
ORIGINAL ARTICLE

A niched Pareto genetic algorithm for finding variable length
regulatory motifs in DNA sequences

Shripal Vijayvargiya • Pratyoosh Shukla

Received: 26 May 2011 / Accepted: 23 November 2011 / Published online: 9 December 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The transcription factor binding sites also

called as motifs are short, recurring patterns in DNA

sequences that are presumed to have a biological function.

Identification of the motifs from the promoter region of the

genes is an important and unsolved problem specifically in

the eukaryotic genomes. In this paper, we present a niched

Pareto genetic algorithm to identify the regulatory motifs.

This approach is based on the maximization of two

objectives of the problem that is the motif length and the

consensus similarity score. A long motif means it is less

likely to be a false motif. The similarity score represents a

motifs probability of conservation in a given set of

sequences. Proposed method can find multiple, variable

length motifs. In this method, we represented a candidate

motif as a combination of length and starting position of

the motif in each sequence of the co-regulated genes. This

enables the algorithm to identify multiple motifs of vari-

able length. We applied this approach on various data sets

and the results show that it can find multiple motifs of

variable length in co-regulated genes.

Keywords Motif � TFBS � Binding sites �
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Introduction

Understanding the regulatory networks of higher organisms

is one of the main challenges of functional genomics. Gene

regulation is a finely controlled mechanism. The main part

of regulation is performed by the specific proteins called

transcription factors (TFs) binding to a specific transcrip-

tion factor binding sites (TFBS), in regulatory regions

associated with genes. A TFBS is also known as motif. A

motif is a pattern of nucleotide bases or amino acids, which

captures a biologically meaningful feature common to a

group of nucleic acid or protein sequences. Regulatory

motifs capture the patterns of DNA bases responsible for

controlling when and where a gene is expressed. Typically,

regulatory motifs describe TFBSs embedded in the DNA

sequences upstream of a gene’s transcription start site

(TSS). More rarely, regulatory signals may occur down-

stream of the TSS and even within coding sequences. Many

well-characterized motifs, such as the TATA box, occur

proximal to the TSS (Lones and Tyrrell 2007).

Identification of the regulatory regions and binding

sites is a prerequisite for understanding gene regulation

(Lockhart and Winzeler 2000). Initially, the experimental

techniques like DNAse footprinting assay and the Elec-

trophoretic Mobility Shift Assay (EMSA) have been used

to discover and analyze DNA binding sites. However, the

development of DNA microarrays and fast sequencing

techniques has led to new methods for in vivo identification

of binding sites, such as ChIP-chip and ChIP-Seq (Elnitski

et al. 2006). Experimental identification and verification of

such elements is challenging and costly; therefore, much

effort has been put into the development of computational

approaches. A good computational method can potentially

provide high-quality prediction of the binding sites and

reduce the time required for experimental verification.
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Computational discovery of the regulatory elements is

possible because they occur several times in the same gen-

ome, and they may be evolutionary conserved (Sandve and

Drabløs 2006). This means that searching for overrepre-

sented motifs across regulatory regions may discover novel

regulatory elements. However, this simple looking problem

turns out to be a tough problem, made difficult by a low

signal-to-noise ratio. This is because of the poor conserva-

tion and short length of the transcription factor binding sites

in comparison with the length of promoter sequences. Recent

reviews have noted some important limitations of existing

tools for regulatory motif discovery like, the limited appli-

cability of current nucleotide background models, rapid

failure with increasing sequence length and a tendency to

report false positives rather than true transcription factor

binding sites (Tompa et al. 2005; Hu et al. 2005).

Motifs or TFBSs are generally represented as the con-

sensus IUPAC strings, position frequency matrices (PFMs),

position weight matrices (PWMs) or position-specific

scoring matrices (PSSMs) in the databases. The motif data

are modeled as PFM by aligning identified sites and

counting the frequency of each base pair at each position of

the alignment. Moreover, by using sequence logos, PWM

can be displayed with color and height proportional to the

base pair frequency and information content for each

position by formulas. Known regulatory motif profiles are

cataloged in databases such as TRANSFAC (Matys et al.

