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Genome-wide association studies (GWAS) have identified over 60 genetic loci associated
with immunoglobulin G (IgG) N-glycosylation; however, the causal genes and their
abundance in relevant tissues are uncertain. Leveraging data from GWAS summary
statistics for 8,090 Europeans, and large-scale expression quantitative trait loci (eQTL)
data from the genotype-tissue expression of 53 types of tissues (GTEx v7), we derived a
linkage disequilibrium score for the specific expression of genes (LDSC-SEG) and
conducted a transcriptome-wide association study (TWAS). We identified 55 gene
associations whose predicted levels of expression were significantly associated with
IgG N-glycosylation in 14 tissues. Three working scenarios, i.e., tissue-specific,
pleiotropic, and coassociated, were observed for candidate genetic predisposition
affecting IgG N-glycosylation traits. Furthermore, pathway enrichment showed several
IgG N-glycosylation-related pathways, such as asparagine N-linked glycosylation, N-
glycan biosynthesis and transport to the Golgi and subsequent modification. Through
phenome-wide association studies (PheWAS), most genetic variants underlying TWAS
hits were found to be correlated with health measures (height, waist-hip ratio, systolic
blood pressure) and diseases, such as systemic lupus erythematosus, inflammatory
bowel disease, and Parkinson’s disease, which are related to IgG N-glycosylation. Our
study provides an atlas of genetic regulatory loci and their target genes within functionally
relevant tissues, for further studies on the mechanisms of IgG N-glycosylation and its
related diseases.
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INTRODUCTION

Glycosylation is one of the most ubiquitous and essential
posttranslational modifications (PTM) for extracellular proteins in
eukaryotes, with the addition of linear or branched oligosaccharide
sidechains called glycans to the backbones of proteins (1). According
to the glycans covalently attached to asparagine, threonine, or serine
side chains, they are named either “N-linked” or “O-linked” (2).
Based on thewell-known asparagine (Asn)-X-Serine (Ser)/threonine
(Thr) sequon, a given eukaryotic glycoproteinmay have one ormore
N-linked glycosylation (N-glycosylation) sites (3). In terms of the
relatively clear functional domains and the highly conserved
glycosylation site at the equivalent position of Asn-297 of each
heavy chain across mammalian species, immunoglobulin G (IgG)
has been regarded as an ideal N-glycoprotein model for researching
N-glycosylation (4, 5).

N-Glycan is initially synthesized from a lipid-linked,
oligosaccharide moiety (Glc3Man9GlcNAc2-P-P-dol) on the
lumen side of the endoplasmic reticulum (ER) and transferred
to the nascent polypeptide chains in the ER. N-glycan is then
conservatively trimmed to a core moiety (Man5GlcNAc2-Asn) by
a series of exoglycosidases in the ER before transfer to the Golgi
apparatus for the following optional glycan assembly (6).
Assembly of the glycan-extended tree is controlled by multiple
exoglycosidases and the Golgi-localized glycosyltransferases,
resulting in a wide variety of oligosaccharide structures showing
high species specificity (7). At present, almost 200 glycosylation-
related genes have been identified in the human genome
(summarized in GlycoGene Database (GGDB, https://acgg.asia/
ggdb2/) (8), representing approximately 1% of all human genes.
However, glycan branching in the Golgi is highly dependent on
microenvironment, such as tissue-specific regulation of the
expression of glycoenzymes along the Golgi assembly line. Due
to the lack of N-glycan profiling data for particular tissues, even to
the best-known glycoprotein, human IgG, it remains unclear
whether its N-glycosylation is regulated differentially across
multiple tissues and how tissue-specific regulation contributes to
its diverse N-glycosylation.

GWAS have identified over 60 susceptibility loci associated
with the alternative N-glycan peaks (N-GPs) of IgG, which is the
qualification and quantification of enzymatically released N-
glycans by ultra-performance liquid chromatography (UPLC)
after the IgG is isolated from plasma (9–12). Four of the 200
glycogenes (8) are located in these identified GWAS loci,
including FUT6, FUT8, B4GALT1, and MGAT3, implying their
contribution to the alternative IgG N-glycosylation. However,
over 90% of identified GWAS hits are difficult to characterize
biologically due to the pitfalls of GWAS approach, e.g., very small
effect size, within the noncoding region, pleiotropic, and/or
noncausative (13). Thus, a large number of functionally
relevant genes underpinning these GWAS associations of IgG
N-glycosylation remain unidentified.

Furthermore, immune cells, e.g., plasma cells which
synthesize and secrete IgG, are highly motile between blood
and lymphatic circulation, traveling around the lymphoid nodes
and mucosa-associated lymphoid tissues (MALTs), a diffuse
lymphoid tissue system found in submucosal parts of the body
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(e.g., gastrointestinal tract, nasopharynx, thyroid, breast, lung,
salivary glands, and skin), throughout the body to reach a site of
inflammation (14). On amount of the existence of tissue-specific
gene expression (15) and the limitation that only plasma IgG has
been investigated in population-based studies for the genetic
effect of IgG N-glycosylation, it is still unclear whether or not the
N-glycosylation of IgG is regulated differentially among multiple
MALTs. Likewise, how the genetic susceptibility of quantitative
trait loci (QTL) identified by GWAS affects IgG N-glycosylation
through the tissue-specific regulation of gene expression remains
unknown. Recent genomic/transcriptomic-based statistical
approaches (16, 17) may help to shed light on the complicated
mechanisms of IgG N-glycan biosynthesis, especially concerning
tissue-specific regulation.

In the present study, to identify genetically regulated genes
associated with IgG N-glycosylation traits across the multitude of
tissues, we leveraged the data of GWAS on IgG N-glycosylation
from 8,090 participants of European ancestry (11) and the data
from a large-scale expression QTL (eQTL) study, i.e., Genotype-
Tissue Expression of 53 types of tissue (GTEx v7) (18). We first
conducted a linkage disequilibrium scores for the specific
expression of genes (LDSC-SEG) (16) to filtrate which tissues are
most likely to be enriched with each specific IgG N-GPs having
significant GWAS results (20 out of 23 GPs have significant GWAS
hits). To avoid the tissue bias in following transcriptome-wide
association study (TWAS), we selected corresponding tissue types
in expression panels of functional summary-based imputation
(FUSION), matched with the LDSC-SEG screening tissues and
the LDSC-SEG significant IgG N-GPs for TWAS analyses (17). To
investigate whether the significance of TWAShits resulted from the
regulation of gene expression or a genetically associated effect, we
conducted joint and conditional analyses on each TWAS hit. We
next explored the biological pathways of candidate genes from
TWAS and accessed the network of corresponding gene sets by
protein-protein interaction (PPI) analysis within IgG N-
glycosylation-related tissues. At last, we retrieved the single
nucleotide polymorphisms (SNPs) underlying the TWAS hits in
phenome databases to discover the complex traits and diseases
sharing genetic susceptibility with IgG N-glycosylation. A
schematic analysis plan of our study can be found in Figure 1.

The study aimed to characterize the genetic predispositions of
IgG N-glycosylation in their enriched tissues, thus extending our
understanding of the genetic regulation of IgG N-glycosylation-
related gene expression in the corresponding tissues and to
determine their association with susceptibility genes for IgG N-
glycosylation-related traits and diseases.
MATERIALS AND METHODS

GWAS Dataset of IgG N-Glycosylation
The IgG N-glycosylation GWAS summary statistics used in
LDSC-SEG and TWAS were acquired from the NHGRI-EBI
GWAS Catalog (19) for study GCST009860, the most recent
large-scale GWAS meta-analysis (8,090 participants of European
ancestry) (11). The GWAS summary statistics were downloaded
November 2021 | Volume 12 | Article 741705
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from https://datashare.is.ed.ac.uk/handle/10283/3238/ on May
27, 2020. Information about IgG N-glycosylation peaks (IGPs)
is given in Supplementary Table 1 by both Edinburgh code and
Zagreb code. Additional details on the quantification of IGPs and
genotyping can be found in previous studies (9, 10).
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To be consistent with our previous studies, we used the Zagreb
code (GP1–GP24) for naming eachGPprofiled byUPLC in the IgG
N-glycome. Detailed naming and compositional information of
GPs were given in a previous report (9, 20) and are listed in
Supplementary Table 2. Meanwhile, being consistent with public
FIGURE 1 | A schematic analysis plan in the study. Leveraging IgG N-glycosylation genome-wide association studies (GWAS), summary statistics, and gene
expression datasets: (1) to filtrate the tissues enriched in IgG N-glycosylation signal, (2) to identify the genes most significantly associated with IgG N-glycosylation
features, and (3) to investigate the diseases or phenotypes involved with IgG N-glycosylation.
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data fromGTEx, we used the same tissue names as those in GTEx.
Of the total 24GPs, significantGWAS summary statistics of 20GPs
were investigated by LDSC-SEG.Whereas the remaining four GPs
(GP1, GP3, GP5, and GP21) were excluded due to a lack of GWAS
statistical significance.

