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Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes

of mortality worldwide, suggest a shared biology between these diseases. The role of

senescence in the development of cancer and CVD has been established. However,

its role as the intersection between these diseases remains unclear. Senescence

was originally characterized by an irreversible cell cycle arrest after a high number

of divisions, namely replicative senescence (RS). However, it is becoming clear that

senescence can also be instigated by cellular stress, so-called stress-induced premature

senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere

DNA damage and subsequent DNA damage response/repair to SIPS has also been

suggested. Although cellular senescence can mediate cell cycle arrest, senescent

cells can also remain metabolically active and secrete cytokines, chemokines, growth

factors, and reactive oxygen species (ROS), so-called senescence-associated secretory

phenotype (SASP). The involvement of SASP in both cancer and CVD has been

established. In patients with cancer or CVD, SASP is induced by various stressors

including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can

be the intersection between cancer and CVD. Importantly, the conventional concept of

senescence as the mediator of cell cycle arrest has been challenged, as it was recently

reported that chemotherapy-induced senescence can reprogram senescent cancer cells

to acquire “stemness” (SAS: senescence-associated stemness). SAS allows senescent

cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth

capacity. SAS supports senescent cells to promote both cancer and CVD, particularly

in highly stressful conditions such as cancer treatments, myocardial infarction, and heart

failure. As therapeutic advances have increased overlapping risk factors for cancer

and CVD, to further understand their interaction may provide better prevention, earlier

detection, and safer treatment. Thus, it is critical to study the mechanisms by which these

senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.
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INTRODUCTION

The health and physiological state of humans or any animal is
governed by tissue homeostasis which is significantly controlled
by physiological and environmental signals (1, 2). In response
to potential damage signals, cellular machinery activates the
damage response system to reverse damage to the cells through
variousmechanisms, as have been reviewed extensively elsewhere
(3–5). However, when the damage is irreparable, the cells
often undergo a programmed cell death, or apoptosis, in
combination with tissue necrosis (5). Distinct from these two
extreme phenomena is another cell fate called “senescence” (6,
7). The concept of cellular senescence (from the Latin word
“senex” meaning “old”) was first introduced by Hayflick and
Moorhead in 1961 when they observed that in cell culture,
human diploid fibroblasts were irreversibly arrested after serial
passaging (8). This limited replicative/proliferative capacity was
named replicative senescence (RS) (8, 9). In addition to RS,
cellular senescence can be induced by both extra- and intra-
cellular stimuli including genotoxic agents, stress, mitochondrial
dysfunction, nutrient deficit, radiation, and oncogene activation,
so-called stress-induced premature senescence (SIPS) (Figure 1).
In this review, we will focus on how senescence, especially
SIPS, contribute to the progression of cancer and cardiovascular
diseases (CVD), which may be the key to understanding the
interconnection between them.

TELOMERIC DNA DAMAGE, BUT NOT
TELOMERE SHORTENING, INDUCES SIPS

Following cell divisions, telomere length is shortened to a critical
level at which cells can no longer replicate and enter RS (9–13).
Therefore, telomere shortening has a key role in RS. Alternatively,
SIPS is different from RS in terms of molecular mechanisms and
time frame. SIPS is induced by oxidative stress or DNA damaging
agents in a relatively short period of time (usually 3–10 days) with
or without significant telomere shortening (14). Both genomic
and telomeric DNA damages can induce SIPS (15). However,
most genomic DNA damages can be repaired by the DNA
damage response (DDR) mechanisms within 24 h after stress
(16), while telomeric DNA damages persist for months (17).
Therefore, telomeric DNA damage-induced SIPS may explain
the late effects triggered by various stressors including cancer
treatments, as we will describe in the next sections. Importantly,
telomeric DNA damages are occurred despite the shortening
of telomere length and the expression of telomerase enzyme
(17, 18). The dispensable role of telomere shortening in the
development of senescence was also confirmed by the study
showing that in human cancer cells, the very long telomeres
were found to be more sensitive to ionizing radiation (IR)
(19). Parrinello et al. reported that 20% oxygen density induces
SIPS in mouse embryonic fibroblast without telomere shortening
(14). Magalhães et al. reported that Ultraviolet B or hydrogen
peroxide (H2O2) induces senescence markers, p21(WAF-1) and
p16(INK4a), and increases senescence associated β-galactosidase
(SA-β-gal) staining without provoking telomere shortening in

telomerase immortalized human foreskin fibroblast, hTERT-
BJ1 (20). An analysis of the telomere in the small airway
epithelial cells from the lungs of patients suffering from Chronic
Obstructive Pulmonary Disease showed that p16(INK4a) was
highly expressed in those cells while the telomere length was
not significantly shorter (21). Overall, these data suggest that
telomere shortening is dispensable for SIPS, and that stress-
induced telomeric DNA damages and the subsequent DDR, but
not telomere shortening, is important for SIPS (20).