2003) and JASPAR (Sandelin et al. 2004).

We used a niched Pareto genetic algorithm for regula-

tory motif discovery. The algorithm uses multi-objective

representation of a motif that enables the algorithm to find

out Pareto-optimal solution set of variable length motifs.

‘‘Existing methods’’ section contains a brief survey of

various techniques and algorithms used to solve the motif

finding problem. ‘‘Materials and methods’’ section explains

the method and it’s components like representation & ini-

tialization, selection, crossover, mutations, fitness objec-

tives and score function. Next section contains the

simulation results followed by conclusion.

Existing methods

Identification of regulatory motifs in upstream region of co-

regulated genes or orthologous genes is a challenging

problem of computational biology. In the last few years,

many algorithms were proposed to find solutions for motif

discovery. According to a survey (Das and Dai 2007), two

major strategies exist to discover repeating sequence patterns

occurring in both DNA and protein sequences: enumeration

and probabilistic sequence modeling. Enumeration strate-

gies rely on word counting to find words that are overrep-

resented. Probabilistic model-based methods represent the

pattern as a matrix, called a motif, consisting of nucleotide

base multinomial probabilities for each position in the pat-

tern and different probabilities for background positions

outside the pattern. In another view, the motif finding

problem can be classified as exact motif finding (without

insertions and deletions) and inexact motif finding (with

insertion and deletions). Karci (2009) proved that exact motif

finding is a P-type problem and this can be solved using

deterministic method. The inexact motif finding problem can

be solved using stochastic or approximate methods.

Among those previous works, most popular being is the

Multiple Em for Motif Elicitation (MEME) system (Bailey

and Elkan 1994), Gibbs sampler (Thompson et al. 2003)

and CONSENSUS (Hertz et al. 1990). Even with weak

signals, the methods such as MEME and Gibbs Motif

Sampler effectively find motifs of variable width and

occurrences in DNA and protein sequences.

Many other algorithms have been developed to improve

these popular motif discovery tools by means of perfor-

mance, length of motifs or some other considerations. Liu

et al. employed genetic algorithm for finding potential

motifs in the regions of TSS (Liu et al. 2004). Structured

genetic algorithm is used to discover highly conserved

motifs among upstream sequences of co-regulated genes

(Stine et al. 2003). The GA-based hybrid schemes have

also been proposed. One such method is GARPS that

combines GA and Random Projection Strategy (RPS) to

identify planted (l, d)-motifs. In this paper, RPS is used to

find good starting positions by introducing position-

weighted function, followed by GA that is used to refine

the initial population obtained from RPS (Huo et al. 2010).

Recently, algorithms based on promoter sequences of

co-regulated genes and phylogenetic footprinting had been

suggested. These algorithms integrate two important

aspects of a motif’s significance into one probabilistic

score. These aspects are overrepresentation of motifs and

cross-species conservation of motifs. Wang and Stormo

(2003) developed the motif finding algorithm PhyloCon

that takes into account both aspects, conservation among

orthologous genes and co-regulation of genes within a

species. Sinha et al. (2004) developed the algorithm

PhyME that was based on a probabilistic approach. This

algorithm handles data from promoters of co-regulated

genes and orthologous sequences.

Materials and methods

Problem statement

According to reference (Chan et al. 2008), the motif

identification in unaligned DNA sequences using GAs can

be defined as follows:
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Input A set of N sequences S = {S1, S2,…, SN}, each of

which is from the finite alphabet D = {A, T, C, G}, where

the length of each sequence is l, and the motif width w with

a constraint 0 \ w � l.

Output A set of motifs, where each motif is represented

by a set of subsequences M = {m1, m2,…,mN}, and each mi

is a subsequence with length w from sequence Si. The set of

motifs is such that the consensus similarity score or/and the

length of the motif is maximized.

