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Abstract: This work was motivated by a study of particle size effects on pyrolysis kinetics and models
of polystyrene particle. Micro-size polystyrene particles with four different diameters, 5, 10, 15, and
50 µm, were selected as experimental materials. Activation energies were obtained by isoconversional
methods, and pyrolysis model of each particle size and heating rate was examined through different
reaction models by the Coats–Redfern method. To identify the controlling model, the Avrami–Eroféev
model was identified as the controlling pyrolysis model for polystyrene pyrolysis. Accommodation
function effect was employed to modify the Avrami–Eroféev model. The model was then modified to
f (α) = nα0.39n − 1.15(1 − α)[−ln(1 − α)]1 − 1/n, by which the polystyrene pyrolysis with different particle
sizes can be well explained. It was found that the reaction model cannot be influenced by particle
geometric dimension. The reaction rate can be changed because the specific surface area will decrease
with particle diameter. To separate each step reaction and identify their distributions to kinetics,
distributed activation energy method was introduced to calculate the weight factor and kinetic triplets.
Results showed that particle size has big impacts on both first and second step reactions. Smaller size
particle can accelerate the process of pyrolysis reaction. Finally, sensitivity analysis was brought to
check the sensitivity and weight of each parameter in the model.

Keywords: particle size; model free; model fitting; avrami–eroféev; DAEM

1. Introduction

To meet the needs of of society, various kinds of advanced materials with different functions have
been invented and updated greatly. In the ultrafine materials research area, researchers have tried
to generate particles with even smaller diameters. After a normal particle is processed by ultrafine
technology, particles will own some unique characteristics, including large specific surface area and high
chemical activity. The peculiar physical and chemical characteristics make ultrafine particles the focus
of advanced materials nowadays. During the processes of particles’ industrial manufacture, storage,
and transportation, particles with different sizes behave differently when considering their safety
concerns. Therefore, particle size effects are essential influence factors needed to be considered when
researchers explore particle thermal safety problems. The chemical kinetics and reaction model can be
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greatly influenced by particle size [1]. After the block is processed by ultrafine processing technology,
particle specific surface area can be greatly increased, which can influence combustible pyrolysis and
reaction rates when heating, and even the reaction model and products can be changed [2,3].

So, the work reported here was motivated by a study of particle size effects on pyrolysis behavior,
chemical kinetics, and reaction model when surrounded with heating. Micro-size polystyrene particles
with four different diameters were selected as typical particle materials. Activation energies were
obtained by several different isoconversional methods. The pyrolysis model of each particle size and
heating rate was examined by nineteen different reaction model candidates by the Coats–Redfern
methods, among which the three best models were then selected, and the reaction model function
was then reconstructed by selected models. The particle size effects on kinetics and reaction model
could be concluded. To separate step reactions from whole reaction and identify their distributions to
kinetics, a distributed activation energy method was then introduced to calculate the weight factor and
kinetic triplets.

2. Literature Review

Polystyrene is a commonly-used polymer material in daily life, which is usually employed
as thermal insulation materials in extruded or expandable formation, whose kinetics and reaction
mechanism have been studied. Jiao et al. studied the kinetics and volatile products of expandable
polystyrene and extruded polystyrene with TGA and TGA-MS-FTIR, respectively. They found that
the activation energies with conversions of expandable polystyrene are a little higher than extruded
polystyrene, which means expandable polystyrene is a little more stable than the extruded one. During
the pyrolysis process, small molecules including CO, C2H3, C2H5, and phenyl were detected [4]. After
this, Jiao and Sun explored the reaction mechanism of polystyrene during the pyrolysis process. It was
found that two pyrolysis reactions exist during the whole heating process. One is the small pyrolysis
of styrene monomers around 275 ◦C, and the other is breakage of the main chain and large amounts of
styrene generation around 430 ◦C [5]. Cheng et al. compared the thermal degradation behaviors of
micron polymethyl methacrylate (PMMA) and polystyrene (PS) by a traditional kinetics method. They
found that the particle size diameters can result in the decrease of activation energies, but have no
obvious influence on pre-exponential factors [6]. Other researchers have conducted related studies
about particle size effects on material pyrolysis behavior. Shen et al. [7] investigated the wood particle
size effects on the yield of bio-oil production. Results showed that the yield of bio-oil production can
decrease with the particle size increasing, among which the light bio-oil fractions increased and the
heavy bio-oil decreased. Marcilla et al. [8] tested different sizes milled powders of almond shells and
olive stones. They found that the milling process can provoke the structure damage of both biomasses,
and thus cause the difference in thermal behavior. Also, the milling process may cause the increase of
mineral substance. Blasi [9] investigated the particle size and heating rate effects on cellulose pyrolysis
by means of a computational model. Three main regimes of particle sizes were found to control
pyrolysis processes, including thermally thick, thermally thin, and pure kinetic control, which were
adjudged by particle size and heating rate conditions. Hanson [10] studied particle size effects on
pyrolysis of coal, and found that a smaller particle was more likely to produce char residue larger than
itself. For larger particle pyrolysis, it is more likely to produce a fragment. Yu et al. [11] ground the
coal sample by a planetary ball mill, and the coal samples were classified into three groups according
to different ground particle sizes. They found that particles with different sizes contain different carbon
and ash contents, which is resulted by the characteristics of coal’s uneven texture and solidity.