SENESCENCE-ASSOCIATED SECRETORY
PHENOTYPE (SASP) CAN BE INDUCED BY
BOTH RS AND SIPS

Senescent cells produce and release a variety of factors,
including inflammatory cytokines (such as interleukin (IL)-
1,−1b,−6,−7,−13, and−15), chemokines (IL-8, grow regulated
alpha protein 1 (GRO)-a, -b, and -g, monocyte chemoattractant
protein (MCP)-2 and−4, macrophage inflammatory protein
(MIP)-1a and−3a, human beta C-C chemokine-4 (HCC-4),
eotaxin, eotaxin-3, thymus-expressed chemokine [TECK,
also known as C-C motif chemokine ligand-25 (CCL-25)],
C-X-C motif chemokine-5 (CXCL-5 or ENA78), CCL-1 (or
I-309), CXCL-11 (or I-TAC), growth and angiogenic factors
[such as amphiregulin, angiogenin, epiregulin, heregulin,
epidermal growth factor (EGF), basic fibroblast growth
factor (bFGF), hepatocyte growth factor (HGF), insulin-
like growth factor binding proteins (IGFBP)-2,−3,−4,−6,
and−7, keratinocyte growth factor (KGF), nerve growth factor
(NGF), placenta growth factor (PIGF), stem cell factor (SCF),
stroma cell-derived factor-1 (SDF-1), vascular endothelial
growth factor (VEGF)], matrix metalloproteinases (MMP)-
1,−3,−10,−12,−13, and−14, metallopeptidase inhibitor
(TIMP)-1 and−2, plasminogen activator inhibitor (PAI)-1
and−2, tissue plasminogen activator (tPA), urokinase-type
plasminogen activator (uPA); and cathepsin B, receptors/ligands
[EGF receptor, Fas ligand, intercellular adhesion molecule
(ICAM)-1 and−3, osteoprotegerin (OPG), uPA receptor, soluble
gp130 protein (SGP130), soluble tumor necrosis factor receptors
(sTNFRs including sTNFR-I and sTNFR-II, and decoy receptor
1 (DCR-1, also known as TRAIL-R3), non-protein molecules
(including nitric oxide (NO), prostaglandin E2 (PGE2); and
reactive oxygen species (ROS)], and insoluble factors (collagens,
fibronectin, and laminin), all of which constitute SASP (22, 23)
(Figure 1). Senescent cells undergoing SASP have high metabolic
activity (24–27). Although the consequence of SASP can be
multifarious, the induction of SASP does not depend on the type
of triggers such as ROS, DNA damage, oncologic signaling, or
cell types (24). First report of SASP was described in human
fibroblasts undergoing RS, which showed a strong inflammatory
response by using microarray analysis (22). SASP components
including IL-6 and−12, MIP-2, and interferon-gamma (IFN-g)
were similar between RS and SIPS fibroblasts, suggesting that
SASP can be induced by both RS and SIPS (Figure 1) (22, 24). By
inducing SASP, senescent cells communicate with immune cells
playing a role in their own death, through recruitment of T cells,
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FIGURE 1 | Various forms of senescence.

macrophages, and natural killer cells, which function collectively
to clear the senescent cells. To maintain tissue homeostasis, the
removal of senescent cells in a timely manner is crucial. With
aging, the immune response declines, a phenomenon known as
“immunosenescence” (28). As a result, the clearance of senescent
cells is impaired.

SASP cells also can recruit myeloid derived suppressor cells
(MDSCs), a heterogeneous and immature population of myeloid
cells that can suppress immune responses, to prostate and
liver tumors and accelerate tumorigenesis. For example, CCL-2,
an important SASP factor secreted by senescent cells, attracts
MDSCs to the tumor site. In the presence of tumor derived
factors, MDSCs fail to differentiate and inhibit the function of
other immune cells, such as T cells, dendritic cells, macrophages,
and natural killer cells, and thereby creating an immune tolerant
environment (28–31).

In addition to communicating with immune cells, by
secreting extracellular vesicles (EVs), senescent cells undergoing
SASP also communicate with surrounding cells to promote
senescence in these neighboring cells (32–36). EVs or small
heterogeneous vesicles are secreted from stressed or activated
cells as result of cytoskeletal reorganization (37). EVs are
characterized into exosomes (nanometers, <120 nm), micro