Transcriptomic Dataset for Linkage
Disequilibrium Score Regression of
Specifically Expressed Genes in
LDSC-SEG
Integrating GWAS with large-scale functional genomic data has
been proposed as an effective approach to characterize the
functional effects of associated genetic variants, especially for
cross-tissue study (21). LDSC-SEG provides a solid
bioinformatics tool for discerning which tissues or cell types
are most relevant to a particular disease or health phenotype
(16). Therefore, LDSC-SEG is able to perform the tissue
enrichment analyses for a specific phenotype by integrating
stratified linkage disequilibrium score regression from GWAS
summary statistics with tissue-specifically expressed gene sets in
a huge volume of gene expression data (22).

Data for LDSD-SEG analysis were prepared as described in a
previous study (https://alkesgroup.broadinstitute.org/
LDSCORE/) (16). A total of 53 multitissue samples from GTEx
v7 were included in this LDSC-SEG analysis (https://github.com/
bulik/ldsc) (18).

Transcriptomic Panels for TWAS
in FUSION
TWAS (23) combine genetically predicted gene expression levels
with GWAS results on a specific phenotype, to discover genes
whose cis-regulated expressions are associated with that phenotype
(17, 24–27). The above approach has been successfully performed
on pathogenesis studies of neurodegenerative disorder
(Parkinson’s disease) (28), psychiatric disorders (schizophrenia,
attention deficit hyperactivity, autism spectrum, and bipolar
disorder) (29–31), and also cancer studies (pancreatic, breast,
prostate, and ovarian cancers) (32–36).

Through TWAS analysis, the relationships between SNPs and
gene expression levels were first obtained to build-up reference
panels composed of predictive models. These models were then
used to predict trait-associated gene expressions, via the
statistically significant SNPs from the GWAS summary
statistics of an interesting trait based on a large independent
cohort (17, 25).

The FUSION method was performed to estimate heritability,
build predictive models, and identify transcriptome-wide
associations. By FUSION, the associations between the IgG N-
GPs and the expression levels of candidate genes in
corresponding tissues were identified via the coassociated
genetic variants (as SNPs) which are identified as statistically
significant in GWAS (as QTLs) and also in GTEx (as eQTLs).

Transcriptomic imputation (TI) in FUSION method was
conducted using eQTL reference panels which were derived
from tissue-specific gene expression coupled with genotypic
data. In the current study, 27 tissues were identified as relevant
Frontiers in Immunology | www.frontiersin.org 4
with IgG N-glycosylation by LDSC-SEG, while three tissues were
unavailable in FUSION. Hence, 24 tissue panels were used as TI
reference panels, while the 1,000 Genomes v3 LD panel (http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) was
hired as an LD reference. A Bonferroni-corrected study-wise
threshold was calculated by p = 0.05/number of genes in each
panel (Supplementary Table 2). As previous GWAS on IgG N-
GPs reported that immune tissues are relevant to IgG N-
glycosylation (10, 11), we employed three immune tissues, i.e.,
spleen, whole blood, and Epstein-Barr virus (EBV)-transformed
lymphocytes as a complementary strategy of expression panel
selection in FUSION, along with 20 GWAS-significant IgG N-
GPs to conduct a parallel TWAS analysis.

Identification of IgG N-Glycosylation
Relevant Tissues by LDSC-SEG
The linkage disequilibrium score for the specific expression of
genes (LDSC-SEG) is a computational approach to identify
phenotype-relevant tissues using stratified LD score regression
(https://alkesgroup.broadinstitute.org/LDSCORE/) (16). In a
given tissue, if there is an enrichment of the highest specific
expression in the regions surrounding the heritability of a
disease/phenotype, it will support the likely correlation
between this disease/phenotype and this tissue (16). By this
approach, we investigated 53 tissues from the GTEx project
(http://gtexportal.org/) (18), to designate the tissues relevant to
IgG N-glycosylation features. All procedures follow the tutorial
in Github (https://github.com/bulik/ldsc).

Performing TWAS on IgG N-Glycosylation
GWAS Dataset
TWAS has been proposed as a robust tool to integrate GWAS
summary statistics, cis-SNP-expression effect sizes, and LD
reference panels to evaluate the association between the cis-
genetic element of expression and disease/phenotype (28, 30, 31).
Thus, using the colocalized SNPs between GWAS statistics and
eQTL data as linkers, TWAS is able to identify the candidate
genes for the potential mechanism underlying the variant-
disease/phenotype associations, which are challenging for
GWAS approach.

In the present study, we conducted FUSION tool (http://
gusevlab.org/projects/fusion/) (17) for each transcriptome
reference panel designated by an LDSC-SEG approach. Briefly,
to estimate the heritability of each gene expression, we first
conducted a robust version of Genome-wide Complex Trait
Analysis-Genome-based restricted maximum likelihood
(GCTA-GREML). This step generated the heritability estimates
of expression for each gene with the p of the likelihood ratio test.

FUSION has created five different models to calculate the
predictive weights of expression or intron usage: best linear
unbiased prediction (blup), Bayesian sparse linear mixed
model (bslmm), LASSO regression (lasso), Elastic Net (enet),
and top SNPs (topl). After weighting, the cross-validation for
each of the desired models was performed. The model gaining
the best cross-validation prediction accuracy was chosen and the
corresponding predictive expression or intron usage was
November 2021 | Volume 12 | Article 741705
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correlated to IgG N-glycosylation GWAS summary statistics to
conduct TWAS and filtrate significant associations. The
significance for heritability estimates of the genes or intron
usage at a Bonferroni-corrected p < 0.05 were reported as
TWAS hits. Accounting for more suggestive information on
gene coexpression, we also applied an FDR of 5% within each
expression reference panel to obtain a bigger risk gene set for
pathway analysis.

Joint and Conditional Testing GWAS
Signal Analysis
Using the postprocess module in FUSION (http://gusevlab.org/
projects/fusion/), joint and conditional testing methods were
performed to determine the contribution of gene expression
association in each significant TWAS hit. After the weight of
gene expression was removed, the residual TWAS signal was
recalculated and evaluated with genome-wide Bonferroni
correction. The testing region was defined by the transcribed
region of the genes. In each testing, every association of GWAS
was conditioned upon the joint gene model by one SNP.

Colocalization Analyses and
Functional Annotation
Using coloc approach (37), the colocalization analyses were
conducted to strengthen the detection of candidate genes at IgG
N-glycosylation GWAS loci by hunting the evidence of shared
causal variants between functional eQTL traits and GWAS traits.
The colocalization test converts correlation statistics to effect size
based on the sample size of the study for a given function, i.e., gene
expression. Then, under the assumption that the standard error
approximation is inversely proportional to the square root of the
sample size, the approximate colocalization effect size is calculated.
The statistics of posterior probability (PP) were presented for the
five hypotheses (PP.H0: unrelated; PP.H1: only functionally
relevant; PP.H2: only GWAS relevant; PP.H3: independent
function/GWAS related; and PP.H4: colocalized function/
GWAS related). The current study mainly concerned the PP.H4,
which represents the posterior probability that GWAS significant
signal and eQTL locus are the same locus, ranging from 0 to 1,
where 0 means 0% probability and 1 means 100% probability.
Colocalization is declared if the posterior PP.H4 for the model
with a shared causal variant exceeded 0.750.

The online tool, HaploReg v4.1 (https://pubs.broadinstitute.
org/mammals/haploreg/haploreg.php) (38) was used to annotate
the potential functions of the best eQTLs which were identified
by FUSION and coloc, for dbSNP function, promoter and
enhancer activity regions, DNAse, protein-binding regions, and
transcription factor-binding motifs.

Gene-Set Analyses
Agnostic analyses were performed in STRING portal (http://
string-db.org/) (39), according to Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Reactome
databases to identify pathways relevant to IgG N-glycosylation.
Gene clustering was conducted using the GeneNetwork v2.0
(https://genenetwork.nl) (40), which was based on RNA
sequencing database (n = 31,499).
Frontiers in Immunology | www.frontiersin.org 5
Phenome-Wide Association Studies and
Genetic Correlation Investigation
To identify more diseases/phenotypes associated with the most
significant eQTL of each TWAS gene, we performed a phenome-
wide association study (pheWAS) on each leading SNP, by
leveraging the public data in the GWASAtlas (https://atlas.ctglab.
nl) (41). Based on p-values, the top 5 phenotypes (excluding IgG
N-glycosylation and repeated phenotypes) were presented. The
genetic correlation between the diseases/phenotypes identified by
pheWAS was determined by LDSC, using available data in the
GWASAtlas. We utilized the most recent GWAS data (i.e., until
2020) for analysis. A Bonferroni correction was utilized to adjust
the significance threshold with the number of tested traits.
RESULTS

Identification of IgG N-Glycosylation-
Relevant Tissues by Heritability
Enrichment of Expressed Genes
Tobetter comprehend howperipheric tissues affect IgGN-GPs and
to avoid tissue bias in following TWAS, we conducted a tissue
enrichment analysis using the LDSC-SEG method to leverage the
newest IgG N-glycosylation GWAS summary statistics (11) and
eQTL data from the GTEx consortium (v7) (15, 18). The study
comprised 48 tissue types (n = 80 to 491, Supplementary Table 1)
with a 5% false discovery rate (FDR) threshold.