Most selected samples of previous pyrolysis studies relating particle size effects were self-ground
in the laboratory, among which biomass and coal were mostly employed. During the grinding process,
it is hard to form particles with uniform shape and component, as these solids have uneven density
and distribution. This can result in that the particles employed in thermal analysis experiments
do not have uniform distribution, which can definitely cause thermal analysis profiles fluctuations
and bad data repeatability. In this study, the polystyrene sample we used was produced by Suzhou
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Nanomicro Technology Co., Ltd. The particles were produced with uniform shape and diameter, the
diameters of which were 5, 10, 15, and 50 µm. Uniform diameter can guarantee the veracity and
reliability of experimental results. More details about experimental sample particle size can be found
in Section 4. Most publications including the above reviewed ones preferred to employ a traditional
kinetics method when dealing with polymer pyrolysis kinetics problems. However, for the case of
polymer pyrolysis, there must be more than one reaction during the pyrolysis procedure. So, in this
study, after the traditional kinetics analysis we will introduce distributed activation energy model to
explore PS pyrolysis kinetics to distinguish the weight of each sub reaction.

3. Traditional Kinetic Methods

Thermogravimetric analysis (TGA) apparatus can heat the sample with a fixed heating rate
and gas flow to blow off the volatiles, and record the instant mass loss. The mass conversion at a
certain time can be calculated by instant mass loss divided by total mass loss. The pyrolysis reaction
can be expressed by the arithmetic product of two functions, including reaction rate constant and
reaction model,

dα/dt = Aexp[−Ea/(RT)]f (α) (1)

where A, Ea, and R are the pre-exponential factor, the apparent activation energy, and the gas constant,
respectively. By TGA testing technique and kinetics calculation methods, the kinetic details can be
obtained by measurement and parameterization. After processing natural logarithm to both sides of
Equation (1) and then integrating, the reaction rate can yield to

g(α) =
A
β

∫ T

T0

exp(−∆Ea/RT)dT (2)

in which the temperature part has no analytical solution. β means heating rate and equals to dT/dt.
Many researchers have tried to solve the integration with reasonable approximations, commonly
used methods like KAS [12,13], FWO [14,15], and Tang et al. [16,17] methods, among which different
approximation solutions were employed to Equation (2) as listed in Table 1.

Table 1. Three commonly used isoconversional methods for activation energy calculation.

Methods Expression Description

Flynn–Wall–Ozawa
method logβ = log (AEa/Rg(α)) − 2.315 − 0.4567Ea/RT Modified general isoconversional

equation by Doyle approximation.

Kissinger–Akahira–Sunose ln(β/T2) = ln(AR/Eag(a)) − Ea/RT
Modified general isoconversional

equation by Coats-Redfern
approximation.

Tang et al. ln(β/T1.894661) = ln[AEa/Rg(α)] + 3.635041 −
1.894661lnEa − 1.001450Ea/RT

Tang et al. proposed an improved
approximation for temperature

integral.

Solved by numerical integration, kinetics parameters can be calculated more accurately with
appropriate approximations. Vyazovkin et al. [18–20] developed an advanced isoconversional method
which contains the temperature integration.

I(Eα, Tα) =
∫ Tα

0
exp(

−Ea

RT
)dT (3)

I =
Ea

R
p(x) (4)
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Then the Vyazovkin method equation can be expressed as Equations (3) and (4), where x equals to
Eα/RT. At a certain conversional extent, the value of apparent activation can be identified by minimizing
the following formula,

Ω(Ea) =
n∑

i=1

n∑
j,i

I(Ea,α, Ta,i)β j

I(Ea,α, Ta, j)βi
(5)

The temperature integration can be calculated after a series of transforms. Farjas and Roura [21]
derived the six-order Padé approximation, which can give an absolute error less than 10−16 for x > 12

p(x) ≈
exp(−x)

x
× (

x5 + 40x4 + 552x3 + 3168x2 + 7092x + 4320
x6 + 42x5 + 630x4 + 4200x3 + 12600x2 + 15120x + 5040

) (6)

By Equations (3)–(6), for each conversion the minimization value can be obtained, by this method,
a relative dependency between activation energy and conversion range can be obtained.

Model fitting method is a reaction model exploring method using well-known different theoretical
reaction models to fit experimental α–T profiles, meanwhile for each model a set of activation energy
and pre-exponential factor can be obtained. The Coats–Redfern method is one commonly used
model-fitting method, which explores the asymptotic series expansion with the following formula,

ln
g(α)
T2 = ln(

AR
βEa

[1− (
2RT∗

Ea
)]) −

Ea

RT
(7)

where g(α) is the integral form of the reaction model as shown in Table 1, and T* is the average
temperature during all the heating process. For each reaction model as listed in Table 1, plotting
ln[g(α)/T2] vs. 1/T can obtain sets of activation energy and pre-exponential factor. The model which
has the best linearity with experimental profile is considered as the real reaction model.

There are nineteen commonly used reaction models in a kinetics area [5,6]. Each model will be used
to fit the experimental formation with the obtainment of activation energy and pre-exponential factor.
Then according to the fitness of experimental data and theoretical model calculation, one correlation
coefficient can be obtained. So, for all nineteen models, there must exist one maximum correlation
coefficient. In previous studies, usually the model with the maximum coefficient is identified as the
ideal reaction model. However, sometimes the model with the maximum coefficient may be not the real
reaction model, which can be checked by model reconstruction with experimental data. So, this model
reconstruction [22–26] should be further processed to check if the obtained model can fit experimental
profile well, and which procedure is necessary, but is usually ignored in previous related literatures.