vesicles (or microparticles, 100–500 nm), and apoptotic bodies
released upon fragmentation of apoptotic cells (larger size, 500–
5,000 nm) (38). EVs contain proteins, lipids, and nucleic acids
(mRNA, DNA, and non-coding RNAs such as microRNAs and
long non-coding RNAs). EVs are detected in biological fluids,
enriched in specific proteins and lipids, and are produced by
all cell types. For instance, through cell-cell interactions and
secretion of soluble molecules, mesenchymal stem cells (MSCs)
exert their functions on surrounding cells. These functions
include anti-inflammation, anti-fibrosis, anti-apoptosis, pro-
proliferation, and pro-angiogenesis. Among factors that are
secreted by MSCs, PGE2, transforming growth factor-β (TGF-
β), IL-6, IL-1 receptor antagonist (IL-1RA), tumor necrosis
factor (TNF)-inducible gene 6 protein (TSG6), NO produced
by inducible NO synthase (iNOS), or kynurenine produced
by indoleamine 2. 3-dioxygenase (IDO) are part of the anti-
inflammatory secretome. Other molecules, including HGF, FGF,
and VEGF are important components of MSC paracrine activity,
which are primarily generated within EVs that have a key role
in cell-cell communication (39). With aging, the production of
EVs is increased, partly via mechanisms dependent on p53 and
its downstream target gene tumor suppression-activated pathway
6 (TSAP6). In endothelial cells, compared to the lower passage
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(passage 4) and non-senescent cells, the higher passage (passage
21) and activated senescent cells produce an increased number
of functional small EVs, which may have a role in vascular
physiology and disease (37, 40). Microparticles secreted by
senescent endothelial cells increase ROS production and enhance
the senescence of neighboring endothelial cells. In addition
to that, microparticles also increase the expression of cellular
senescent markers p21(WAF-1) and p16(INK4a) in endothelial
cells (37, 41).

The induction of SASP is a highly heterogeneous, multi-step,
and dynamic process, during which the properties of senescent
cells continuously evolve and diversify in a context dependent
manner (7). The SASP component is associated with the duration
of senescence, the type of senescence stimuli, as well as the
cellular origin (42). Long-term persistence of SASP and senescent
cells has been shown to promote the development of CVD,
cancer, aging-related disease, and aging itself (43).

SENESCENCE-ASSOCIATED STEMNESS
(SAS), A UNIQUE PHENOTYPE OF SASP, IS
INDUCED BY SIPS

Senescence is characterized by cell cycle arrest, and therapy-
induced senescence has long been the basis for cancer
treatments to inhibit cancer cell growth (25). Recently,
this conventional concept has been challenged (44–46).
Milanovic et al. reported that senescent cancer cells induced
by chemotherapy can be reprogrammed to acquire “stemness”
(SAS: senescence-associated stemness), which allows them
to escape senescence-mediated cell cycle arrest (Figure 1).
Importantly, these senescent cells, which escape cell cycle arrest,
gain an elevated tumor-initiating capacity possessing enhanced
clonogenic growth potential compared to cells that have never
undergone senescence (45). SASP is different from senescence-
mediated cell cycle arrest (47, 48) and death (49, 50). SASP exerts
a range of tumorigenic effects, including promoting angiogenesis,
invasion, and metastasis (7) and is now considered one of the key
mechanisms in the development of chemoresistance (7, 49–51).
For instance, previous study has reported that through producing
WNT16B, chemotherapy-triggered damage of stroma fibroblast
promotes therapy resistance (52). Although the exact molecular
mechanisms by which SASP induces cancer therapy resistance
remain elusive, it is possible that SASP triggers the formation
of cancer stem cells and thereby eluding drug treatment and
reproducing tumor (53). Another possibility is that SASP causes
cancer treatment resistance through inducing MDSC-driven
immune-suppression (28). Therefore, the concepts of SASP
and SAS largely overlap (Figure 1), but they describe different
biological phenomena. After cancer therapy, subsets of senescent
cells produce numerous inflammatory cytokines (54), growth
factors (23), ROS (55–57), and promote cell growth (24, 58),
eventually leading to a more aggressive proliferative phenotype
(45, 49, 50) through SAS (59, 60). Although SASP can be
induced by both RS and SIPS, it remains unclear whether RS can
provoke SAS.

STRESS REPROGRAMS CELLS TO SASP,
LOCKING IN AND LEADING TO THE
LONG-TERM EFFECTS OF SASP

Pro-inflammatory stimuli increase inflammation, but these
effects are temporary. The uniqueness and probably most
important feature of SASP is its long-term effects to the cells. In
fibroblast, Coppé et al. have suggested that a large proportion
of SASP produced by senescent fibroblasts is irreversible once
established. In these cells, the inactivation of p53 can reverse
the growth arrest and resume the cell proliferation, despite the
low level of p16(INK4a). These findings suggest that SASP might
be permanently locked in an irreversible stage by unknown
mechanisms that uncoupling senescence-associated cell cycle
arrest from the SASP (24).