SeventeenGPswere enriched in 27of the 53 types of tissue in the
geneexpressionpanelsofGTExv7at a5%FDRthreshold (-log10p>
1.32) (Supplementary Table 3, Figure 2; Supplementary Figure
1).These17GPsand27 relevant tissueswere therefore chosenas the
primary strategy for geneexpressionpanel selection in the following
TWAS analysis.

For the three immune tissues selected as the complementary
strategy, only three GPs including FA2[6]G1 glycan (GP8), FA2[6]
BG1 glycan (GP10), and FA2G2S1 glycan (GP18) were enriched in
spleen and whole blood, but no enrichment was found in EBV-
transformed lymphocytes (Supplementary Table 3). These results
indicated that genetic effects of IgGN-GPs on the regulation of gene
expression are tissue selective, andmore likely tobe enrichednotonly
in the tissues of immune organs but also broadly inmultipleMALTs
across peripheral organs, such as skin, lung, breast mammary tissue,
small intestine, esophagus muscularis, testis, and uterus.

Constructing a List of Tissue-Dependent
Associations Between Genes and IgG
N-Glycan Traits
To identify the cis-regulated genes associated with IgG N-GPs
within their functionally relevant tissues, we conducted a TWAS
analysis using the FUSION method (see URLs in the Data
Availability Statement), in terms of the same IgG N-
glycosylation GWAS summary statistics (11) and the reference
transcriptome panels derived from GTEx v7 (15, 18). In total,
116,076 features of tissue-specific gene expression were tested
(see details in Supplementary Table 1). Based on the primary
strategy of expression panel selection by LDSC-SEG (24 tissue
November 2021 | Volume 12 | Article 741705
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reference panels out of 27 tissue types enriched by LESC-SEG are
available in GTEx v7), 90 sets of IgG N-GP/SNP/gene expression
association reached the threshold of Bonferroni-corrected
significance within each tissue reference panel. After gene
annotation by querying in the Metascape portal (42) (see URLs
in the Data Availability Statement), 55 genes were confirmed as
TWAS results, being significantly associated with 11 IgG N-GPs
across 14 tissues (Figure 3 and Table 1).

According to the three immune tissues selected by the
complementary strategy, 22 statistically significant TWAS hits
were obtained with the threshold of Bonferroni correction, nine
of which were also identified in the 55 TWAS hits based on the
primary strategy. The LDSC-SEG strategy obtained more
information from candidate genes in the more functionally
relevant tissues and covered the majority result from the three
immune tissue strategy (OR is not estimable, p < 1.0E−05,
Fisher’s exact test). Furthermore, in terms of hiring the most
mechanistically related tissue reference panels in TWAS analysis
that could reduce the reference bias (21), we therefore chose the
results from a primary strategy based on tissue enrichment as the
final TWAS result for further analyses. Of the 55 candidate genes
identified by TWAS, 12 genes in eight regions (B4GALT1:
9p21.1; COG7: 16p12.2; FUT8: 14q23.3; GPANK1: 6p21.33;
GSDMB: 17q21.1; HLA-C: 6p21.33; HLA-DRA: 6p21.32;
KDELR2: 7p22.1; MGAT3: 22q13.1; ORMDL3: 17q21.1; RPL3:
22q13.1; and TAB1: 22q13.1) are in known IgG N-glycosylation
Frontiers in Immunology | www.frontiersin.org 6
GWAS susceptibility loci (9–11). Forty-three genes at 10 novel
regions and six known regions were for the first time associated
with IgG N-glycosylation (Table 1).

Based on the results from 27 IgG N-GP-enriched tissue types
and 17 corresponding GPs, TWAS eventually identified 14
tissues significantly specific to 11 IgG N-GPs, and meanwhile
the expressions of 55 genes were linked to their corresponding
IgG N-GPs (Figure 4). Checking for the IgG N-glycan traits
based on the chemical and structural properties of glycans
(detailed chemical and structural information of GPs was given
in previous reports (9, 20) and is presented in Supplementary
Table 2), all 14 types of specific tissue and 45 genes contributed
to galactosylation, including eight tissues and 31 genes
contributing to monogalactosylation, and 8 tissues and
17 genes contributing to digalactosylation; 13 of 14 tissues and
39 genes were identified as involved in fucosylation; 9 tissues
and 30 genes affected sialylation, including 7 tissues and 28 genes
to monosialylation, and 3 tissues and 3 genes to disialylation.
Only 5 tissues and 14 genes were significantly associated with
bisecting GlcNAc (Table 1 and Supplementary Table 2).

From the confirmed 90 sets of “GP-SNP-gene expression”
associations, three scenarios of genetic variants affecting IgG N-
glycosylation traits were observed: (1) A single SNP is within or
associated with a single gene and a single GP within one
corresponding tissue, showing the tissue-specific effect of the
genetic variant for a certain GP. In this scenario, 40 associations
FIGURE 2 | Enrichment of tissues in IgG N-glycosylation. Significantly enriched tissues of IgG N-glycosylation were identified by linkage disequilibrium score
regression in a specifically expressed gene (LDSC-SEG) approach. A total of 53 types of tissue obtained from the Genotype-Tissue expression project (GTEx v7) are
grouped into nine domains with different colors. Twenty IgG N-glycan peaks (GPs) with significant GWAS results are enriched in all 53 types of tissue. Twenty-seven
tissues are highly enriched for IgG N-glycosylation GWAS signals among 53 types of tissues, with a FDR significant at 5% (red dotted line).
November 2021 | Volume 12 | Article 741705
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were observed (Table 1 SNPs with asterisks). (2) A single SNP is
within or associated with a single gene or multiple genes and
simultaneously associated with a single or multiple GPs within
multiple corresponding tissues. This suggests pleiotropic effects
of the genetic variants for different GPs or genes among multiple
tissues (accounting for 44 observed associations, Table 1 SNPs
with daggers). (3) A single SNP is associated or located in a single
gene but associated with multiple GPs within only one tissue,
indicating that the genetic variant is coassociated with these two
GPs while they were highly correlated with each other via
coassociation with the same gene (accounting for six observed
associations, Table 1 SNPs with section symbols). For example,
rs761830 is correlated with A2 glycan (GP2) (Z = −11.70, p =
1.34E−31) and FA2G2 glycan (GP14) (Z = 4.52, p = 6.22E−06),
linked with FUT8 gene in skeletal muscle in two reverse
directions. In such a case, the corresponding SNP is likely to
regulate its target genes in two opposite directions to influence
these two GPs (Table 1).
IgG N-Glycosylation TWAS Hits Are Driven
by Genetic Regulation on Gene Expression
As multiple TWAS hits overlapped with the significant results of
previous IgG N-glycosylation GWAS, we conducted joint and
conditional analyses to address how much GWAS signal remains
after the association of the functional annotation is removed. The
postprocess module in FUSION was performed to report the
statistics for the jointly significant genes.

Our results demonstrated that all known IgG N-glycosylation
GWAS susceptibility loci could be explained entirely ormostly by the
Frontiers in Immunology | www.frontiersin.org 7
expression of corresponding genes identified in TWAS, supporting
the concept that these TWAS hits were mainly driven by the genetic
regulation of gene expression in these loci (Supplementary Table 4
and Supplementary Figure 2). For instance, association analysis
conditioning on the expression of FUT8, which depended on the
associations between expression SNPs (eSNPs) andA2 glycan (GP2)
in skeletal muscle, showed expression-driven signals in a previously
implicated GWAS locus and explained 59.1% of the variance
(rs761830 lead SNPGWAS p = 1.32E−54, conditional lead SNPGWAS

p=2.49E−23) (Figure5A). By the associations of eSNPswithFA2G2
glycan (GP14) in skeletal muscle, the expression level of FUT8
explained 94.7% of the variances at this locus (rs761830 lead
SNPGWAS p = 6.83E−06, conditional lead SNPGWAS p = 3.00E−01)
was observed (Figure 5B). The joint and conditional analyses for
WNT3 completely explained the variance of the locus by 100% on
chromosome 17 through the associations of eSNPs with FA2[6]BG1
glycan (GP10) in the small intestine terminal ileum (rs199438 lead
SNPGWASp=1.3E−07, conditional leadSNPGWASp=1) (Figure5C).