The compensation effects means that there must exist one relation between the kinetics parameters
that the change of activation energy causing a linear variation of the natural logarithm of the
pre-exponential factor. The change of activation energy can be caused by the heating rate or model
selection; however, they must be limited to one reaction. When several models are used in the same
heating rate, several sets of activation energies and pre-exponential factors can be obtained, then the
kinetics compensation effects can be created. The compensation effects between kinetics parameters
can be expressed by the following formula,

ln Ai = a + bEi (8)

where i means that the kinetic parameters are obtained from the i-th model, and parameters a and b are
kinetics compensation parameters.

All models listed can be examined by Coats–Redfern method, by which nineteen corresponding sets
of kinetics parameters can be obtained. Then the calculated activation energy and the pre-exponential
factor can be used to evaluate the compensation effect formula parameters a and b. Based on the
obtained compensation effects formula, the pre-exponential factor at each conversional extent can be
evaluated according to the activation energies obtained by isoconversional methods.
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4. Distributed Activation Energy Method

The kinetics methods introduced above belong to traditional kinetics methodology, which
usually regards the pyrolysis reaction as one overall reaction, and the activation energy at a certain
conversion extent is regarded as global activation energy. However, for polymer pyrolysis reaction, it
is unreasonable to take one overall pyrolysis as one step reaction. Considering this reason, distributed
activation energy method (DAEM) is adopted to separate the total reaction into several parallel
reactions, which was originally adopted to separate the sub-reactions of biomass and coal [27–30]. The
idea of distributed activation energy was firstly brought up by Vand [31], and then was developed to
solve the pyrolysis problem of coal by Pitt [32].

DAEM assumes that the total reaction can consist of several parallel reaction groups. For each
reaction group, it has its own sets of reactions on a molecular level. The decomposition reaction on
molecular level can be expressed as,

d
(

mi(t)
mi∗

)
/dt = Ai exp(

−Ei
RT

)

(
m ∗ −mi(t)

mi∗

)
(9)

where i means the ith molecular level reaction, mi(t) means the volatile mass fraction at time t, mi*
means the total volatile mass fraction, Ai and Ei are the kinetic parameters for this reaction.

Integrating Equation (9) and assuming that the species i is one of the pool reaction group of
component j, then we have the following expression of degradation of component j,

α j = 1−
∫
∞

0
exp[−

∫ T

T0

A j

β j
exp(−

Ei
RT

)dT] f (E)dE (10)

dα j

dT
=

∫
∞

0

A j

β j
exp[−

Ei
RT
−

∫ T

T0

A j

β j
exp(−

Ei
RT

)dT] f (E)dE (11)

aj means the conversion of component j. f (E) means that the group reaction in component j follows
the distribution functions f (E), among which Gaussian distribution function is the earliest and most
extensive applied one. The Gaussian distribution can be expressed as

fG(E) =
1

σ
√

2π
exp(−

(E− E0)
2

2σ2 ) (12)

where the distribution has the center at E0 and the standard deviation σ. The random distribution
is distributed symmetrically at the left and right sides of E0. For Gaussian distribution, the range
between E0 − 1.5σ and E0 + 1.5σ covers 99.7% random distribution. In this study, we consider 60 times
standard deviation, which means the integration of Gaussian distribution ranges from E0 − 30σ and E0

+ 30σ. All equations about DAEM have temperature integration, which cannot be solved accurately in
Equations (10)–(12). So, an approximation about temperature integration is also recommended here,
here we calculate p(x) the same as Equation (6). By calculating the jth component DAEM mass loss rate,
the overall reaction formula can be calculated as a linear reaction combination of all components,

α =
M∑

j=1

c jα j (13)

dα/dT =
M∑

j=1

c j(dα/dT) j (14)

where cj means a weight factor equaling to the amount of volatiles formed from the jth
pseudo-component decomposition. It should be noted that Gaussian distribution is a symmetric
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distribution centered at E0 from the shape of the curve. The distributed activation energy assumed that
the total pyrolysis reaction is made of multiple parallel reactions, which is a reasonable assumption for
polymer degradation.

5. Experimental

Micro polystyrene particles were provided by Nano-Micro Technology Co., Ltd., Suzhou, China.
Four available diameters, 5, 10, 15, and 50 µm, were selected. All particles showed uniform size
according to the scanning electron microscopy examining figures (http://en.nanomicrotech.com/).
Furthermore, the particle size was double checked by a Laser Diffraction Particle Size Analyzer,
SALD-2300, produced by Shimadzu Corporation, Kyoto, Japan. Particle size was identified by the
light intensity distribution pattern of scattered light that is irradiated from sample particle surface
when laser lights radiate them. The particle size diameters for four particle sizes are shown in Figure 1.
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Figure 1. Particle size diameters of polystyrene particles with four different sizes, 5, 10, 15, and 50 µm.

The thermal degradation experiments were conducted on SDT Q600 instrument by TA Instruments
(New Castle, USA). Experiments were performed in nitrogen atmosphere with 40 mL min−1 flow rate
as purge gas and 20 mL min−1 as protective gas. Samples were heated in TGA with four heating rates,
3, 5, 7.5, and 10 K·min−1 from ambient temperature to 850 ◦C. An initial sample weight around 3 mg
was guaranteed for all testing.

