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ABSTRACT
Logarithmic finite-size scaling of the O(n) universality class at the upper critical dimensionality (dc = 4) has
a fundamental role in statistical and condensed-matter physics and important applications in various
experimental systems. Here, we address this long-standing problem in the context of the n-vector model
(n= 1, 2, 3) on periodic four-dimensional hypercubic lattices. We establish an explicit scaling form for the
free-energy density, which simultaneously consists of a scaling term for the Gaussian fixed point and
another term with multiplicative logarithmic corrections. In particular, we conjecture that the critical
two-point correlation g(r, L), with L the linear size, exhibits a two-length behavior: follows r 2−dc governed
by the Gaussian fixed point at shorter distances and enters a plateau at larger distances whose height decays
as L−dc /2(lnL) p̂ with p̂ = 1/2 a logarithmic correction exponent. Using extensive Monte Carlo
simulations, we provide complementary evidence for the predictions through the finite-size scaling of
observables, including the two-point correlation, the magnetic fluctuations at zero and nonzero Fourier
modes and the Binder cumulant. Our work sheds light on the formulation of logarithmic finite-size scaling
and has practical applications in experimental systems.
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INTRODUCTION
The O(n) model of interacting vector spins is a
much-applied model in condensed-matter physics
andoneof themost significant classes of latticemod-
els in equilibrium statistical mechanics [1,2]. The
Hamiltonian of theO(n) vectormodel is written as

H = −
∑
〈rr′〉

�Sr · �Sr′ , (1)

where �Sr is an n-component isotropic spin with unit
length and the summation runs over nearest neigh-
bors. Prominent examples include the Ising (n= 1),
XY (n= 2) andHeisenberg (n= 3)models of ferro-
magnetism, as well as the self-avoiding randomwalk
(n → 0) in polymer physics. Its experimental real-
ization is now available for various n values in mag-
netic materials [3–7], superconducting arrays [8,9]
and ultracold atomic systems [10,11].

Finite-size scaling (FSS) is an extensively uti-
lized method for studying systems of continuous
phase transitions [12], including the O(n) vector

model (1). Near criticality, these systems are char-
acterized by a diverging correlation length ξ ∝ t−ν ,
where the parameter t measures the deviation from
the critical point and ν is a critical exponent. For a fi-
nite box with linear size L, the standard FSS hypoth-
esis assumes that ξ is bounded by the linear size L,
and thus predicts that the singular part f(t, h) of the
free-energy density scales as

f (t, h) = L−d f̃ (t L yt , hL yh ), (2)

where f̃ is a universal scaling function, t and h rep-
resent the thermal and magnetic scaling fields, and
yt = 1/ν and yh are the corresponding thermal and
magnetic renormalization exponents, respectively.
Furthermore, the standard FSS theory hypothesizes
that, at criticality, the spin-spin correlation function
g (r, L) ≡ 〈�S0 · �Sr〉 of distance r decays as

g (r, L) 
 r−(d−2+η) g̃ (r/L), (3)

where η relates to yh by the scaling relation
η = 2 + d − 2yh. From (2) and (3), the FSS of
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various macroscopic physical quantities can be
obtained. For instance, from the second derivative
of f(t, h) with respect to t or h, it follows that, at crit-
icality, the specific heat behaves as C 
 L2yt−d and
the magnetic susceptibility diverges as χ 
 L2yh−d .
The FSS of χ can also be calculated by summing
g(r, L) over the system. Furthermore, the ther-
modynamic critical exponents can be obtained by
the (hyper-)scaling relations. For instance, in the
thermodynamic limit (L → ∞), the specific heat
and the magnetic susceptibility scale asC∝ t−α and
χ ∝ t−γ , where the critical exponents are α = 2 −
d/yt and γ = (2yh − d)/yt.

The O(n) model exhibits an upper critical di-
mensionality dc = 4 such that the thermodynamic
scaling in higher dimensions d > dc are governed
by the Gaussian fixed point, which has the critical
exponents α = 0 and γ = 1, etc. In the frame-
work of the renormalization group, the renormal-
ization exponents near the Gaussian fixed point
are

yt = 2 and yh = 1 + d/2 (4)

for d> dc.
Accordingly, the standard FSS formulae (2) and

(3) predict that the critical susceptibility diverges
as χ 
 L2yh−d = L2 for d > dc. However, for the
Ising model on 5D periodic hypercubes, χ was nu-
merically observed to scale as L 
 L5/2 instead of
L2 [13–18]. The FSS for d ≥ dc turns out to be
surprisingly subtle and remains a topic of extensive
controversy [13–21].