Similarly, we performed joint and conditional analyses on the
remaining 43 novel IgG N-glycosylation TWAS hits with the
expression of corresponding genes. The result showed
that the majority of these TWAS hits were also mostly driven by
the regulatory effect of genetic variants on the expression levels of
targeted genes (Supplementary Figure 3 and Supplementary Table
5). For example, association analysis conditioning on the expression
of EVI5which depended on the associations between eQTLs andA2
glycan (GP2) in the skeletal muscle panel, demonstrated that
expression-driven signals in this novel IgG N-glycosylation locus
explained 49.9% of the variance (rs169201 lead SNPGWAS p = 5.17E
−10, conditional lead SNPGWAS p = 1.09E10-05) (Figure 5D).
FIGURE 3 | Miami plot of the transcriptome-wide association study for IgG N-glycosylation (n = 8,090) using gene expression models in 24 tissues. Each point
refers to a single gene tested, with the physical position plotted on the x-axis, and a Z-score of association between gene expression and IgG N-glycan peaks
plotted on the y-axis. Bonferroni-adjusted significant genes within corresponding transcriptome panels are labeled in multiple colors according to different tissue
categories and tissue types.
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TABLE 1 | Significant TWAS genes for IgG N-glycosylation original.

Tissue types in GTEx Cytogenetic
band

TWAS identified
gene

IgG N-glycosylation
feature

Lead QTL Best eQTL TWAS
Z-score

TWAS
p-value

COLOC
PP.H4

Muscle_Skeletal 1p22.1 EVI5 GP2 rs11800409 rs2893226* 4.53 5.93E−06 0.193
6p21.33a C4A GP16 rs3130923 rs497309† 5.61 2.05E−08 0.075
6p21.33a C4B GP16 rs1800629 rs3130484† −5.21 1.90E−07 0.936
6p21.33a CYP21A2 GP16 rs1800629 rs3101018† −5.15 2.59E−07 0.946
6p21.33a GPANK1 GP16 rs3130923 rs3130484† 5.50 3.87E−08 0.682
6p21.33a GPANK1 GP19 rs2523591 rs3130484† −5.03 4.81E−07 0.645
6p21.33a HLA-Cb GP16 rs2516408 rs2523578† −5.18 2.26E−07 0.000
6p21.33a MICB GP16 rs3130923 rs2516408† −6.13 9.04E−10 0.993
6p21.33a PRRC2A GP16 rs3130923 rs2515919* 5.53 3.23E−08 0.230
9p21.1a B4GALT1b GP18 rs10813951 rs1411609* −5.53 3.23E−08 0.000
14q23.3a FUT8b GP2 rs11847263 rs761830§ −11.70 1.34E−31 0.098
14q23.3a FUT8b GP14 rs11158593 rs761830§ 4.52 6.22E−06 0.908
14q23.3a MAX GP2 rs11847263 rs1953230* −11.34 8.37E−30 0.532
16p12.2a COG7b GP18 rs250555 rs250583* 5.05 4.46E−07 0.721
16p12.2 EARS2 GP18 rs250555 rs4967958* −4.93 8.11E−07 0.447
17q12 ERBB2 GP2 rs907091 rs2102928* −5.00 5.76E−07 0.103
17q12 PGAP3 GP2 rs907091 rs907089* −5.36 8.14E−08 0.000
17q12 PNMT GP2 rs907091 rs2271308* −4.62 3.90E−06 0.009
17q21.1 GSDMA GP2 rs907091 rs8065126* 5.76 8.62E−09 0.000
17q21.31 KANSL1 GP14 rs169201 rs169201† 5.02 5.22E−07 0.987
17q25.3a C17orf89b GP18 rs2659007 rs883884* 5.40 6.52E−08 0.050
22q13.1a MGAT3b GP19 rs5757678 rs1005522§ −5.71 1.12E−08 0.988
22q13.1a MGAT3b GP24 rs5750830 rs1005522§ −4.58 4.55E−06 0.981
22q13.1a TAB1b GP19 rs738289 rs5757650* 4.95 7.35E−07 0.543

Small_Intestine_Terminal_Ileum 5q31.1 SLC22A5 GP2 rs11746555 rs2073643* −4.41 1.03E−05 0.042
6p21.33a C4A GP16 rs3130923 rs3101018† 7.01 2.46E−12 0.655
6p21.33a CCHCR1 GP16 rs3130923 rs1265087† −4.91 9.04E−07 0.000
6p21.33a CYP21A1P GP16 rs1800629 rs3101018† 5.19 2.08E−07 0.950
6p21.33a FLOT1 GP16 rs3130557 rs3094220* −4.46 8.08E−06 0.731
6p21.33a HLA-Cb GP16 rs2516408 rs1265098* −5.62 1.88E−08 0.120
6p21.33a HLA-S GP16 rs3130923 rs2844623† 4.60 4.22E−06 0.068
6p21.33a VARS2 GP16 rs3130557 rs3130557† 4.49 7.21E−06 0.954
17q12 PGAP3 GP2 rs907091 rs903502* −5.41 6.38E−08 0.122
17q21.1 GSDMA GP2 rs907091 rs3859192* 4.89 9.88E−07 0.065
17q21.1 GSDMBb GP2 rs907091 rs9303281* −7.76 8.21E−15 0.967
17q21.31 ARL17B GP2 rs415430 rs17698176* 4.59 4.53E−06 0.021
17q21.31 DND1P1 GP10 rs17689471 rs17689471† 5.33 1.00E−07 0.990
17q21.31 KANSL1 GP10 rs17689471 rs169201† 5.19 2.07E−07 0.922
17q21.31 KANSL1-AS1 GP10 rs17689471 rs17689471† 5.29 1.21E−07 0.990
17q21.31 LRRC37A2 GP10 rs7224296 rs169201† 5.05 4.48E−07 0.972
17q21.31 LRRC37A4P GP10 rs17689471 rs17689471† −5.29 1.19E−07 0.972
17q21.31 RPS26P8 GP10 rs17689471 rs17689471† 5.32 1.07E−07 0.822
17q21.31-
q21.32a

WNT3b GP10 rs7224296 rs199438* 4.68 2.88E−06 0.373

Skin_Sun_Exposed_Lower_leg 6p21.33a APOM GP16 rs3130923 rs1150755* 4.65 3.28E−06 0.021
6p21.33a C4A GP16 rs3130923 rs1150753† 4.99 5.99E−07 0.090
6p21.33a C4B GP16 rs1800629 rs3101018† −6.11 1.02E−09 0.940
6p21.33a C6orf15 GP16 rs3130923 rs1265093* −5.11 3.25E−07 0.001
6p21.33a CYP21A2 GP16 rs1800629 rs1150753† −5.01 5.33E−07 0.931
6p21.33a HLA-Cb GP16 rs2516408 rs2523578† −5.73 9.93E−09 0.000
6p21.32a HLA-DRAb GP16 rs1150752 rs2858867* 4.71 2.48E−06 0.146
6p21.33a MICB GP16 rs3130923 rs2516408† −6.69 2.17E−11 0.993
6p21.33a PSORS1C2 GP16 rs3130923 rs1265099* 5.24 1.65E−07 0.027
6p21.33a SAPCD1 GP16 rs3130923 rs1144709* 4.75 2.05E−06 0.791

Spleen 17q21.31 CRHR1-IT1 GP10 rs17689471 rs17689471† 5.20 2.04E−07 0.990
17q21.31 DND1P1 GP10 rs17689471 rs17689918† 5.29 1.20E−07 0.989
17q21.31 KANSL1-AS1 GP10 rs17689471 rs17689918† 5.31 1.11E−07 0.988
17q21.31 LRRC37A4P GP10 rs17689471 rs17689918† −5.25 1.55E−07 0.989
17q21.31-
q21.32a

WNT3b GP10 rs7224296 rs199520* 4.58 4.74E−06 0.858

19p13.11 TM6SF2 GP10 rs7257072 rs2916074* −4.55 5.37E−06 0.056
Heart_Atrial_Appendage 6p21.32 HLA-DMA GP16 rs209473 rs2854275* −4.86 1.19E−06 0.214
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Association analysis conditioning on the expression of SLC22A5
which depended on the associations between eQTLs and A2 glycan
(GP2) in the small intestine terminal ileum panel, showed
expression-driven signals in this novel locus that explained 55.7%
of the variance (rs738288 lead SNPGWAS p = 2.16E−22, conditional
lead SNPGWAS p = 9.19–11) (Figure 5E). For a novel locus of IgGN-
glycosylation identified by TWAS in 21q22.2, conditioning on
PSMG1 explained 95.1% of the variance (rs8065126 lead
SNPGWAS p = 1.63E−05, conditional lead SNPGWAS p = 3.42E
−01) (Figure 5F).

Colocalization of TWAS Signals Provides
Evidence of Causality
To strengthen the detection of candidate genes as potential
causal genes, the colocalization analyses were conducted
between total 90 TWAS hits and all corresponding GTEx v7
eQTLs (15), using “coloc” package (37).