Oncogene-induced senescence (OIS), characterized by
marked epigenetic changes, can promote tumor progression
(23). Via evaluating changes in histone modifications during
the senescence of the OIS classic cell model, HRASG12V

overexpression in IMR90 cells, or RAS (61), Leon et al. observed
an increase of active histone H3K79 di- and tri-methylation
(H3K79me2/3) marks at the IL1A locus. This increase
corresponds to an increase of the H3K79 methyltransferase
disruptor of telomeric silencing 1-like (DOT1L) expression. In
OIS cells, DOT1L upregulation is required for H3K79me2/3 and
IL1A expression. Knockdown of DOT1L during RAS-induced
senescence decreases both DOT1L and H3K79me2/3 occupancy
at the IL1A locus but not at other SASP loci, and decreases
the expression of IL1A mRNA, the epxresison of IL1A at the
cellular membrane, as well as the transcription and secretion
of SASP downstream factors. Leon et al. also found that the
decrease of SASP was not due to the rescue of senescence-
associated cell cycle arrest. Although DOT1L can regulate DDR,
and H3K79 methylation promotes 53BP1 binding to sites of
DNA double-strand breaks, the authors found no marked
changes in 53BP1 or γH2AX foci upon DOT1L knockdown.
DOT1L knockdown in BRAF-induced senescent cells or
pharmacological inhibition of DOT1L in RAS-induced senescent
cells inhibited H3K79 methylation and SASP expression while
maintaining the senescence-associated cell cycle arrest. These
observations indicated that DOT1L regulates SASP through a
DDR-independent mechanism, and that DOT1L expression is
required for the SASP but is dispensable for other senescent
cell phenotypes. Overall, this study suggested DOT1L as an
epigenetic regulator of SASP, whose expression is uncoupled
from the senescence-associated cell cycle arrest (62).

Various stresses can induce epigenetic changes and thereby
leading to persistent changes in gene expression via inducing
chromatin alteration (63). Because these stresses also induce
SASP, as in the case of OIS presented above, epigenetic regulation
can be one of the potential mechanisms that causes the
irreversible stage of SASP (64, 65). Therefore, it is possible that
epigenetic changes induced by SASP have some impact on the
establishment of long-term effects of SASP. In mid-life flies,
acetyl-CoA levels are increased with a corresponding increase in
histone acetylation resulting in changes in their transcriptomes
(66, 67). However, in mammals, the role of epigenetics in SASP
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remains unclear. For example, IR-triggered epigenetic changes
have been extensively studied, but the results are contradictory
(68). Therefore, SASP is potentially induced and maintained by
various stresses rather than solely by epigenetic changes, which
requires further investigation.

SASP IN TUMORIGENESIS: FOE OR ALLY?

The role of senescence in cancer is highly controversial. SASP
can be induced in both cancer and normal cells by stress,
oncogenes, or therapy (therapy induced senescence) (69, 70).
However, recent studies of senescence have led investigators to
consider this process as a double-edged sword for cancer (70).
SASP is associated with changes in p16(INK4a), retinoblastoma
(Rb), and p53. Via binding to the E2 factor (E2F), Rb blocks the
transcription of several E2F targeted genes that are essential for
DNA replication. Cyclin and cyclin dependent kinase CDK4/6
phosphorylate Rb, leading to the release of E2F, ultimately
leading to cell cycle progression (71). As one of the most
widely knownmarkers of senescence, p16(INK4a) binds CDK4/6
and thereby keeping the cells growth arrested at G1 through
inhibiting CDK4/6-triggered Rb phosphorylation (72). p53,
another important transcription factors, also plays a vital role
in the control of cellular senescence. In the inactive form, p53
is bound to Mdm2, an E3 ubiquitin ligase and destined to
ubiquitination and proteasomal degradation (73, 74). In response
to stress, p53 is phosphorylated, leading to its release from
Mdm2 and activation. Activated p53 increases the transcription
of several target genes, including p21Cip1 (CDKN1A), known
as another potential marker of senescence. p21Cip1 binds and
inhibits cyclin dependent kinase 2 (CDK2), resulting in the
activation of Rb and cell cycle arrest (Figure 2). Thus, cellular
senescence via the activation of p21Cip1, can lead to cell cycle
arrest and inhibition of tumorigenesis (70).

SASP also attracts immune cells to the tumor site for immune
clearance of cancer cells. In liver cancer, OIS hepatocytes secrete
CCL-2 that attracts CCL-2+ myeloid cells to the tumor site.
CCL2+ myeloid cells are de-differentiated to macrophages,
engulf cancer cells, and clear them out. Therefore, SASP can
also inhibit tumorigenesis by promoting phagocytosis of pre-
malignant cells (75, 76).

Importantly, in cancer progression, the effects of SASP on
surrounding cells is context dependent. SASP promotes cancer
progression by mediating the de-differentiation and division
of the neighboring metastatic cancer cells, or triggering an
epithelial-to-mesenchymal transition, one hall mark of cancer.
Ritschka et al reported that primary mouse keratinocytes treated
with the conditionedmedia from oncogene-transfected senescent
cells induce both senescence and stemnessmarkers such as CD34,
Lgr6, Prom1, CD44, Ngfr, and Nestin (77). Lluc Mosteiro et al.
showed that c-Myc overexpression enhances both stemness and
senescence in the neighboring cells by increasing IL-6 production
(78). In addition, senescent cancer cells share similar secretory
phenotypes with cancer associated fibroblasts, a functionally
heterogeneous population of activated fibroblasts that constitutes
a major component of tumor stroma (79).