The method

Genetic algorithm (GA) is a widely used evolutionary

algorithm, which applies a stochastic optimization tech-

nique. It operates on a population of candidate solutions to a

specific problem domain. Specifically, the structure in the

current population is evaluated for its effectiveness as a

solution during each generation. Based on this evaluation, a

new population of candidate structures is formed using

operators like crossover and mutation. This process is iter-

ated until an optimal solution is found or no improvement is

achieved after a significant amount of evaluations. (Gold-

berg 1989).

The other genetic algorithms proposed for motif iden-

tification like ‘‘finding motifs by genetic algorithm

(FMGA)’’ (Liu et al. 2004) is a single objective genetic

algorithm that can identify a single motif of fixed length.

The structured GA (Stine et al. 2003) that used a tree-

structure chromosomal representation in the algorithm can

identify the motif of variable length. The proposed algo-

rithm is a multi-objective approach for optimizing a vector-

valued cost function. This niched Pareto genetic algorithm

is able to identify de novo multiple motifs of variable

lengths simultaneously.

The multi-objective optimization seeks to optimize the

components of a vector-valued cost function. In single

objective optimization, the solution of the problem is a single

global optimum point, where as in multi-objective optimi-

zation, the solution of the problem is a set of points known as

the Pareto-optimal set. Each point in this set is optimal in the

sense that no improvement can be achieved in one cost vector

component that does not lead to degradation in at least one of

the remaining components. According to reference (Fonseca

and Fleming 1993), assuming a maximization problem, the

following conditions apply:

Condition 1 (inferiority) A vector u = (u1,…,un) is said

to be inferior to v = (v1,…,vn) iff u is partially less than

v (u p \ v), i.e.,

8i ¼ 1; . . .; n; ui � vi ^ 9 i ¼ 1; . . .; n : ui � vi

Condition 2 (superiority) A vector u = (u1,…,un) is said

to be superior to v = (v1,…,vn) iff v is inferior to u.

Condition 3 (non-inferiority) Vectors u = (u1,…,un) and

v = (v1,…,vn) are said to be non-inferior to one another if

v is neither inferior nor superior to u.

Each element in the Pareto-optimal set constitutes a

non-dominant solution to the multi-objective problem.

These solutions are non-dominant as there are no other

solutions superior in all attributes.

In the context of our algorithm, the vector u and v are

representing the fitness of motifs, which has two elements.

The first element is the similarity score of the consensus

motif among the given co-regulated promoter sequences,

and the second element of the vector is the length of the

motif. To compare the fitness of motifs, we compare the

motifs element by element.

Consensus similarity

A pattern of nucleotides that is represented by maximum

frequency at a position is called the consensus string. To

measure the similarity score, we used the normalized

similarity of a consensus motif.

Length of the motif

We used the normalized length as the measure of the size

of a motif. The normalized length of a motif is defined as

the length of a motif divided by the maximum possible

length of motifs.

The algorithm

Figure 1 illustrates the working of niched Pareto GA. The

key components of the algorithm are initialization, selec-

tion, crossovers & mutation, insertion and evaluation and

finish. The initialization step deals with the representation

of the motifs using a suitable encoding scheme and the

initialization of the population. The selection step selects

the suitable candidate motifs for the reproduction from the

current population. The crossover and mutation step deals

with the generation of new offsprings and adaption of the

environmental influences. The fitness of newly generated

offsprings is evaluated using an objective fitness function,

and the fit offsprings are inserted in the population. During

each generation of the evolutionary process, each member

of the population is evaluated by the objective fitness

function. The evolutionary process stops when the stopping

criteria are satisfied.

Initialization

To represent an individual motif, we used the position-

based representation approach as used in the algorithms
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GALF-P and GAME (Chan et al. 2008; Wei and Jensen

2006). Here, each individual motif is represented by a

vector P = {w, p1, p2,…,pN} storing the length of motif

and a set of possible starting positions for the motif

instances in each sequence. Vector P is used to generate the

vector of subsequences for a possible consensus solution

set M, where each subsequence is of length w. The con-

sensus solution set M = {m1, m2,…,mN}, where each pi is

uniquely mapped to subsequence mi of length w, is used to

generate the consensus motif. Figure 2 illustrates this

approach. The initial population is generated using this

multiple attribute representation. The representation of an

individual motif in the algorithm is having two fields (1)

the length of motif and (2) the starting positions in the

promoter sequences. Hence, the population has all the

members of same size but having different value of attri-

bute length. This enables the algorithm to identify the

motifs of variable length. The numeric encoding is used to

represent the width and the starting position of a subse-

quence. The size of the population is taken from the user as

an input. The algorithm randomly generates the initial

population of the size specified by the user. The length of

motif and starting positions of motif for each subsequence

are randomly generated.