The colocalization results for this current study, the posterior
probability for the fifth hypothesis (colocalized function/GWAS
Frontiers in Immunology | www.frontiersin.org 9
related), are given in the last column of Table 1. Using 0.750 as
the cutoff value here, 38 out of a total 90 TWAS hits obtained
significant possibilities for the colocalization shared between
GWAS association and eQTL association (Table 1). It is
particularly important for the TWAS hits in the extended
patterns of LD regions, such as HLA region on chromosome 6.
Only 14 out of 40 TWAS hit in HLA region had the significant
possibilities for colocalization, hinting that the extended patterns
of LD regions are still challenging for TWAS approaches. Half of
TWAS hits in nonextended patterns of LD regions were declared
as shared causal variants with supportive posterior possibilities.

Functional Annotation
WeusedHaploReg v4.1 toperform the functional analysis of a total of
18 lead eQTLs showing the best colocalized associationswith IGPs in
both TWAS and GWAS results. Among them, rs2297256 was in the
3′-UTR, while rs2516412, rs2534680, rs3101018, rs761830, and
rs1005522 were located in the upstream transcript regions, and the
remaining 12 lay in the intronic regions (Supplementary Table 6).
TABLE 1 | Continued

Tissue types in GTEx Cytogenetic
band

TWAS identified
gene

IgG N-glycosylation
feature

Lead QTL Best eQTL TWAS
Z-score

TWAS
p-value

COLOC
PP.H4

6p21.33a C4A GP16 rs3130923 rs497309† 5.26 1.42E−07 0.174
6p21.33a CCHCR1 GP16 rs3130923 rs1265087† −4.75 2.08E−06 0.000
6p21.33a HLA-Cb GP16 rs2516408 rs1265087† −4.45 8.54E−06 0.098
6p21.33a MICB GP16 rs3130923 rs2516412† −6.52 7.05E−11 0.992
6p21.33a PPP1R18 GP16 rs3130557 rs3094663* 4.67 3.04E−06 0.740

Lung 6p21.33a C4A GP16 rs3130923 rs1150753† 6.13 8.59E−10 0.122
6p21.33a CCHCR1 GP16 rs3130923 rs1265087† −5.54 2.95E−08 0.000
6p21.33a FLOT1 GP16 rs3130557 rs3130557† −5.80 6.74E−09 1.000
6p21.33a HLA-Cb GP16 rs2516408 rs2844623† −4.76 1.89E−06 0.000
6p21.33a LINC00243 GP16 rs3130557 rs3130557† −5.04 4.57E−07 0.922
6p21.33a MICB GP16 rs3130923 rs2516412† −5.63 1.83E−08 0.992

Testis 7p22.1 KDELR2 GP4 rs17198191 rs17198191* 4.82 1.41E−06 0.999
9p21.1a B4GALT1b GP4 rs10813951 rs17247766§ 6.51 7.69E−11 0.006
9p21.1a B4GALT1b GP14 rs10813951 rs17247766§ −6.16 7.48E−10 0.000
17q21.32 LRRC37A17P GP14 rs415430 rs169201† −4.58 4.73E−06 0.980

Minor_Salivary_Gland 6p21.33a C4A GP9 rs2516408 rs3101018† 4.37 1.26E−05 0.231
6p21.33a MICB GP9 rs2516408 rs2516412† −6.59 4.46E−11 0.939
11q12.2 MYRF GP9 rs174576 rs449397* −4.35 1.35E−05 0.097

Brain_Cerebellar_Hemisphere 17q21.31 ARL17A GP14 rs415430 rs169201† 4.44 8.87E−06 0.982
17q21.32 FAM215B GP14 rs415430 rs199439* 4.49 7.17E−06 0.974
17q21.31 KANSL1 GP14 rs169201 rs17692129* 4.48 7.59E−06 0.731

Brain_Cerebellum 17q21.31 ARL17A GP14 rs415430 rs199443* 4.66 3.09E−06 0.977
17q21.32 FAM215B GP14 rs415430 rs169201† 4.78 1.74E−06 0.981
17q21.31 LRRC37A2 GP14 rs415430 rs169201† 4.49 7.14E−06 0.982

Breast_Mammary_Tissue 17q21.1 ORMDL3b GP7 rs4795400 rs25645* 5.12 3.02E−07 0.028
22q13.1a MIEF1 GP23 rs909674 rs738288* 7.50 6.37E−14 0.501

Adipose_Visceral_Omentum 22q13.1a MGAT3b GP23 rs909674 rs5750830* 7.96 1.74E−15 0.729
22q13.1a RPL3 GP23 rs1005522 rs139393* 5.52 3.43E−08 0.098

Brain_Hypothalamus 21q22.2 PSMG1 GP19 rs7282582 rs2297256* 5.02 5.12E−07 0.799
Brain_Substantia_nigra 6p21.33a VARS GP19 rs2523591 rs2523500* 4.86 1.17E−06 0.097
Novembe
r 2021 | V
olume 12 |
Detailed naming and compositional information of GPs was given in previous reports and in Supplementary Table 1.
GP, IgG N-glycan peak; GP1-24, Zagreb code for the names of GPs in the qualification and quantification of enzymatically released IgG N-glycans by ultra-performance liquid
chromatography (UPLC); Lead QTL, SNP with the strongest association in the locus in GWAS analysis; Best eQTL, SNP with the strongest association in the locus in TWAS analysis;
COLOC PP.H4, the posterior probability of hypothesis 4 in COLOC approach.
aRegions have been implicated in previous IgG N-glycosylation GWAS.
bGenes have been implicated in previous IgG N-glycosylation GWAS.
*The tissue-specific SNP.
†The coassociated SNPs.
§The tissue-sharing SNPs.
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FIGURE 4 | The atlas of TWAS statistically significant genes regulating IgG N-glycosylation within specific tissues. The left column lists the candidate genes of IgG
N-glycosylation. The middle column comprises the tissues enriched to the candidate genes of IgG N-glycosylation. The various types of brain tissue from the GETx
consortium (v7) were allocated to the “brain” tissue group to reduce FDR. The right column indicates the IgG N-glycosylation traits associated with candidate genes
within relevant tissues. F, core (if the first letter) or antennary fucose; A2, biantennary; B, bisecting N-acetylglucosamine; Gx, galactose; Sx, sialic acid; x, number of
galactoses or sialic acids in a glycan structure. Detailed naming and compositional information of GPs was given in previous reports (9, 20) and is listed in
Supplementary Table 1. The solid lines with arrows show the positive effects of the expression of candidate genes on the specific IgG N-glycosylation trait,
whereas the dotted lines with arrows show negative effects.
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According to the data from the Encyclopedia of ENA
Elements (ENCODE) project (43), 16 out of the total 18 lead
eQTLs (except rs169201 and rs199520) were identified in strong
promoter or/and enhancer activity regions; 15 of the total 18
(except rs1144709, rs169201, and rs199520) in DNAse
hypersensitivity site regions; rs2516421, rs2534680, rs3101018,
and rs17198191 in transcription factor-binding regions; 14 of the
total 18 (except rs3130484, rs761830, rs9303281, and
rs17689471) in the regulatory motifs (Supplementary Table 6).

Gene Set Enrichment and PPI
Network Analysis
To investigate how many biological pathways may be potentially
relevant with the genes identified by TWAS, enrichment analyses
for GO, KEGG pathways, and Reactome were performed using
Frontiers in Immunology | www.frontiersin.org 11
the STRING database (see URLs in the Data Availability
Statement). A total of 55 candidate genes identified by TWAS
were significantly enriched in 42 gene sets focusing on three
functional processes: glycosylation (10 gene sets), immune
response (23 gene sets), and protein translation (9 gene
sets) (Table 2).

The ten significantly enriched glycosylation-relevant gene sets
were mainly involved in the pathways of N-glycan biosynthesis,
e.g., N-glycan biosynthesis, complex type (Mann-WhitneyU test,
p = 4.59E−06), transport to the Golgi and subsequent
modification (p = 4.00E−05), N-glycan antennae elongation in
the medial/trans-Golgi (p = 2.10E−05), and asparagine N-linked
glycosylation (p = 4.07E−04). Twenty-one out of the 24 immune
response-related gene sets were mainly enriched with infections,
such as Staphylococcus aureus infection (p = 1.40E−05), allograft
A B

E F

C D

FIGURE 5 | Regional association of TWAS hits. (A) Chromosome 14 regional association plot for GP3 in skeletal muscle. (B) Chromosome 14 regional association plot
for GP14 skeletal muscle. (C) Chromosome 17 regional association plot for GP10 in the small intestine terminal ileum. (D) Chromosome 1 regional association plot for
GP3 in skeletal muscle. (E) Chromosome 5 regional association plot for GP3 in the small intestine terminal ileum. (F) Chromosome 21 regional association plot for GP19
in brain hypothalamus. The top panel in each plot highlights all genes in this 1-Mb window. The marginally significant genes identified by TWAS are colored in orange,
and the jointly significant genes are highlighted in green. The bottom panel shows a Manhattan plot of the GWAS data before (grey) and after (blue) conditioning on the
predicted expression of the green genes.
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rejection (p = 5.60E−04), graft-versus-host disease (p = 5.60E
−04), and several specific immunological diseases, e.g., systemic
lupus erythematosus (SLE) (p = 1.66E−04), autoimmune thyroid
disease (AHD) (p = 1.82E−04), viral myocarditis (p = 2.50E−04),
and leishmaniasis (p = 5.50E−04). At last, nine gene sets were
related to protein translation, e.g., tRNA aminoacylation (p =
9.05E−05), amino acid activation (p = 1.44E−04), and tRNA
metabolic process (p = 7.47E−03) (Table 2).