Two sub populations of cancer associated fibroblasts,
inflammatory cancer associated fibroblasts and myofibroblastic
cancer associated fibroblasts (80), express smooth muscle
actin and soluble factors that promote cancer cell motility
and progression. The main tumor-promoting factor secreted
by cancer associated fibroblasts is CXCL-12, which is also
a component of SASP (81). CXCL-12 promotes cancer cell
proliferation as well as the angiogenesis (82). Other common
factors secreted by cancer associated fibroblasts and senescent
cells include SDF-1, GRO-a and -b, IL-8, MCP-1 and−8, all
of which contribute to the promotion of cancer progression
(82–84). Senescent cancer cells also secret factors that can
affect cancer associated fibroblasts in a paracrine manner
and attract them to tumor sites. Lastly, via secreting matrix
metalloproteinases, senescent cells can also restructure the
extracellular matrix that can facilitate cancer growth and reduces
contact inhibition (22, 85, 86). Therefore, it is possible that SASP
cells can escape from cell cycle arrest and promote tumorigenesis,
which is reported as SAS. Although this has become a widely
studied topic, how SAS is initiated remains largely unclear.

SASP is also induced by various cancer treatments (87).
Conventional cancer treatments include chemotherapy,
radiotherapy, chemo-radiotherapy, and surgery. Chemotherapy
is a type of standard cancer treatments. In the 1960’s, the
discovery of anthracyclines (daunorubicin, doxorubicin (DOX),
epirubicin, idarubicin, mitoxantrone, and valrubicin) in Italy
was a breakthrough in oncology. Despite dramatic changes in
cancer treatments in subsequent decades, anthracyclines remain
the cornerstone of contemporary chemotherapy for various
cancers. In the late 1970’s, bleomycin, vinblastine, and cisplatin
were used in chemotherapy. From the early nineteenth century,
cancer treatments include radical, super-radical and ultra-radical
surgery. During 1891–1981, radical mastectomy was used in
breast cancer treatments. However, in 1981, the use of radical
surgery for cancer treatment was disapproved and was reduced
as soon as the combination of systemic adjuvant therapy and
local surgery was shown to produce similar results. Systemic
adjuvant therapies include radiation and cytostatic drugs are
required to treat cancer dissemination and metastasis. In the
last 60 years, novel cancer treatments have been drastically
developed, including targeted therapies using small molecule
inhibitors and monoclonal antibodies (MAbs). Recently,
two types of immunotherapies have significantly impacted
oncology, including Checkpoint inhibitory MAbs and chimeric
antigen-specific receptor (CAR)-transfected T-cells (CAR-T
cells). Immunotherapy has been shown to produce durable
responses in numerous tumor types. Antigen-specific immune
responses can be markedly effective, even in late-stage disease.
Additionally, two other types of biological therapies, antitumor
vaccines, and oncolytic viruses, have been developed. They are
physiological and well-tolerated (88).

Anthracyclines are well-known for both effectiveness and
cardiotoxicity (89). The destruction of cardiomyocytes causes
cardiac dysfunction. Therefore, cardiomyocytes have been
considered the major target of anthracyclines (89). Widely
used as a prototypical anticancer drug, DOX treatment causes
cardiotoxicity and cardiac dysfunction through the mechanism

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 October 2021 | Volume 8 | Article 763930

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Banerjee et al. SASP as a Hinge Between CVD and Cancer

FIGURE 2 | SASP in tumorigenesis.

involves the accumulation of ROS and reactive nitrogen species
(RNS) in adult cardiac muscle cells. DOX also targets other
cardiac cell types such as cardiac progenitor cells and cardiac
fibroblasts. For instance, DOX detrimental effects on endogenous
cardiac stem cell (CSC) pool was detected, which induces
premature senescence. DOX increases ROS production and DNA
damage in resident CSCs with the induction of senescence and
apoptosis. DOX altered the myocardium of treated patients who
exhibited a higher number of CSCs marked by DNA damage and
senescence, particularly by the phosphorylated form of histone
H2AX and p16INK4a. Beyond the toxicity on cardiomyocytes
and other cardiac cell types, recent studies have suggested that
other cell types, including endothelial cells, also play a role
in the pathogenesis of anthracycline-induced cardiomyopathy
(89, 90). There are two major types of cardiotoxicities caused by
anthracyclines: acute and chronic forms. The acute cardiotoxicity
occurs after a single dose or a single course of treatment,
with symptoms developed within 14 days from the end of
treatment. The chronic cardiotoxicity can be further divided
into the early onset and the late onset. The early onset chronic
cardiotoxicity occurs within a year after treatment, shown as a
dilated-hypokinetic cardiomyopathy with progressive evolution
toward heart failure. The late onset chronic cardiotoxicity occurs
after years or decades from the end of treatment. While the
acute cardiotoxicity usually is reversible, the two chronic forms
are considered irreversible, with a poor prognosis and a limited
to heart failure therapy. Although the specific mechanisms
of anthracycline-induced cardiotoxicity remain to be fully
elucidated, the involvement of ROS production, DNA damage,
cellular senescence and cell death, changes in iron metabolism,
and Ca2þ signaling has been suggested. During DNA replication,
transcription, or recombination, topoisomerase (Top) 2β uncoils

DNA filaments, triggers mitochondrial dysfunction, activates cell
death pathways and ROS production. Top2β has been shown
to play a critical role in anthracycline-mediated cardiotoxicity
(89). Similarly, bleomycin, vinblastine, and cisplatin also induced
severe side effects.