Selection

Maintaining population diversity and selective pressure is

the key issue while using a selection method. The tourna-

ment selection is one of the most common methods used in

GAs. In this method, two individual motifs are chosen

randomly from the current population, and the one with

higher fitness score is selected for the reproduction. But

this binary tournament selection assumes a single solution

of the problem and GA converges to a single global

optimum. To obtain Pareto-optimal solutions, we used

the selection scheme as proposed by Horn et al. (1994).

This scheme uses Pareto domination tournaments for

selection and fitness sharing, when there is non-dominant

tournament.

Pareto domination tournaments In this scheme, two

candidate motifs are chosen for selection at random from

the population. A comparison set (of size tdom) of motifs is

also chosen randomly from the population. Each of the

candidate motifs is then compared against the motifs of the

comparison set, and a non-inferior candidate motif is

selected for reproduction. If there is a tie, means neither or

both of the candidate motifs are non-inferior, then sharing

is used to decide the winner.

Fitness sharing Goldberg and Richardson (1987) intro-

duced the concept of fitness sharing. The aim of fitness

sharing is to distribute the population in search space over a

number of different peaks, which are possible Pareto-

optimal solutions. So, fitness sharing helps the algorithm to

maintain the population diversity. Due to this sharing, fit-

ness of an individual motif is derated. The derated fitness

of an individual motif is calculated by taking its unshared

objective fitness fi and dividing it by the niche count, which

is an estimate of the size of the neighborhood of an indi-

vidual motif i. The neighborhood of a motif is computed by

counting how many individual motifs in the population

Is stopping criteria 
satisfied?  

//Finish
• Return the Pareto optimal motifs 

// Insertion & Evaluation
• Replace current generation by new generation
• Evaluate the fitness of new generation

// Crossover & Mutations
• Perform one point crossover on random pairs 

of individuals 
• Apply random mutations  

//Initialization
• Initialize size of population, 
• Import promoter sequences and  
• Evaluate fitness of population

//Selection 
• Pareto Domination Tournaments 
• Fitness sharing 

Yes

No 

Fig. 1 Flowchart of the niched Pareto genetic algorithm

w p1 p2 P3 … pn

08 039 138 171 … 164 

m1 

AGTGACGT

m2 

CGTGACGT

m3 

AGTGATGC

… mn 

AGTGACGG

Fig. 2 Representation of a member: pi is the starting position of the

subsequence mi of length w, in ith sequence
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have the consensus similarity score and the motif length

similar to the motif in consideration. After sharing the

fitness of individual motif is fs(i) = fi/qi, where qi is the

niche count.

Crossovers and mutation

To generate new offspring from their parents, we used one-

point crossover method. In this method, a crossover point

less than the length of motif is randomly generated. Then,

after the crossover point, the sub-strings representing the

parents are swapped.

There may be chances of being trapped in a local optima

and getting the false motif. To avoid this, we used mutation.

Mutation also helps in maintaining population diversity and

fast convergence of GA. To produce the mutation effect, first

we randomly select a victim individual motif, which is going

to be mutated and then changed its starting position value.

Insertion and evaluation

In the context of genetic algorithm, the fitness of a motif

represents how good the individual as an optimal solution

is. We use the two objectives to measure the fitness of a

consensus motif in the population. The first objective is the

similarity score of the consensus motif among the given co-

regulated promoter sequences, and the second objective is

the length of the consensus motif. Our algorithm tries to

search the Pareto-optimal solutions that maximize both

objectives.