6. Results and Discussion

6.1. Pyrolytic Characteristics Observations

Figure 2 shows the TGA and Differential thermogravimetry (DTG) profiles of polystyrene with
four different sizes in nitrogen atmosphere. Detailed thermal pyrolysis temperatures are listed in
Table 2. We can find that the pyrolysis profiles of polystyrene with different sizes show similar
variations. The DTG curve shows an obvious single peak, which can be identified as a one step reaction.
In nitrogen atmosphere, the percentage of heat loss keeps around 90.71 ± 0.80% constantly. From the
TGA and DTG curves, we can find that sample sizes cannot cause the change of the reaction process or
TGA profiles obviously.

http://en.nanomicrotech.com/


Polymers 2020, 12, 421 7 of 18
Polymers 2020, 12, 421 7 of 19 

 

 

Figure 2. Differential thermogravimetry (DTG) rofiles of polystyrene pyrolysis in nitrogen 

atmosphere at 3 K·min−1 for 5, 10, 15, and 50 µm particle sizes. 

Table 2. Characteristic temperature T0, Tp and Tf for polystyrene pyrolysis determined from 

thermogravimetric analysis (TGA) profiles at different heating rates. 

 (
o
C·min

−1
) T0 (

o
C) Tp (

o
C) Tf (

o
C) max 

5 µm     

3 367 430 535 91 

5 351 438 545 92 

7.5 369 443 528 91 

10 349 447 530 92 

10 µm     

3 378 431 572 92 

5 378 437 531 91 

7.5 381 458 528 90 

10 379 460 534 91 

15 µm     

3 368 433 524 90 

5 369 440 534 91 

7.5 386 446 529 90 

10 382 449 529 91 

50 µm     
3 375 437.31 537.50 90 

5 381 444.23 534.04 90 

7.5 385 451.87 530.90 89 

10 359 455.82 535.81 90 

For all the samples with different sizes, DTG curves show similar variations with one single 

peak, as the particles are produced from the same assignment. With the increase of particle size from 

5 to 50 µm, the peak temperature increased monotonically. The 5 µm particle shows the minimum 

pyrolysis peak temperature and onset temperature, and 50 µm shows the maximum temperatures. 

Figure 2. Differential thermogravimetry (DTG) rofiles of polystyrene pyrolysis in nitrogen atmosphere
at 3 K·min−1 for 5, 10, 15, and 50 µm particle sizes.

Table 2. Characteristic temperature T0, Tp and Tf for polystyrene pyrolysis determined from
thermogravimetric analysis (TGA) profiles at different heating rates.

β (oC·min−1) T0 (oC) Tp (oC) Tf (oC) αmax

5 µm

3 367 430 535 91
5 351 438 545 92

7.5 369 443 528 91
10 349 447 530 92

10 µm

3 378 431 572 92
5 378 437 531 91

7.5 381 458 528 90
10 379 460 534 91

15 µm

3 368 433 524 90
5 369 440 534 91

7.5 386 446 529 90
10 382 449 529 91

50 µm

3 375 437.31 537.50 90
5 381 444.23 534.04 90

7.5 385 451.87 530.90 89
10 359 455.82 535.81 90

For all the samples with different sizes, DTG curves show similar variations with one single
peak, as the particles are produced from the same assignment. With the increase of particle size from
5 to 50 µm, the peak temperature increased monotonically. The 5 µm particle shows the minimum
pyrolysis peak temperature and onset temperature, and 50 µm shows the maximum temperatures. For
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a polystyrene particle with a smaller diameter, it has a larger specific surface area, which means for the
same sample masses, a smaller particle has more surface heated than a larger particle. For the TGA
experiments in this study, we controlled all testing at the same weight at around 3 mg. Then for the 5
µm particle, its specific surface area is 10 times larger than 50 µm particle. Large specific surface area
results in faster heat transfer and shorter time to trigger reaction.

6.2. Kinetics Parameters

The activation energies of polystyrene with four different sample sizes were calculated by five
different commonly used isoconversional methods. Then, the dependences of activation energies on
conversional extent for different calculated methods can be obtained. Figure 3a shows the activation
energy calculation results based on different calculation methods. Five curves show the same variation
with increasing conversional extent while Friedman results showed different variation from four other
methods. The main reason that caused the deviation by the Friedman method with others is data noise
brought during data differential process by total mass to use dα/dt, while the other four methods do
not need a derivation step [33–35]. So FWO, KAS, Tang et al., and advanced Vyazovkin methods show
almost the same calculation values, which proved the accuracy of the method calculation.

Polymers 2020, 12, 421 8 of 19 

 

For a polystyrene particle with a smaller diameter, it has a larger specific surface area, which means 

for the same sample masses, a smaller particle has more surface heated than a larger particle. For the 

TGA experiments in this study, we controlled all testing at the same weight at around 3 mg. Then for 

the 5 µm particle, its specific surface area is 10 times larger than 50 µm particle. Large specific surface 

area results in faster heat transfer and shorter time to trigger reaction. 

6.2. Kinetics Parameters 

The activation energies of polystyrene with four different sample sizes were calculated by five 

different commonly used isoconversional methods. Then, the dependences of activation energies on 

conversional extent for different calculated methods can be obtained. Figure 3a shows the activation 

energy calculation results based on different calculation methods. Five curves show the same 

variation with increasing conversional extent while Friedman results showed different variation from 

four other methods. The main reason that caused the deviation by the Friedman method with others 

is data noise brought during data differential process by total mass to use d/dt, while the other four 

methods do not need a derivation step [33–35]. So FWO, KAS, Tang et al., and advanced Vyazovkin 

methods show almost the same calculation values, which proved the accuracy of the method 

calculation. 