GO enrichment on TWAS hits strengthened several pathways
which are biologically relevant to IgG N-glycosylation. The known
glycosyltransferase genes (8) in our TWAS hits, including FUT8,
B4GALT1, MGAT3, KDELR2, and COG7 were enriched in the
processes of asparagine N-linked glycan biosynthesis, transport to
the Golgi and subsequent modification, and N-glycan antennae
elongation in themedial/trans-Golgi glycosylation.These processes
have been implicated in the physioregulation of IgG N-
glycosylation (44, 45). By KEGG pathway analysis, six genes, i.e.,
C4A,C4B, FCGR2A,HLA-DMA,HLA-DRA, andHLA-DRB1, were
enriched as the top 2 significant results in the pathways of
Staphylococcus aureus infection (KEGG term hsa05322, FDR =
1.42E−05) and systemic lupus erythematosus (KEGG term
hsa05150, FDR = 2.00E−04). Three of these genes (HLA-DMA,
HLA-DRA, and HLA-DRB1) were enriched in the pathways of
several autoimmune and inflammatory diseases, i.e., autoimmune
thyroid disease, IBD, RA, and asthma (KEGG terms in Table 2),
demonstrating their core functions in the pathways.

Through these core genes, these pathways are highly associated
with cytokine-cytokine receptor interaction (hsa04060), antigen
processing and presentation (hsa04612), T-cell receptor signaling
pathway (hsa04660), B-cell receptor signaling pathway (hsa04662),
and leukocyte trans-endothelial migration (hsa04670). These
pathways play crucial roles in the appropriate functioning of all
immunoglobulins, especially for themost abundant type in plasma,
i.e., IgG. From Reactome (see URLs in the Data Availability
Statement) enrichment, three gene sets are enriched into three N-
glycosylation pathways, i.e., asparagine N-linked glycosylation
(HSA-446203), transport to the Golgi and subsequent
modification (HSA-948021), and N-glycan antennae elongation
in the medial/trans-Golgi (HSA-975576).

To validate whether these TWAS-identified candidate genes
associated with IgG N-glycosylation were inclined to be
coexpressed within corresponding tissues, we measured the
protein-protein interaction (PPI) network for the connectivity
of the genes by GeneNetwork v2.0 (see URLs in the Data
Availability Statement). The genes were clustered based on
their coexpression of public RNA-seq data (n = 31,499). Most
genes identified by TWAS within each specific tissue reference
panel demonstrated coexpression (Supplementary Figure S4).
For example, skeletal muscle contributed the most numerous
significant TWAS hits across all tissues by 24 candidate genes,
while 20 genes were clustered into one network with ERBB2,
PGAP3, and PNMT demonstrating strong coexpression
(Supplementary Figure 4). In small intestine terminal ileum,
all 18 genes identified by TWAS show coexpression, in which
PGAP3, GSDMB, HLA-S, CCHCR1, VARS2, and KANSL1 are
intensively coexpressed (Supplementary Figure 4). Therefore,
Frontiers in Immunology | www.frontiersin.org 12
the coexpressed gene sets within corresponding tissues could
support the result of IgG N-glycosylation TWAS analyses based
on tissue enrichment by LDSC-SEG.

Phenome-Wide Association Study and
Genetic Correlation Analysis
To identify other phenotypes which are likely to be associated or
comorbid with IgG N-glycosylation, we conducted a pheWAS
for each IgG N-glycosylation eQTL in the GWAS database based
on a European population (41). Since all eQTLs are associated
with IgG N-glycosylation, we chose to exclude and remove the
duplicated phenotypes related to the same eQTL from the result
list, in order to emphasize the remaining top 5 phenotypes
ranked by p for each eQTL. In total, nearly 100 phenotypes
were identified as significantly associated with these eQTLs,
including anthropometric health measurements (weight,
height, blood pressure, and blood cell count), immune and
metabolic diseases (SLE, inflammatory bowel disease (IBD),
rheumatoid arthritis (RA), primary sclerosing cholangitis
(PSC), and type 2 diabetes (T2D)), and neurological and
psychiatric disorders (Parkinson’s disease (PD), schizophrenia,
and bipolar disorder) (Supplementary Table 7).

To reconfirm the pheWAS results, we investigated the genetic
correlations between these phenotypes using the most recent
GWAS data from the UK Biobanks by Multi-marker Analysis of
GenoMic Annotation (MAGMA), and SNP heritability, and
genetic correlation with LDSC (41). Most of these disease-
related phenotypes were implicated in previous GWAS studies
(46–51). By analyzing the genes assigned to each significant SNP
within a 1-kb window from both sides with default parameters
(SNP-wise mean model) (52) and the gene set defined by
MSigDB v.6.1 (53), the MAGMA results showed strong
correlations between height, waist-hip ratio (WHR), systolic
blood pressure (SBP), PD, and IBD with IgG N-glycosylation
(p < 2.5E−06) (Figure 6A). Through the calculation of the SNP
heritability and pairwise genetic correlations by LDSC (22),
genetic correlations were calculated between the GWAS of
disease-related phenotypes. The results showed strong positive
correlations between IgG N-glycosylation, SBP, triglyceride
cholesterol (TC), T2D, IBD, PSC, Crohn’s disease (CD), and
ulcerative colitis (UC), consistent with the above pheWAS
results (Figure 6B).
DISCUSSION

In this study, we conducted a systematic transcriptome-wide
association study, combining the analysis of LDSC-SEG and
TWAS to gain insight into the tissue specificity and tissue-
dependent genetic effect of IgG N-glycosylation, based on
summary statistics of the most recent IgG N-glycosylation
GWAS on 8,090 individuals of European ancestry. In so doing,
we addressed fundamental questions regarding the heritable
tissue enrichment of IgG N-glycosylation and constructed an
atlas of tissue-dependent associations between genes and IgG N-
glycan traits.
November 2021 | Volume 12 | Article 741705

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. IgG N-Glycosylation Tissue Specificity
TABLE 2 | Significant pathways of TWAS genes identified through gene network analysis.

GO Category Description p-value Hits

hsa_M00075 KEGG pathway N-Glycan biosynthesis, complex type 4.59E−06 FUT8|B4GALT1|MGAT3
R-HSA-
975576

Reactome gene
sets

N-Glycan antennae elongation in the medial/trans-Golgi 2.10E−05 FUT8|B4GALT1|MGAT3

R-HSA-
948021

Reactome gene
sets

Transport to the Golgi and subsequent modification 4.00E−05 FUT8|B4GALT1|MGAT3|
KDELR2|COG7

hsa00510 KEGG pathway N-Glycan biosynthesis 1.44E−04 FUT8|B4GALT1|MGAT3
R-HSA-
446203

Reactome gene
sets

Asparagine N-linked glycosylation 4.07E−04 FUT8|B4GALT1|MGAT3|
KDELR2|COG7

GO:0006487 GO biological
processes

Protein N-linked glycosylation 5.69E−04 FUT8|B4GALT1|MGAT3

GO:0043413 GO biological
processes

Macromolecule glycosylation 2.08E−03 FUT8|B4GALT1|MGAT3|COG7

GO:0006486 GO biological
processes

Protein glycosylation 2.08E−03 FUT8|B4GALT1|MGAT3|COG7

GO:0070085 GO biological
processes

Glycosylation 2.41E−03 FUT8|B4GALT1|MGAT3|COG7

GO:0009101 GO biological
processes

Glycoprotein biosynthetic process 5.97E−03 FUT8|B4GALT1|MGAT3|COG7

hsa05150 KEGG pathway Staphylococcus aureus infection 5.51E−06 C4A|C4B|HLA-DMA|HLA-DRA
hsa05330 KEGG pathway Allograft rejection 6.69E−05 HLA-C|HLA-DMA|HLA-DRA
hsa05332 KEGG pathway Graft-versus-host disease 8.42E−05 HLA-C|HLA-DMA|HLA-DRA
hsa04940 KEGG pathway Type I diabetes mellitus 9.72E−05 HLA-C|HLA-DMA|HLA-DRA
hsa05322 KEGG pathway Systemic lupus erythematosus 1.66E−04 C4A|C4B|HLA-DMA|HLA-DRA
hsa05320 KEGG pathway Autoimmune thyroid disease 1.82E−04 HLA-C|HLA-DMA|HLA-DRA
hsa05416 KEGG pathway Viral myocarditis 2.50E−04 HLA-C|HLA-DMA|HLA-DRA
hsa05140 KEGG pathway Leishmaniasis 4.69E−04 HLA-DMA|HLA-DRA|TAB1
hsa04612 KEGG pathway Antigen processing and presentation 5.48E−04 HLA-C|HLA-DMA|HLA-DRA
hsa05168 KEGG pathway Herpes simplex infection 5.83E−04 HLA-C|HLA-DMA|HLA-DRA|