Consensus similarity To measure the similarity score, we

used the normalized similarity of a consensus motif that is

generated by a member of population. The consensus

similarity score is computed using the PWM (position

weight matrix) of each individual motif. This is defined as:

Sim ScoreðMÞ ¼ 1

w

Xw

j¼1

fmaxðjÞ ð1Þ

where M is a consensus motif, w is the length of motif, and

fmax(j) is the maximum frequency value in column j. This

approach is explained in the Fig. 3.

Motif length A motif of large length is having less

probability of appearing in a sequence just by chance. So, a

motif of large length is less likely to be a false motif. We

used the normalized length as the measure of the size of a

motif. We assumed the minimum length of a motif is 4 and

maximum length of the motifs is 20.

Finish

The algorithm uses two stopping criteria. The first is cri-

terion is stagnation—if there is no or marginal (below

threshold) improvement in the average fitness of the pop-

ulation, from one generation to the next, for ten consecu-

tive generations. The second criterion is when the

algorithm completes the specified number of generation

cycles. On completion, the algorithm returns the Pareto-

optimal set of motifs.

Simulation results

In order to evaluate the performance of our algorithm for

motif identification, we used the synthetic data sets com-

prising various scenarios. Synthetic data sets are made of

the following combinations: (1) the number of sequences:

8–20, (2) length of the sequences: 200–500 bp, (3) size of

motifs: 4–20, (4) the background distributions: uniform,

AT-rich & GC-rich and (5) motif conservation levels: high

or low.

The data sets with uniform background distribution have

equal probability of occurrences of A, C, G and T. The AT-

rich data sets have 60% AT content & 40% GC content,

whereas GC-rich data sets have 60% GC content and

40% AT content. We embedded each sequence with the

instances of known motifs at random positions. The known

m1 A    G    T    G    A    C    G    T 1       2       3       4       5       6       7       8 

m2 A    G    T    G    A    C    G    A A     0.6    0.2     0.2    0.0    0.6    0.0    0.0    0.2 

m3 T    G    A    G    T    C    G    T T     0.2    0.0     0.6    0.0    0.2    0.2    0.0    0.4 

m4 A    G    T    G    A    C    G    G C     0.2    0.0     0.0    0.0    0.2    0.8    0.0    0.2 

m5 C    A    G    G    C    T    G    C G     0.0    0.8     0.2    1.0    0.0    0.0    1.0    0.2 

w =8      A      G       T      G      A      C      G      T 

    0.6 + 0.8 + 0.6 + 1.0 + 0.6 + 0.8 + 1.0 + 0.4 

(a) Similarity Score = 5.8/8 = 0.725 

(b)

Fig. 3 A consensus motif

representation and its similarity

score computation, a the

consensus solution set M, b the

consensus motif and similarity

score
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motifs that are embedded in the sequences generated ran-

domly by following two conservation levels: high and low.

A high conservation motif is formed such that at any

position a dominant nucleotide has a probability of 0.91

and each of the rest is 0.03. A low conservation motif is

formed such that at any position, a dominant nucleotide

has a probability of 0.70 and each of the rest is 0.10. The

algorithm is implemented using the Java programming

language. Since Java is the platform independent and

architecture neutral language, the program can be run on

any kind of processor and operating system. The program

has a graphical user interface to take the input from the

user and to display the output. The program is free and

available on request through e-mail to the corresponding

author.

To evaluate the algorithm’s ability for the identification

of multiple motifs, we embedded some data sets with

multiple known motifs of the variable length and conduct a

number of runs. The modifiable parameters of the algo-

rithm are the number of promoter sequences, the size of

population, the number of generation cycles, the proba-

bility of crossover and the probability of mutations. The

probability of crossover represents the probability of gen-

eration of new offsprings by the members selected for

reproduction. The probability of mutation represents the

probability of modification of position values in the pop-

ulation. We compared the motifs retrieved by algorithm

with original implanted motifs. The motifs instances in the

real data sets are not exact. There may be variation because

of mutations and deletions. Also there are some other

sources of noise like false reported sequence or motifs in

databases. The motif instances, we have embedded, are not

exact. It means that we have embedded the motif pattern in

the promoter sequences that may vary from sequence to

sequence. So in the cases where we found motif instances

of more than 70% consensus similarity, we considered this

as threshold for successful identification. Since a low

conservation motif is formed such that at any position, a

dominant nucleotide has a probability of 0.70. We have

taken 70% consensus similarity as threshold.

