(U] = | x3 Xy X5 T X (17)
training 2 training 2 training 2 training 2
N—r+1 XN—r+2 XN-r+3 XN
test test test test
x| X, X, x!
test test test test
X5 X3 Xy Xr1
test test test test
X3 X4 %5 Xt
test test test test
L forJrl xN*H»Z for+3 xN -

Step vii: NARX model simulation and calculate RSS; ,, for test data set s. Simulate the
test data using equally spaced time series data recovered in step vi and parameters of the Hill
equation and ARX parameters. Calculate the RSS; ), the residual sum of square for the stimu-
lation condition of the test data set.

Step viii: Calculate RSS; o0 by taking the sum of RSS; , for each stimulation s. Perform
steps i to vii for all three combinations of training and test data sets. Let RSS; oo be the sum of
RSS; ), for each stimulation s of test data set.

Step ix: Obtain the Input combination with minimum RSS; 0. Perform steps i to viii for
all combinations of Inputs. Select the combination of Inputs with the minimum RSS; o0 for the
I-O relationship.

Step x: Estimate the NARX model with signal recovery using all data sets. Using the
combination of Input determined in step ix, estimate the NARX parameter with signal recov-
ery by the procedure from steps i to v using all stimulation conditions as training data sets.

Note that, when simulating with the ARX model, set the value of Output to 0 before time 0,
otherwise the value of the Output obtained by the simulation is used to obtain the next time
value. For stimulation in Fig 6, signal recovery was performed by step vi using experimental
data with trametinib as the test data set.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005913 December 27,2017 23/29


https://doi.org/10.1371/journal.pcbi.1005913

©'PLOS

COMPUTATIONAL

BIOLOGY

System identification of signaling dependent gene expression

Calculation of gain and time constant from the linear ARX model

Gain and time constant 7 were calculated from the frequency response function obtained from
the linear ARX model. For simplicity, we consider here the case of a single Input single Output
ARX model like Eq (6), which can be re-described as follows,

Ve = Ak T BV T T Gy Ve, = b + by + -+ by, (18)

and its Z-transform are given by
O —mz ! —az? = am},zimy)y(z)

(19)
=(bz ' + b,z 2+ + b, z7™)u(z).
Then a discrete-time transfer function, a function to convert Input to Output through the
system, G(z) can be described using these ARX parameters,
y(z) bz!'+bz? 4+ b,z

G(z) =1 = , 20
(2) ulz) l—az't—a,z?2—-- — a, z " (20)

Y

To consider the frequency response function and calculation of gain and phase, z is substi-
tuted by iw,

—m,

ibjw™ — b+ + b, (io)

gt -2 _ . g (iw)™
1—ig0' 4+ a0 zamy(zw)

Gliw) = (21)

gain = |G(iw)|, phase = /G(iw) (22)

where i is an imaginary unit and w is frequency. Therefore, gain and phase can be calculated
from ARX parameters. The frequency response curve and phase diagram at each Input and
Output of the identified linear ARX model are shown in S4 Fig. Note that gain indicated in
Table 1 is steady-state gain. From the frequency response function, cutoff frequency f.,op an
inverse of time constant 7, is obtained by calculating the frequency at which the gain corre-
sponds to s of the steady-state gain. Because Eq (23) is established between f,,o5rand the time

constant 7, we can obtain 7 from the ARX parameters through the above procedure.
1
T =
2nfcutofj‘

Simulation of the integrated NARX model

(23)

The simulation of the integrated NARX model was performed as follows. Experimental and
recovered data of pERK and pCREB, and the simulated data of c-Jun, c-Fos, Egrl, FosB, and
JunB were given as Input data and simulation was performed using the NARX model in Fig 5.

Supporting information

S1 Fig. Estimation of AR or ARX parameters by rank minimization of Hankel-like matrix.
(A) Estimation of AR parameters by rank minimization of Hankel-like matrix. When the sig-
nal y follows an AR model, y, is represented by the linear sum from y, to y, where r is lag
order. This relationship can be expressed using AR parameters as the first row of the above
matrix equation. Similarly, y, is represented by the linear sum from y; to y,,, as expressed in
the second row. Therefore, for number of data N, the matrix equation is established as shown
in the above formula. Given that this matrix equation holds, in the Hankel-like matrix below,
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the first column is represented by the linear sum of the second and subsequent columns, indi-
cating that the matrix is a low-rank matrix. Note that Hankel-like matrix is a one in which the
same components are entered from the lower left to the upper right here. Therefore, assuming
that y follows an AR model, in case that there is missing data in y, it can be recovered by mini-
mizing the rank of this Hankel-like matrix. Once the Hankel-like matrix is obtained, AR
parameters can be estimated by solving the above matrix equation. (B) Estimation of ARX
parameters by rank minimization of a Hankel-like matrix. In the case of ARX model with
input u added, the similar Hankel-like matrix composed of y and a Hankel-like matrix com-
posed of u, and the matrix equation of the above equation are established. Assuming that y and
u follow the ARX model, missing data in y and u can be recovered by minimizing the rank of
this Hankel-like matrix, and ARX parameters can be estimated by solving the above matrix
equation. Note that this method can be applicable for multiple inputs by increasing the num-
ber of Hankel-like matrices composed of u.

(TIF)

S$2 Fig. Transformation of Inputs by the Hill equation followed by the ARX model for each
Output.
(TIF)

S3 Fig. Simulated responses in the integrated NARX model. Solid lines, the simulation
results by the integrated NARX model identified in Fig 5 using only pERK and pCREB as
Inputs (see “Simulation of the integrated NARX model” section in Materials and methods);
dots, experimental data; pluses, the recovered signal data; red, NGF stimulation; blue, PACAP
stimulation; green, PMA stimulation.

(TIF)

S4 Fig. Frequency response curve and phase diagram at each Input and Output of the
identified linear ARX model. Related to “Calculation of gain and time constant from the
linear ARX model” section in Materials and methods. The frequency response curves
(upper panel for each) and phase plots (lower panel for each) of the identified linear ARX
models in Fig 5A-5C are shown for each output. Arrows indicate the identified I-O rela-
tionships in Fig 5A-5C. The colors of the arrows and plotted lines indicate the same input
molecules, respectively. Gains and time constants of the linear ARX model are shown in
Table 1. Filter characteristics of frequency response curves of these outputs showed low-
pass filter characteristics.

(TIF)

S1 Table. The parameters of the linear ARX model in the NARX model identified in Fig
5A-5C.
(XLSX)

$2 Table. The primer sequences used for qRT-PCR.
(XLSX)
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