TAB1
hsa05145 KEGG pathway Toxoplasmosis 1.66E−03 HLA-DMA|HLA-DRA|TAB1
hsa05166 KEGG pathway HTLV-I infection 1.94E−03 HLA-C|HLA-DMA|HLA-DRA|

WNT3
GO:0002250 GO biological

processes
Adaptive immune response 2.68E−03 C4A|C4B|HLA-C|HLA-DMA|

HLA-DRA|MICB
hsa04514 KEGG pathway Cell adhesion molecules (CAMs) 3.31E−03 HLA-C|HLA-DMA|HLA-DRA
GO:0002253 GO biological

processes
Activation of immune response 3.75E−03 C4A|C4B|HLA-DRA|MICB|

FLOT1|TAB1
hsa04145 KEGG pathway Phagosome 4.00E−03 HLA-C|HLA-DMA|HLA-DRA
GO:0045807 GO biological

processes
Positive regulation of endocytosis 4.00E−03 C4A|C4B|FLOT1

GO:0002478 GO biological
processes

Antigen processing and presentation of exogenous peptide antigen 5.71E−03 HLA-C|HLA-DMA|HLA-DRA

GO:0002449 GO biological
processes

Lymphocyte-mediated immunity 6.08E−03 C4A|C4B|HLA-C|MICB

GO:0019884 GO biological
processes

Antigen processing and presentation of exogenous antigen 6.36E−03 HLA-C|HLA-DMA|HLA-DRA

GO:0002460 GO biological
processes

Adaptive immune response based on somatic recombination of immune
receptors built from immunoglobulin

6.71E−03 C4A|C4B|HLA-C|MICB

GO:0048002 GO biological
processes

Antigen processing and presentation of peptide antigen 7.16E−03 HLA-C|HLA-DMA|HLA-DRA

hsa05169 KEGG pathway Epstein-Barr virus infection 8.35E−03 HLA-C|HLA-DRA|TAB1
R-HSA-
379724

Reactome gene
sets

tRNA aminoacylation 9.05E−05 VARS|VARS2|EARS2

GO:0006418 GO biological
processes

tRNA aminoacylation for protein translation 1.11E−04 VARS|VARS2|EARS2

GO:0043039 GO biological
processes

tRNA aminoacylation 1.35E−04 VARS|VARS2|EARS2

GO:0043038 GO biological
processes

amino acid activation 1.44E−04 VARS|VARS2|EARS2

hsa00970 KEGG pathway Aminoacyl-tRNA biosynthesis 3.48E−04 VARS|VARS2|EARS2
R-HSA-
72766

Reactome gene
sets

Translation 3.07E−03 RPL3|VARS|VARS2|EARS2

(Continued)
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By the enrichment of 17 IgG N-GPs in 27 biologically relevant
tissues in our study, we have obtained strong genetic evidence
that most MALTs, e.g., skin, lung, breast mammary tissue, small
intestine, esophagus muscularis, testis, and uterus, are enriched
to specific IgG N-glycan traits (Figure 2). It has been established
that the IgG secreting cells (i.e., plasma cells) mature from B
lymphocytes and are translocated from primary lymphoid tissue
(bone marrow) to secondary lymphoid tissue which consists of
the lymph nodes, spleen and MALT for secreting IgG and
initiating adaptive immune responses (14). However, previous
studies measured the N-glycosylation of IgG in humans mainly
isolated from plasma, obtaining the average profile of whole IgG
N-glycome, and therefore a lack of information about the
functionally relevant tissues. A wet experiment on laboratory
animals provided evidence to support the assumption that IgG
against commensal gut bacteria can be synthesized and deposited
locally within MALTs in organ-cultured pig small intestinal
mucosal explants (54).

Using IgG as a model glycoprotein, our study demonstrates
the evidence of genetically regulated gene expression for the
Frontiers in Immunology | www.frontiersin.org 14
tissue selectivity of protein N-glycosylation in eukaryotes.
Eukaryotic N-glycosylation in the ER and Golgi apparatus is
highly complicated, due to a variety of exoglycosidase and
glycosyltransferase reactions. The tissue-selective manifestation
of protein N-glycosylation has been observed in recent studies,
e.g., between paired tumorigenic and adjacent nontumorigenic
colon tissues in humans (55), and between sites within the same
proteins from liver and brain tissues in the mouse (56). As a
simple glycoprotein, IgG usually contains only one N-
glycosylation site in the constant heavy chain region and the
N-glycan moieties of IgG have no more than two antennae. But,
in fact, hundreds of forms of glycans have been observed at this
single N-glycosylation site. Due to the limitation of sampling
from diverse human health tissues for N-glycosylation profiling,
there is still a lack of evidence from the N-glycome level for the
tissue specificity of IgG N-glycosylation. The results of tissue
enrichment in our study have bridged the gap and exhibited
tissue-selective manifestation for IgG N-glycosylation, leading to
the next hypothesis that certain N-glycans of IgG may
specifically be modified within some tissues and be affected by
TABLE 2 | Continued

GO Category Description p-value Hits

GO:0006399 GO biological
processes

tRNA metabolic process 7.47E−03 VARS|VARS2|EARS2

GO:0055088 GO biological
processes

Lipid homeostasis 3.79E−03 TM6SF2|APOM|ORMDL3

GO:0006612 GO biological
processes

Protein targeting to membrane 8.46E−03 ERBB2|RPL3|MIEF1
November 202
A B

FIGURE 6 | Multimarker analysis and genetic correlation. (A) Multi-marker Analysis of GenoMic Annotation (MAGMA) genes overlap. Each cell represents the
proportion of overlapped significant genes (p-value <2.5E−06) between the two GWAS on the number of significant genes in both GWAS on the rows and columns
and divided by the number of significant genes in each GWAS. Rectangles next to the trait labels are colored based on the domain of the trait. (B) Genetic
correlation. An asterisk in the box indicates the correlation passes the Bonferroni significance threshold (p < 0.05). Rectangles next to the trait labels are colored
based on the domain of the trait. Phenotypes are clustered into 24 domains and derived from public genome-wide association study summary statistics.
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tissue-specific environments. Consequently, the current study
advances the knowledge of tissue specificity on human IgG N-
glycosylation and in turn increases the statistical power for the
following TWAS analysis of candidate gene prioritization (21).

In this current study, we demonstrated that the TWAS
approach is able to discover more IgG N-glycosylation-related
genes without any prior information. We identified 12 candidate
genes in eight regions are in known susceptibility loci reported by
previous IgG N-glycosylation GWAS (9–11). Furthermore, we
discovered 43 genes at 10 novel regions and six known regions
for the first time to be associated with IgG N-glycosylation. For
the known genome loci, TWAS discovered more candidate genes
whose expressions in specific tissue are likely related to IgG N-
glycosylation by integrating GWAS signals with eQTL
knowledge, for example, C4A, C4B, CYP21A2, and GPANK1 in
6p21.33 for FA2G1S1 glycan (GP16) in skeletal muscle. In
addition, TWAS explored candidate genes in novel genomic
loci, e.g., EVI5 in 1p22.1 and PGAP3, ERBB2, PNMT, and
GSDMA in 17q12 for A2 glycan (GP2) in skeletal muscle.
These results provided more genomic context, including
candidate genes, regulatory variants, and relevant tissues for
future functional studies of IgG N-glycosylation.