For each simulated data set, to evaluate the performance

of our algorithm, we used the standard information retrie-

val parameters, precision (sensitivity) and recall (specific-

ity) (Hu et al. 2005). Precision P is number of predicted

motif sites that are true sites divided by the number of

predicted motif sites, and recall R is number of predicted

motif sites that are true sites divided by the number of true

sites. These two parameters are combined to compute the

standard parameter for comparison F score, as follows:

F ¼ 2 � precision � recall=ðprecision þ recallÞ ð2Þ

High values of F occur only when both precision and

recall are high. The average of precision, recall and F score

were calculated for the discovered motifs for each data set.

We also compared the performance of the algorithm with

MEME. Results of various scenarios such as the number of

sequences, length of sequences, and number of motifs

identified, length of motifs, precision, recall and F score for

each simulation condition are shown in Table 1. The better

F score has been marked bold. The F score for motif

identification is up to 0.824 for high conservation of motifs

and 0.710 for low conservation of a motif. The algorithm

finds motifs of different length with best similarity score

for each length. The number of motifs returned by the

algorithm is depending upon how many non-inferior motifs

are present in the input data sets. The algorithm returns

only non-inferior solutions. The algorithm has limitations

in identifying multiple motifs of the same length. If there

are multiple motifs of same length in the data sets, our

algorithm finds only one with best similarity score. Also if

there are multiple motifs of same similarity score, the

algorithm finds the longest one. Results show that the

F score is better for long motifs in comparison with short

motifs. The F score is better for long motifs because these

motifs are less likely to be a false motif and having less

probability of occurring in the sequences just by chance.

We also tested this algorithm with the real biological

data sets. We used the promoter sequence data of Sac-

charomyces cerevisiae. We run this algorithm against ten

target genes of transcription factor MIG1, nine target genes

of transcription factor GCN4, seven target genes of PDR3

transcription factor and six genes of MCB transcription

factor. The experimentally reported consensus motifs and

motifs identified by niched Pareto GA algorithms are

shown in Table 2. Here, we have shown the motif that

matches best with experimentally reported motifs. The

results show that the algorithm can effectively identify

multiple motifs if present in the sequences.

Conclusion

Identification of transcription factor binding sites is an

important and difficult problem. Most of the existing

methods such as Gibbs sampling algorithm are local search

methods, so they may suffer from the problem of local

optima. Genetic algorithm provides a good approach to

solve this problem. Genetic algorithm solves the optimal

problem based on the biological characteristics. In this

paper, we have used the multi-objective genetic algorithm

that produces Pareto-optimal solution set in place of a

single optimum solution.

Simulation results of the algorithm on synthetic data

comprising various scenarios show that the algorithm is

able to predict the motifs with average F score in the range

of 0.621–0.824. The algorithm is also able to detect
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multiple motifs of variable length present in the sequences.

The results show that the algorithm can identify motifs in

the promoter data of S. cerevisiae effectively.

The performance of this approach can probably be

improved using more intelligent operators for selection,

crossover and mutation. Currently, the algorithm can find

multiple motifs of variable length, but in the case of

multiple motifs of the same length, it finds the single

motif with maximum consensus similarity score. How-

ever, this issue can be addressed using a ranking scheme

of solutions. On the other hand, the fitness evaluation

can be improved if we are able to additionally incor-

porate terms that reflect the biological messages behind

the similarities among motifs.
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N number of sequences, L length of sequences, nM number of motifs embedded, C conservation of motif, w length of embedded motifs, H high,

L low

Table 2 Results of biological promoter sequences

S. no. TF data

set

Reported consensus

motif

Discovered motif

by niched Pareto GA
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TGAGTC
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4 MCB ACGCGT ACGCGT
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