Advances in cancer treatments have significantly reduced
morbidity and increased survival of cancer patients, but the
side effects on non-cancer cells have significantly affected the
quality of patient’s life. Moreover, cancer cells acquire resistance
to therapies and progress to become more aggressive (91–93).
In addition to the cytotoxic or less direct cytostatic cancer
therapies, one of attractive strategies for cancer treatments
is to provoke cellular senescence, so-called therapy-induced
senescence (94). Therapy-induced senescence creates a cytostatic
effect and slows down the growth of cancer cells. However,
therapy-induced senescence can also induce SASP, which may
cause conflicting effects on tumorigenesis as previously noted.
Therefore, a critical role of SASP-modulating therapies in cancer
treatments has recently been recognized. Currently, there are two
major strategies for SASP-modulating therapies. One strategy
is to convert senescent cells from tumor-promoting to an
anti-tumorigenic phenotype. For example, Toso et al. reported
that, the Pten null mice develop Pten-loss-induced cellular
senescence, which is characterized by an immunosuppressive
SASP that promotes tumorigenesis (95). Alternatively, inhibition
of Jak2/Stat3 signaling reprograms the SASP cytokine networks
by restoring senescence surveillance and tumor clearance, which
enhances chemotherapy efficacy. We listed other candidates of
SASP-modulating therapies in Table 1. Another strategy is using
senolytic compounds to selectively eliminate SASP cells through
inducing apoptosis known as “senolysis” (118). This strategy was
based on the observation that in contrast to non-senescent cells,
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SASP cells can activate survival pathways and therefore are highly
resilient to apoptosis (119). These Senescent Cell Anti-Apoptotic
Pathways (SCAPs) such as pathways that regulate Caspase-3
(120), Mcl-1, BLC-2, BCL-XL, and BCL-W etc. (121, 122), might
bemediated by senescence-associatedmitochondrial dysfunction
(6). The upregulation of these anti-apoptotic pathways of SASP
cells protect them from apoptotic stimuli including serum
withdrawal (121), UV damage (122), oxidative stress (123),
extrinsic apoptotic inducers (122, 124), and cytotoxic drugs
such as staurosporine or thapsigargin (120, 125). Therefore, a
majority of senolytic agents target these anti-apoptotic factors
including BCL-2 family of proteins (BCL-2, BCL-XL, and BCL-
W, Mcl-1), p53-p21Cip1 axis, hypoxia-inducible factor 1-alpha,
heat shock protein 90, several receptor tyrosine kinases, and
the PI3K/Akt/mTOR pathway (122, 126). Senolysis induced
by glutamate metabolic enzyme GLS1 inhibitor selectively
eliminates SASP cells from various organs and tissues and
aged mice, ameliorates age-related tissue dysfunction and the
symptoms of arteriosclerosis and obese diabetes (127). As SASP
cells take weeks to reaccumulate, a “hit-and-run” approach can
be used to administer these senolytic drugs. The first senolytic
drugs discovered including Dasatinib, Quercetin, Fisetin, and
Navitoclax transiently cause apoptosis to SASP cells. Using
preclinical models, studies have shown that senolytic drugs
can delay or prevent cancer, CVD, as well as complications of
radiotherapy. Early pilot trials of senolytic drugs suggest they
decrease SASP cells and inflammation in humans. Clinical trials
of these drugs as single regimen or in combination are beginning
or underway (127, 128). However, hitting a single target in SCAPs
may increase off-targeting risk. For example, Navitoclax, the well-
known BCL-2 inhibitor that hits a single or few SCAP nodes,
causes substantial off-targeting effects on non-senescent cells and
thereby making that drug “panolytic” (126, 129–131). To reduce
off-targeting effects and increase the specificity of senolytic drugs,
efforts are made to target more than one SCAP nodes, as
evident by the using of combination therapy in clinical trials
(NCT028749819, NCT02652052, NCT0463124, NCT02848131,
NCT04210986, and NCT03675724). The combination therapy of
Dasatinib + Quercetin, and Fisetin showed inhibitory effect on
senescent cells in vivo and not on non-senescent cells (132, 133).
The senolytic efficacy of the combination therapy Dasatinib +

Quercetin was further validated in cultured human senescent
cells isolated from the abdominal subcutaneous adipose tissue
fragments from diabetic and obese patients after surgery.
Treatment of the cells with Dasatinib + Quercetin in culture
reduced the senescent cells by 70% within 2 days (134–138).