 
(a) 

 
(b) 

Figure 3. (a) Dependencies of the activation energy on extent of polystyrene conversion determined 

by five iso-conversional methods including KAS, FWO, Tang, Friedman, and advanced Vyazovkin 
Figure 3. (a) Dependencies of the activation energy on extent of polystyrene conversion determined
by five iso-conversional methods including KAS, FWO, Tang, Friedman, and advanced Vyazovkin
methods. (b) Dependencies of the activation energy on conversional extent of four different size
polystyrene determined by Vyazovkin methods.

Figure 3b shows the dependencies of activation energies on conversional extent for four different
polystyrene particle sizes. The activation energy results were calculated by the advanced Vyazovkin
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method. The advanced isoconversional method developed by Vyazovkin is a commonly used thermal
kinetics method, which excluded the influences of reaction model and needs for differential data to
obtain activation energies. From Figure 3b, we can find that the variation tendencies are the same.
During the conversional extent 0–0.2, the activation energies fluctuate significantly because a small
amount of styrene molecules pyrolyzes and escapes from the main chain. During the conversional
extent 0.2–0.85, four size samples show the same variation tendencies. With the increase of conversional
extent, the activation energies of all four samples decrease almost linearly, which stage corresponds to
the pyrolysis of polystyrene main body. When α > 0.85, the activation energies increase rapidly with the
increase of conversional extent. During this extent, the mass loss is mainly composed by polystyrene
residue, which is hard to pyrolyze continuously and results in a rapid increase of activation energy.

During the main pyrolysis stage, with the increase of conversional extent, activation energies
decrease slowly and linearly for all four sizes of samples. The activation energies of 5 and 10 µm are
very close to each other for each conversional extent, both of which are smaller than activation energies
of 15 µm particle size. The 50 µm size particle shows the maximum activation energies compared with
another three sizes, which means that the reaction of 50 µm is the hardest to trigger. This difference on
kinetics is mainly caused by their different specific surface area. For all four samples, 50 µm particle
sample has the smallest specific surface area, therefore it has the maximum activation energies. The
specific surface area of 5 µm particle size is 10 times than 50 µm particle size.

6.3. Model Fitting Method and Compensation Effects

By the isoconversional method calculation, we learned that the main pyrolysis stage (a = 0.2–0.85)
of four sample sizes has constant activation energies where one existing reaction model may fit well.
Isoconversional methods can only calculate the activation energies at a certain conversional extent, but
fail to obtain the reaction model. With employment of the Coats–Redfern method, experimental data
for four particle sizes can fit with all nineteen models. Then for each tested model, one set of activation
energy and pre-exponential factor can be obtained. Three models with best linear coefficients for four
sample sizes and heating rates are selected to list in Table 3, considering the linearity coefficient and
activation energy appropriateness.

Table 3. Activation energies, pre-exponential, and corresponding linearity coefficient calculated by
Coats–Redfern method for the three best models.

3 ◦C min−1 5 ◦C min−1 7.5 ◦C min−1 10 ◦C min−1

Model lnA Ea r2 Model lnA Ea r2 Model lnA Ea r2 Model lnA Ea r2

5 µm
8 73.17 462.33 0.998 8 73.54 466.64 0.999 8 70.47 451.10 0.999 8 66.29 426.76 0.998

12 45.99 304.33 0.998 12 46.41 307.16 0.999 12 44.47 296.76 0.998 12 41.76 280.52 0.998
13 32.32 225.33 0.998 13 32.75 227.42 0.999 13 31.39 219.59 0.998 13 29.41 207.40 0.998

10 µm
8 75.06 469.28 0.990 8 71.09 448.69 0.988 8 71.57 453.59 0.987 8 68.97 439.20 0.988

12 47.26 308.99 0.990 12 44.76 295.22 0.987 12 45.22 298.44 0.986 12 43.56 288.83 0.988
13 33.28 228.84 0.989 13 31.52 218.48 0.987 13 31.95 220.87 0.986 13 30.77 213.65 0.987

15 µm
8 76.54 478.30 0.993 8 74.02 466.03 0.993 8 72.31 458.14 0.992 8 69.84 444.63 0.992

12 48.26 315.00 0.993 12 46.73 306.77 0.992 12 45.71 301.48 0.992 12 44.15 292.45 0.992
13 34.03 233.35 0.992 13 33.00 227.15 0.992 13 32.32 223.15 0.992 13 31.22 216.36 0.992

50 µm
8 80.36 502.22 0.989 8 77.78 489.67 0.984 8 76.64 485.47 0.983 8 75.33 478.41 0.983

12 50.81 330.93 0.987 12 49.24 322.52 0.984 12 48.61 319.68 0.982 12 47.82 314.95 0.982
13 35.96 245.28 0.988 13 34.89 238.94 0.983 13 34.51 236.78 0.982 13 33.99 233.22 0.981

Models 8, 12, 13 means first order model, Avrami–Eroféev model (n = 1.5), and Avrami–Eroféev model (n = 2).

From the kinetics calculation results listed in Table 3, we can see that the kinetics triplet calculations
are greatly dependable on the model selection. The activation energies calculated by Model 13 are
around 225 kJ·mol−1, while for Model 8, the calculation result is around 463 kJ·mol−1. From Table 3, we
can find that for all cases of each particle size and heating rate, the best three models are the same, i.e.,
first-order model (F1), Avrami–Eroféev (A3/2), and Avrami–Eroféev (A2). All three models show good
linearity, larger than 0.98. However, the A3/2 and A2 models are more reasonable than the F1 model
because the activation energies obtained by Avrami–Eroféev are closer to the results by isoconversional
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methods. Also, the experimental f (α) shows an increase first then decrease variation, whose variation
tendency only fits the Avrami–Eroféev model. Although the dimensional diffusion model has the
similar variation, its magnitude is too small to fit with experimental results.