A gene expressed specifically in a tissue type or cell type usually
reflects the biological processes in which the gene is involved and its
biological functions (57). In the current study, we demonstrate that
associations along IgG N-GP/SNP/gene expression in a tissue-
specific SNP scenario appear to be dependent on using expression
data derived from N-GP-enriched tissue. For instance, FA2G1S1
glycan (GP16) is positively associated with the expression of
PSORS1C2 in sun-exposed lower leg skin via a single eSNP
rs1265099 (Z = 5.24, p = 1.65E−07) but is not associated with any
other genes or tissues. PSORS1C2 encodes a keratinocyte
cornification-associated protein, which is specifically expressed in
two skin tissue types evaluated by GTEX v7 (Supplementary Figure
5). The protein product of this gene plays a primary role in the
terminal differentiation of keratinocytes (58). Recent studies have
shown that PSORS1C2 is strongly upregulated in peeling skin
disease (59) and is also associated with autoimmune skin diseases
including vitiligo (60) and psoriasis (61) by GWAS analyses. Also,
aberrant IgG FA2G1S1 glycan (GP16) has been observed to be
associated with SLE (62) and colorectal cancer (63). Our finding
that this IgG FA2G1S1 glycan (GP16) genetic predisposition
(rs1265099) may have tissue-specific effects on the expression of
PSORS1C2 within skin tissue thus supports the hypothesis that skin
tissue can contribute to the regulation of IgG FA2G1S1 glycan
biosynthesis and/or have the potential to serve as a proxy for several
skin-related autoimmune diseases. In total, four genes (PSORS1C2,
HLA-DRA, APOM, and SAPCD1) were significant in sun-exposed
lower leg skin TWAS models. Broadly, half of the significant genes
show tissue specificity on IgGN-glycosylation in other TWAS tissue
models. These tissue-specific candidate gene sets are a promising
source for further investigations into genetic effects underlying the
interactions between highly diverse IgG N-GPs and tissue-specific
genetic expression within corresponding tissues.

In contrast, genetic variants that affect gene expression levels in
multiple tissues are more likely to affect multiple complex traits
Frontiers in Immunology | www.frontiersin.org 15
(64). The pleiotropic gene findings in this study can confirm that
IgG N-glycosylation TWAS genes expressed inmultiple tissues are
more likely to have a wide range of downstream phenotypic
consequences (i.e., diverse N-glycosylation modification). As an
example in the present study, 19 genes are identified as IgG N-
glycosylation candidate genes in the small intestine terminal ileum
with 10 pleiotropic and 9 tissue-specific genes. Within the ten
pleiotropic genes, C4A, FLOT1, HLA-C, and WNT3 perform
important roles in N-glycosylation-related biological processes,
while the remaining nine tissue-specific genes are associated with
intestine-related functions, e.g., FLOT1 is responsible for encoding
flotillin 1 and is ubiquitously expressed across all tissue types
evaluated by GTEx v7 (Supplementary Figure 6). Flotillin 1
localizes to the caveolae and plays a role in several super
pathways, e.g., the angiopoietin-like protein 8 regulatory
pathway, cytoskeletal signaling, regulation of lipid metabolism
and beta-adrenergic signaling. As a tissue-specific gene, GSDMB
was reported to be expressed exclusively in the epithelium of the
gastrointestinal tract in a highly tissue-specific manner (65).
SLC22A5 was reported as being responsible for carnitine
transport across apical membranes of intestinal epithelial cells
(66). Pleiotropic genes and eSNPs account for almost half of the
other significant TWAS hits. Most of these hits have previously
been reported in the three core N-glycosylation-related biological
processes, including N-glycosylation, immune response, and
protein translation, while tissue-specific genes are mainly
annotated as being involved in the physiological activities of
corresponding tissues. This result partially explains why plasma
IgG N-glycosylation demonstrates a relatively stable holistic
pattern on each monosaccharide glycan although based on such
complicated branching patterns. The pleiotropic candidate genes
maintain the primary patterns of N-glycosylation in most related
tissues for a house-keeping N-glycosylated level, whereas the
tissue-dependent candidate genes regulate tissue-specific IgG N-
glycan patterns to adopt local inflammation, maintaining
homeostasis during physiology and pathophysiology processes.

By the evidence of the coassociations among eSNP and IgG N-
GPs, our results shed considerable light on the regulatory
mechanism of the equilibrium between some pairs of IgG N-
glycosylation. For example, in terms of Z-score in TWAS results,
rs761830 simultaneously correlated with A2 glycan (GP2) (Z =
−11.70, p = 1.34E−31) and FA2G2 glycan (GP14) (Z = 4.52, p =
6.22E−06) and linked them with FUT8 gene in skeletal muscle in
two reverse directions (Supplementary Table 2 and Figure 2).
This linked association provides two layers of meaning. Firstly, in
IgG N-glycosylation GWAS statistics, the effect allele (rs761830-
A) at the FUT8 locus is associated with a decreased level of GP2
(rs761830, p = 4.08E−38) but an increased level of GP14
(rs761830, p = 6.83E−06). The finding indicates that these two
GPs share identical heritability, being associated antagonistically
in the IgG N-glycome. Conversely, increasing A2 glycan (GP2)
and decreasing FA2G2 glycan (GP14) are consistent with the
changing of certain IgG N-GPs which have been observed in
association studies on chronic diseases (Supplementary Table 8),
such as dyslipidemia (DL) (67), SLE (62), RA (68), and chronic
kidney disease (CKD) (69). Secondly, eQTL statistics of GTEx v7
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shows the effect allele rs761830-A is responsible for increased
changes in gene expression of FUT8 in skeletal muscle (rs761830,
p = 2.60E−06). Hence, the genetic predisposition tagged by SNP
rs761830 whose allelic regulation on the expression of FUT8 gene
in skeletal muscle may contribute to the equilibrium of IgG N-GP
regulations, such as the above-mentioned two types of N-GPs.

By GO pathway enrichment and pheWAS investigation, our
study provides additional evidence for the involvement of IgG N-
glycosylation in several IgG N-GP-related diseases. Since the
establishment of UPLC-based high-throughput IgG N-glycomic
profiling (70), certain specific IgG N-GPs differed significantly
from the average patterns and were indicative of clinical
conditions, such as the level of monosialylated glycans which
was most strongly correlated with MetS-related risk factors,
especially with systolic blood pressure (SBP) (71). Further
research in other independent cohorts confirmed the existence
of a similar relationship between selective IgG N-glycan patterns
and signs of autoimmunity, e.g., IBD (49, 72), SLE (62), and RA
(73), neurological disorders, e.g., Parkinson’s disease (4) and
dementia (74), and vascular diseases, e.g., ischemic stroke (75)
and cancers (63), as previously mentioned (Supplementary
Table S7). The consistency of candidate genes, combined with
the coexpression of IgG N-glycosylation-related genes within
multiple tissues, GO enrichment gene sets, and the pheWAS
investigation on TWAS eSNPs implies that IgG N-glycosylation
may be the mediated phenotype sharing genetic correlations with
its related diseases. The allelic regulatory genetic variants of IgG
N-glycosylation within certain tissues may be involved in the
pathophysiological processes of its related diseases via regulation
of their target genes in tissue-specific modes.

Efforts to generate ever-larger sets of tissue-specific genetic
effects data will facilitate data mining opportunities for
investigating the regulatory mechanisms underlying trait and
gene associations (76). Although the current study has been
restricted to the use of eQTL data and GWAS data generated
from independent subpopulations of European ancestry with
limited sample sizes, future functional genomic endeavors of
tissue-specific regulation on IgG N-glycosylation will benefit
from a larger replication cohort simultaneously having IgG N-
glycosylation features, genotype data, and gene expression profiles
from different tissues. A recent study showed that targeted sialic
glycan degradation reinforces the anticancer immune response in
an animal experiment as evidenced by the sialylation effect on the
surface of cancer cells (77). The construction of in vitro and in vivo
models for IgG N-glycosylation are therefore urgently needed for
providing more solid experiment-based evidence to confirm the
hypothesis generated from the current study. We also note that
our study utilized eQTLs as genetic predictors of gene expression.
Nevertheless, pleiotropic effects on both gene expression and
phenotype could not be ruled out without further analyses.
Probabilistic fine-mapping approaches and transcription factor
enrichment analyses (78–80) can positively exclude spurious
results. Furthermore, a gene may have regulatory characteristics
other than cis-regulation, e.g., trans-regulation, or that does not
pass through eQTLs, but still could have downstream effects on
expression (81). In theory, beyond the current knowledge of
Frontiers in Immunology | www.frontiersin.org 16
regulatory models, there could be other novel regulatory
elements and underlining mechanisms. However, based on
allelic cis-regulation, we have been able to successfully prioritize
a potential causal gene set of 55 genes for IgG N-glycosylation and
its related complex traits and diseases.

In summary, we have performed the first comprehensive
analysis so far to identify the most relevant tissues for IgG N-
glycosylation and to detect a large number of genetic variants
which may regulate their target genes and further contribute to
IgG N-glycosylation within corresponding tissues. This
knowledge provides a starting point for further mechanistic
work on IgG N-glycosylation, which would advance our
understanding of IgG N-glycosylation biology and guide the
design of future functional studies to explore the specific variants
and the heritable regulation of IgG N-glycosylation. More
importantly, our approach of combining LDSC-SEG and
TWAS is widely applicable to complex traits for which GWAS
summary statistics are available and helps our understanding of
the molecular basis of the trait at multiple omics levels.
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