SASP INSTIGATES CVD

CVD remain the most common age-related diseases worldwide
and the leading cause of death in the aged individuals (139,
140). Studies of human samples and mouse models reveal
that senescent cardiovascular cells accumulate at the site of
the disease cardio-vasculature and leading to atherosclerosis,
heart failure, arterial stiffness, and hypertension (43, 141). The
persistent senescence of cardiovascular cells leads to CVD,

TABLE 1 | FDA approved anti-cancer drugs inducing therapy-induced

senescence.

Type of drugs Name Senescence marker References

Topoisomerase

poisons/inhibitors

Doxorubicin

(Adriamycin)

p53, SA-β-gal, p21Cip1,

p16INK4, Morphology,

growth arrest, SASP (IL-8,

VEGF)

(96–98)

Daunorubicin SA-β-gal, growth arrest (99)

Etoposide SA-β-gal, p53, p21Cip1,

growth arrest, p16INK4,

SASP (IL-6, IL-8, IL-1β)

(100–102)

Mitoxantrone SASP, Growth arrest,

SA-β-gal, yH2AX,

morphology

(24, 103)

Alkylating

agents

Busulfan Growth arrest, SA-β-gal,

p16INK4, p19INK4

(104–107)

mTOR inhibitors Rapamycin

(Sirolimus)

SA-β-gal, morphology (108)

PARP inhibitor Olaparib Growth arrest, γH2AX,

53BP1, SA-β-gal,

p21Cip1, p27Kip1,

p15INK4, p16 INK4, p57,

SASP (IL8)

(109, 110)

Niraparib Growth arrest,

morphology, SA-β-gal,

γH2AX

(110)

Rucaparib SA-β-gal (111)

Proteasome

inhibitors

Bortezomib SA-β-gal, morphology (112)

Monoclonal

antibodies

Rituximab Morphology, SA-β-gal (113)

Obinutuzumab SA-β-gal (114)

Pertuzumab SA-β-gal (115)

Trastuzumab SA-β-gal, p15INK4,

p16INK4

(115)

Bevacizumab SA-β-gal, p15INK4,

p16INK4

(116)

Ranibizumab SA-β-gal, cathepsin D,

amyloid β

(117)

however cardiovascular cell senescence is also required for the
maintenance of cardiovascular homeostasis during embryonic
development and wound healing (142). Importantly, with
nutritional and growth factor deficiency, cardiovascular cells
enter reversible quiescence (143). In the normal aging process,
senescent cells accumulate in the cardiovascular system and
predispose it to aging-related CVD (43). Following the onset
of CVD, the microenvironment of the diseased tissues creates
more cellular stress, and a second wave of disease-associated
senescent cells is produced enhancing the disease process. Cells of
the cardiovascular system including cardiomyocytes, endothelial,
vascular smooth muscle, and immune cells (144), significantly
contribute to the development and progression of CVD.

Cardiac metabolism has an important role in maintaining
the heart’s function and cardiovascular homeostasis (145).
Cardiac aging is associated with a decreased angiogenic capacity
(146), an increased fibrosis (147), metabolic maladaptation
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FIGURE 3 | SASP as a hinge between cancer and cardiovascular disease. DM, Diabetes mellitus.

(148), cardiomyocyte senescence and dysfunction (149), all of
which lead to cardiac remodeling and failure (150). Senescent
cardiomyocytes exhibit the hallmarks of DNA damage,
mitochondria dysfunction, contractile dysfunction, endoplasmic
reticulum stress, hypertrophic growth, and SASP. In the heart,
the senescence of cardiomyocytes is also regulated by non-
cardiomyocyte cells (endothelial cells, fibroblasts, and immune
cells). The senescence of cardiomyocytes also leads to phenotypic
and functional changes in those non-cardiomyocyte cells
and thereby contributing to cardiac aging and pathological
remodeling (43, 151, 152). Nevertheless, the molecular
mechanisms by which the senescence of cardiomyocytes is
induced and regulated, as well as their interaction with the
senescence of non-cardiomyocytes remain to be fully studied.
Furthermore, how the local microenvironment of the heart, and
how chromatin structure remodeling and DDR activated by
cardiomyocytes contribute to the senescence of cardiomyocytes
are not well-known. More studies are needed to determine
the physiological and pathological functions of senescent
cardiomyocyte during cardiac development, regeneration,
and pathological remodeling, also to understand whether
cardiomyocyte senescence has a role in cardiac aging and the
related heart failure with preserved ejection fraction.