Calculation of activation energy at each conversional extent allows the reconstruction of the
pyrolysis model, which acquires pre-exponential knowledge in advance. For one fixed reaction at
one known heating rate, the activation energies have a linear relation with natural logarithm of the
pre-exponential factor called compensation effect, which can be expressed as lnAj = a + bEj, where a
and b are constants for one reaction, a = ln kiso and b = 1/RTiso. kiso is called artificial isokinetic rate and
Tiso is defined as artificial isokinetic temperature. The subject j means the selected model. If the model
we employed in calculation is not appropriately hypothesized, then the kinetic parameter artificial
isokinetic temperature may locate out of the experimental temperature.

For each model, one set of kinetic parameters can be calculated. Then all the kinetics parameters
can be used for modelling compensation effects, as listed in Table 4. Results showed that all the heating
rates for each particle size have good linearity, as shown in Figure 4, which allows for the prediction of
the pre-exponential factor at each conversional extent.

Table 4. The values of kiso and Tiso by model fitting methods for pyrolysis of polystyrene particles with
four sizes.

3 K min−1 5 K min−1 7.5 K min−1 10 K min−1

Particle Size kiso Tiso kiso Tiso kiso Tiso kiso Tiso

5 µm 0.001446 704.10 0.002360 711.74 0.003338 719.24 0.004233 722.76
10 µm 0.001407 697.77 0.002181 705.57 0.003241 712.49 0.004162 716.62
15 µm 0.001447 698.59 0.002301 706.27 0.003332 713.09 0.004265 717.20
50 µm 0.001482 701.24 0.00233 708.72 0.003393 715.68 0.004423 719.17
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Figure 4. The isokinetic relationships (lnA vs. Ea) obtained during degradation process using
Coats–Redfern method for different particle sizes and heating rates.

6.4. Numerical Reconstruction

In Section 6.2, the activation energies at each conversional extent were obtained by isoconversional
methods. Then, nineteen models were checked by the Coats–Redfern method to obtain a reasonable
model describing polystyrene particle pyrolysis for cases of four different particle sizes. Avrami–Eroféev
models (both A3/2 and A2) showed high linearity to the fitting with experimental profiles. Based on
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kinetic triplet results by different models, compensation effects could be employed to create numerical
connection between activation energies and the pre-exponential factors, by which the pre-exponential
factor at each conversional extent can also be clear. Based on the obtained pre-exponential factor on
conversional extent, the calculated reaction model function can be obtained and compared with the
theoretical reaction model function to examine the validity of the reaction model.

For all nineteen models, only the Avrami–Eroféev model can fit with experimental data during all
conversional ranges; however, the results are still unsatisfactory to fit all heating rates well. This is
because the most universally employed model in thermal kinetics is not applicable for reactions in/on
media that are solid or porous structured [36]. So, when the pyrolysis kinetics are being described
and refitted accurately, one accommodation function should be introduced to modify the model based
on its known function. The real reaction model can be calculated by the arithmetic products of two
functions, one is the accommodation function which can be expressed by αm, and the other is a classical
reaction model. The new kinetics model after modification can be expressed by

f (α) = nαm(1 − α)[−ln(1 − α)]1 − 1/n (15)

Figure 5 shows the comparisons of experimental f (α) points during all conversional ranges with
theoretical profiles based on Equation (15) for four particle sizes. Results show that the experimental
and theoretical data can match reasonably well during all conversional extents with two parameters m
and n to describe the reaction model.
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Figure 5. The experimental kinetics function f (α) reconstructed from isoconversional kinetic method of
polystyrene pyrolysis for 3, 5, 7.5, and 10 K·min−1 heating rates. The dash line means the reconstructed
profile of modified Avrami–Eroféev reaction model.

By further processing experimental data of each heating rate, sixteen sets of m and n parameters
are obtained. We find that there is a roughly linear relationship between all m and n, which can be
described by m = 0.39n − 1.15 with R2 = 0.92. Then, the pyrolysis model function can be rewritten by

f (α) = nα0.39n − 1.15(1 − α)[−ln(1 − α)]1 − 1/n (16)
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As shown in Figure 6, four sample size experimental data were put together for model
reconstruction since the reconstruction model lines in Figure 5 show similar variations. Results
showed that for all four sample sizes, the reaction model can be described as f (α) = 2.02α−0.27(1 −
α)[−ln(1 − α)]0.50. It can be concluded that the pyrolysis model, f (α), cannot be influenced by sample
particle size because the geometric dimension cannot change the chemical reaction principles. Although
the reaction model function f (α) cannot be influenced by particle size, the activation energies and
reaction rate can be influenced greatly because the specific surface area can influence the heat transfer
and evaporation rate of the particle surface.
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It should be noted that in previous literatures about polymer pyrolysis model identification, it is
far from enough that only linearity coefficients are obtained, by which the models are ranked. For each
model will have its one linearity coefficient, and there must exist one model with the highest fitness;
which however, does not mean that this model can describe the pyrolysis process well, especially
when fitting with experimental data. Figures 5 and 6 shows that the reconstructed model can describe
the experimental well after modification, though the format of the final model shows difference with
traditional nineteen models. We can also call the final reaction model an apparent model, which can be
regarded as the combination of several step reaction models.

6.5. Step-Reaction Separation by Distributed Activation Energy Method

By traditional kinetics methods, we can only see that the activation energies are different for
different sample size, while we cannot distinguish which step reaction makes the difference on pyrolysis
kinetics. So, in this section, distributed activation energy method was employed to separate the step
reaction from overall pyrolysis reaction, by which we can see the weight of step reaction on activation
energy for different particle sizes. Details about the mechanism of DAEM have been introduced in
Section 4, and the solution of DAEM equations was based on programming MATLAB to obtain the
kinetics parameters. To improve the accuracy of kinetic results, experimental data of α and dα/dt was
employed to fit by DAEM model at the same time, which was judged by getting the minimum value of
squared sum residuals (SSR), which can be expressed by

SSR =
e∑

n=1

f∑
m=1

[
αnum(Tk) − αexp(Tk)

]2
+

( dα
dTk

)
num
−

(
dα
dTk

)
exp

2 (17)
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where e and f mean all heating rates and selected experimental data points. The subscripts num and
exp mean the numerical DAEM model and experimental data, respectively.

For PS pyrolysis in nitrogen, the pyrolysis mechanism has been explored a lot. It is generally
acknowledged that the pyrolysis process can be divided into two steps. The first step is the pyrolysis
of the main PS structure with a generation of large volatile molecules, during which the structure
will show a large mass loss. The second step is the generation of single molecule styrene mainly
from the large molecule and a little bit from the residual body. During the DAEM calculation, we
hypothesize that PS pyrolysis process includes two reaction steps. Equations (9)–(14) were solved based
on genetic algorithm (GA) in MATLAB. GA is an advanced algorithm based on Darwin’s evolution
theory, searching the best fitness in solving a high-dimensional optimization problem. For each new
generation, GA will generate a certain amount of individuals randomly and simultaneously, among
which each individual will be employed to fit with experimental data with fitness obtained. The
individual with best fitness will be adopted as a parent to produce next generation. During producing,
each generation process, selection, interaction, cross, and variation are all considered. Finally, one
individual with best fitness is identified as the final parameters.

The aforementioned two-pseudo-component pyrolysis mechanism was employed during DAEM,
and the searching ranges for four parameters, natural logarithm of pre-exponential factor, standard
derivation of Gaussian distribution, activation energy, and weight factor were 5–60, 0–15 kJ mol−1,
100–380 kJ mol−1, and 0–1, respectively. In each heating rate, 100 points with uniform intervals were
selected from the original data during the 600–900 K temperature range. Table 5 shows the DAEM
calculation parameters with best fitness for two component reactions hypothesis. Figure 7 shows the
activation energy distributions for both step reactions. From Table 5 and Figure 7, we can find that
the activation energy distributions of 5 µm is more concentrated than the other three particle sizes
especially for the second step reaction at 260–290 kJ mol-1, which means the 5 µm particle is much
easier to pyrolyze compared with other particles, and the first step reaction group is more concentrated.
The centered activation energy increases with particle size increasing in both reaction processes, which
is in accordance with the results by the isoconversional method. Obviously, the particle size effects on
the second reaction are more obvious than the first step reaction.

Table 5. Distributed activation energy method (DAEM) fitness for different particle size with different
heating rates.

Component Parameter 5 µm 10 µm 15 µm 50 µm

Component 1

lnA1 38.7179 40.8492 42.6370 42.4292
0.0063 2.2146 2.3269 2.4410

E0,1 262.9934 272.7594 283.5884 283.0256
n1 0.9004 0.8426 0.8339 0.8613

Component 2

lnA2 16.3841 18.9673 21.2544 21.8706
4.7951 9.1801 9.1128 8.9726

E0,2 145.3102 155.9962 169.6331 176.2200
n2 0.1153 0.1614 0.1744 0.1430

Figure 8 shows the experimental α and dα/dt, DAEM fitting α and dα/dt, and step reaction
distributions. We can find that the experimental data and DAEM fitting can match each other
reasonably well for all sixteen cases. And the mass loss by the first reaction occupies most of
the reaction.
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To quantitatively show the fitness between calculation and experimental, here we use Equation
(18) to evaluate the fitness, and the higher result means better fitness, here we employ the weight
coefficient as 0.5, Equation (18) can be expressed as

Fitν1 = 1−

√√√ b∑
m=1

(dα
dT

)
num
−

(
dα
dT

)
exp

2

/ f /

(dα
dT

)
exp


max

(18a)

Fitν2 = 1−

√√√ b∑
m=1

(
αnum − αexp

)2
/ f /

(
αexp

)
max

(18b)

Fitν = [κFitν1 + (1− κ)Fitν2] × 100% (18c)

Table 6 shows the fitness results for different heating rates during DAEM fitting. We can see
all fitness are larger than 98.5%, which proves the good performance of DAEM in TGA and DTG
curve prediction.

Table 6. DAEM fitness for different particle size with different heating rates.