Endothelial cells form the inner layer of all blood vessels and
communicate with the neighboring cells for tissue regeneration,
and control low density lipoprotein (LDL) transcytosis
and atherogenesis (153). Endothelial cell dysfunction is
associated with the development of atherosclerotic plaques,
and is tightly linked to endothelial senescence (154). In
the atherosclerotic plaques from human coronary arteries,
senescent endothelial cells with high beta-galactosidase
activity, a marker of senescent cells, were detected (154).
In the initial stages of atherogenesis, an increase of ox-LDL
retention was observed in the subendothelial spaces. Senescent
endothelial cells undergoing SASP express adhesion molecules
including VCAM1 and ICAM1 and secrete various cytokines,
leading to the recruitment of circulating monocytes, driving
monocyte invasion. Consequently, circulating monocytes
invade to the subendothelial spaces, take up the ox-LDL
and are converted to foam cell macrophages (155). Both
foam cells and SASP endothelial cells secrete a plethora of
chemoattractant proteins including IL-1α, TNF -α, and MCP-1
which promote more immune cell recruitment and form
atherosclerotic plaques. SASP endothelial cells also cause
thrombus formation through the activation of PAI-1, a known
marker of senescence (156).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 October 2021 | Volume 8 | Article 763930

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Banerjee et al. SASP as a Hinge Between CVD and Cancer

Vascular smooth muscle cells also play a significant role
in cardiovascular homeostasis. Vascular smooth muscle
cell senescence and pro-inflammatory phenotype has been
implicated in the development of CVD, progression of
atherosclerosis, and an instigator of ischemic heart disease
(157, 158). Compared to normal vascular smooth muscle cells,
those isolated from human atherosclerosis exhibited a lower level
of proliferation (159) and higher expression level of p16INK4,
p21Cip1, hypo phosphorylated Rb, and SA-β-gal activity,
suggesting the cells are undergoing SASP (160). Vazquez-Padron
et al. reported that vascular smooth muscle cells derived from
aged thoracic aortas have higher levels of platelet-derived growth
factor receptor-alpha and acquire resistant to apoptosis induced
by serum starvation or NO (161). Human vascular smooth
muscle cells undergoing SASP had an inactivation of Sirt1, were
increased in atherosclerosis (162), and vulnerable atherosclerotic
plaque (163).

Patients over the age of 60 who have shorter leukocyte
telomere length, a cellular senescence marker, showed 3.18-
fold higher in mortality rate from heart failure (164). It
is becoming clear that immunosenescence contributes to
both innate and adaptive immune systems. Senescent T
cells can produce many pro-inflammatory cytokines and
chemokines and therefore they have pathogenic potential
in CVD such as hypertension, atherosclerosis, myocardial
infarction, and heart failure (165). In individuals with
human immunodeficiency virus infection treated with a
combination of antiretroviral therapy, we found that four
components of SASP, including (1) telomere shortening-
induced DNA damage and the subsequent induction of p53,
p16INK4, and p21Cip1; (2) mitochondrial ROS induction;
(3) inflammation; and (4) impairment of efferocytosis, were
regulated by p90RSK-mediated ERK5 S496 phosphorylation
in myeloid cells. We also found a key role of p90RSK-
mediated ERK5 S496 phosphorylation in SASP-mediated
atherosclerotic plaque formation (166, 167). Since cancer
therapy can induce SASP (22, 54, 168), p90RSK-mediated ERK5
S496 phosphorylation may play a role in SASP induced by
cancer therapy.

CARDIOVASCULAR RISK FACTORS =

CANCER RISK FACTORS, BECAUSE SASP
IS SHARED?

The clear epidemiological connection between aging, diabetes
mellitus, smoking, cancer, and heart failure raised an obvious
question about the pathological link among them (169). Ma et al.
showed that shorter telomere length in diabetes mellitus patients

is probably due to higher ROS production (170). Cigarette smoke
extract increases ROS production and subsequently enhances
p16 expression in the progenitor endothelial cells, leading to
endothelial dysfunction (56, 171). The crucial role of p16 in
smoking induced SASP and subsequent lung injury has also been
suggested (172). These data suggest that ROS-mediated SASP
induction can be a convergent point in the development of cancer
and CVDs. As stated above, ROS is pivotal to initiate telomere
DNA damage and the subsequent SASP induction. However,
because telomere DNA damage-induced SASP is irreversible
once established (17), antioxidant therapy may be no longer
effective to attenuate SASP during the progression of cancer
and CVD. As such, understanding the regulation of SASP is the
key to understand not only the interconnections between cancer
and CVD, but also age-related diseases such as diabetes mellitus,
Alzheimer’s disease, cataract, and chronic obstructive pulmonary
disease (Figure 3).

CONCLUSION

The crucial role of senescence in both cancer and CVD is
becoming evident. However, the contribution of senescence
to the interconnection between cancer and CVD remains
unclear. In this review, we discuss the possible involvement of
SASP, which can be instigated by various stresses, including
cancer therapy, ROS, and pro-inflammatory cytokines, in the
establishment of interconnection between cancer and CVDs.
Especially, the new concept of senescence-associated stemness,
a unique form of SASP, which may have a significant impact
on determining the interplay between cancer and CVD, under
highly stressful conditions such as cancer therapy, myocardial
infarction, and heart failure. Therefore, although the involvement
of senescence in cancer and CVD is a kind of old concept, the
perspective of senescence is radically changing.
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