Fitness

Particle Size 3 K min−1 5 K min−1 7.5 K min−1 10 K min−1

5 µm 98.06 98.01 98.20 98.29
10 µm 98.39 98.77 98.77 98.78
15 µm 98.13 98.74 98.75 98.71
50 µm 98.52 98.72 98.70 98.79

6.6. Sensitivity Analysis of DAEM Parameters

After calculating the DAEM parameters of different particles, we also need to carry out the
sensitivity analysis to judge which parameter is more important and sensitive. The method to check its
sensitivity is to change the target parameter by a small value and remain the rest parameters unchanged.
The variation range of parameter is very small, here we employ the range ±0.1. lg(ssr) to quantitatively
judge the parameter sensitivity, where ssr is the SSR with changed parameter divided by the optimal
SSR value. Parameters lnA1, σ, E0,1, n1, and lnA2, σ, E1,2, n2, are numbered as 1–8 as shown in y-axis of
Figure 9, where x-axis means the relative changed value of parameters ranging from 0.9 to 1.1, y-axis
means the order of eight parameters, and the color value in Figure 9 means lg(ssr). The blue color
presents that the parameter is insensitive and accurate, while the red color means sensitive to the value
change. So, during calculation, we should check the accuracy of these sensitive parameter to make
sure its accuracy. Obviously, the pre-exponential factor and activation energy we obtained by DAEM
methods are insensitive compared with weight factor and distribution factor, which means the result
is reasonably dependable. Here in Figure 9, the data is 50 µm PS pyrolysis DAEM parameters. The
parameters of other particle sizes show the same weight with 50 µm particle, so here we won’t discuss
other particle size cases anymore.



Polymers 2020, 12, 421 16 of 18

Polymers 2020, 12, 421 17 of 19 

 

Table 6. DAEM fitness for different particle size with different heating rates. 

Fitness 

Particle Size 3 K min−1 5 K min−1 7.5 K min−1 10 K min−1 

5 µm 98.06 98.01 98.20 98.29 

10 µm 98.39 98.77 98.77 98.78 

15 µm 98.13 98.74 98.75 98.71 

50 µm 98.52 98.72 98.70 98.79 

6.6. Sensitivity Analysis of DAEM Parameters 

After calculating the DAEM parameters of different particles, we also need to carry out the 

sensitivity analysis to judge which parameter is more important and sensitive. The method to check 

its sensitivity is to change the target parameter by a small value and remain the rest parameters 

unchanged. The variation range of parameter is very small, here we employ the range ±0.1. lg(ssr) to 

quantitatively judge the parameter sensitivity, where ssr is the SSR with changed parameter divided 

by the optimal SSR value. Parameters lnA1,  , E0,1, n1, and lnA2,  , E1,2, n2, are numbered as 1–8 as 

shown in y-axis of Figure 9, where x-axis means the relative changed value of parameters ranging 

from 0.9 to 1.1, y-axis means the order of eight parameters, and the color value in Figure 9 means 

lg(ssr). The blue color presents that the parameter is insensitive and accurate, while the red color 

means sensitive to the value change. So, during calculation, we should check the accuracy of these 

sensitive parameter to make sure its accuracy. Obviously, the pre-exponential factor and activation 

energy we obtained by DAEM methods are insensitive compared with weight factor and distribution 

factor, which means the result is reasonably dependable. Here in Figure 9, the data is 50 µm PS 

pyrolysis DAEM parameters. The parameters of other particle sizes show the same weight with 50 

µm particle, so here we won’t discuss other particle size cases anymore. 

 

Figure 9. Sensitivity of eight DAEM parameters for 50 µm PS pyrolysis. This figure shows 50 µm PS 

particle case, and the sensitivity of other particles shows the same weight distribution. 

7. Conclusion 

Here we explore the particle size effects on pyrolysis of polystyrene from aspects of pyrolysis 

behavior, kinetics, reaction model, reconstruction, and validation. The final reaction model can 

provide scientific guidance to polymer pyrolysis modeling [22–27]. In this study, to explore the 

particle size effects on pyrolysis behavior, polystyrene particles with four different sizes, 5, 10, 15, 

and 50 µm, were selected to conduct a series of TG experiments. Isoconversional methods were 

employed to calculate kinetic parameters during all conversional extents. Results show that the 

Figure 9. Sensitivity of eight DAEM parameters for 50 µm PS pyrolysis. This figure shows 50 µm PS
particle case, and the sensitivity of other particles shows the same weight distribution.

7. Conclusion

Here we explore the particle size effects on pyrolysis of polystyrene from aspects of pyrolysis
behavior, kinetics, reaction model, reconstruction, and validation. The final reaction model can provide
scientific guidance to polymer pyrolysis modeling [22–27]. In this study, to explore the particle size
effects on pyrolysis behavior, polystyrene particles with four different sizes, 5, 10, 15, and 50 µm, were
selected to conduct a series of TG experiments. Isoconversional methods were employed to calculate
kinetic parameters during all conversional extents. Results show that the temperature of the DTG
curve peak will decrease first, then increase with particle size for the same heating rate, which may be
caused by the competition of compactness and specific surface area effects. During the main pyrolysis
stage, with the increase of conversional extent, activation energies decrease slowly and linearly for all
four size samples. With the increase of particle size, the activation energies will increase for the same
conversional extent, which means that the reaction of the largest particle is the hardest to trigger. The
Avrami–Eroféev model was identified by the Coats–Redfern method as the controlling model during
the polystyrene pyrolysis process. Considering the accommodation function of the reaction model,
Avrami–Eroféev model was modified as f (α) = 2.02α−0.27(1−α)[−ln(1−α)]0.50, by which the polystyrene
pyrolysis process can be well explained. To find the weight of each step reaction, the DAEM model was
employed to separate the step reaction from overall reaction. Results showed that both step reactions
can be largely influenced by particle size, especially for the second step. For the five µm particle,
the activation energy distributions in both step reactions are more concentrated and forward, and its
reaction is more uniform.
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