It was realized that, for d > dc, the Gaussian ex-
ponents yt and yh in (4) can be renormalized by
the leading irrelevant thermal field with exponent
yu = 4− d as [22–25]

y∗
t = yt − yu

2
= d

2
and y∗

h = yh − yu
4

= 3d
4

,

(5)

and the FSS of the free-energy density f(t, h)
becomes

f (t, h) = L−d f̃ (t L y∗
t , hL y∗

h ). (6)

In this scenario of the dangerously irrelevant field,
the FSS of the critical susceptibility becomes
χ 
 L2y∗

h−d = Ld/2, consistent with the numerical
results [13–15,17,18]. It was further assumed that
the scaling behavior of g(r, L) is modified as [16]

g (r, L) 
 r−(d−2+ηQ ) g̃ (r/L) (7)

with ηQ = 2 − d/2, such that the decay of g(r, L) is
no longer Gaussian-like. In the study of the 5D Ising

model [13], a more subtle scenario was proposed
that g(r,L) decays as r−3 at short distances, gradually
becomes r−5/2 for large distances andhas a crossover
behavior in between.The introduction of ηQ was re-
futed by Wittmann and Young [15] as the magnetic
fluctuations at nonzero Fourier mode k �= 0 scale as
χ k 
L2 and underlined in [17], which revealed that
the nonzero Fourier moments are governed by the
Gaussian fixed point instead of being contaminated
by the dangerously irrelevant field.

Using random-current and random-path repre-
sentations [26–28], Papathanakos [19] conjectured
that the scaling behavior of g(r, L) has a two-length
form as

g (r, L) 

{
r−(d−2), r ≤ O(Ld/[2(d−2)]),

L−d/2, r ≥ O(Ld/[2(d−2)]).
(8)

According to (8), the critical correlation func-
tion still exhibits a Gaussian-like decay, g(r, L) 

r−(d− 2), up to a length scale ξ 1 = Ld/[2(d− 2)], and
then enters an r-independent plateau whose height
vanishes as L−d/2. Since the length ξ 1 is vanishingly
small compared to the linear size, ξ 1/L → 0, the
plateau effectively dominates the scaling behavior
of g(r, L) and the FSS of χ . The two-length scal-
ing form (8) has been numerically confirmed for the
5D Isingmodel and self-avoiding randomwalk, with
a geometric explanation based on the introduction
of an unwrapped length on the torus [18]. It is also
consistent with the rigorous calculations for the so-
called random-length random-walkmodel [20]. It is
noteworthy that the two-length scaling is able to ex-
plain both the FSS χ 0 ≡ χ 
 L5/2 for the suscepti-
bility (the magnetic fluctuations at the zero Fourier
mode) [14] and the FSS χ k 
 L2 for the magnetic
fluctuations at nonzero modes [15,17].

Combining all the existing numerical and
(semi-)analytical insights [13–20], Y.D. and
coworkers extended the scaling form (6) for the free
energy to be [21]

f (t, h) = L−d f̃0(t L yt , hL yh )

+ L−d f̃1(t L y∗
t , hL y∗

h ), (9)

where (yt, yh) are the Gaussian exponents (4) and
(y∗

t , y
∗
h ) are still given by (5). Conceptually, scaling

formula (9) explicitly points out the coexistence of
two sets of exponents (yt, yh) and (y∗

t , y
∗
h ), which

was implied in previous studies [15,17,18,20].
Moreover, a simple perspective of understanding
was provided [21] that the scaling term with f̃1
can be regarded as corresponding to the FSS
of the critical O(n) model on a finite complete
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graph with V = Ld vertices. As a consequence,
the exponents (y∗

t , y
∗
h ) can be directly obtained

from exact calculations of the complete-graph
O(n) vector model, which also gives y∗

t = d/2 and
y∗
h = 3d/4. From this correspondence, the plateau

of g(r, L) in (8) is in line with the FSS of the
complete-graph correlation function g i �= j ≡
〈�Si · �S j 〉, which also decays as V−1/2 = L−d/2.
Note that, as a counterpart of the complete-graph
scaling function, the term with f̃1 should not
describe the FSS of quantities merely associated
with r-dependent behaviors, including mag-
netic/energylike fluctuations at nonzero Fourier
modes. Therefore, in comparison with (6), scaling
formula (9) can give the FSS of a more exhaustive
list of physical quantities. The following gives some
examples at criticality.

(i) Let �M ≡ ∑
r
�Sr specify the total magne-

tization of a spin configuration, and mea-
sure its � moment as M� ≡ 〈| �M|�〉. Equa-
tion (9) predicts that M� ∼ L�y∗

h + q L�yh ,
with q a nonuniversal constant. In par-
ticular, the magnetic susceptibility χ0 ≡
L−d M2 
 Ld/2[1 + O(L (4−d)/2)], where
the FSS from the Gaussian term f̃0 is ef-
fectively a finite-size correction, but its ex-
istence is important in analyzing numerical
data [21].

(ii) Let �Mk ≡ ∑
r
�Sre ik·r specify the Fourier

mode of magnetization with momentum
k �= 0, and measure its � moment as
M�,k ≡ 〈| �Mk|�〉. The magnetic fluctua-
tions at k �= 0 behave as χk ≡ L−d M2,k ∼
L2yh−d = L2. The behaviors of χ 0 and
χ k have been confirmed for the 5D Ising
model [15,17,18,20].

(iii) The Binder cumulant Q ≡ 〈| �M|2〉2/
〈| �M|4〉 should take the complete-graph
value, as expected from the correspondence
between the term with f̃1 in (9) and the
complete-graph FSS. For the Ising model,
the complete-graph calculations give
Q = 4[	(3/4)/	(1/4)]2 ≈ 0.456 947,
consistent with the 5D result in [13].

Analogously, the FSS behaviors of the energy den-
sity, its higher-order fluctuations and the �-moment
Fourier modes at k �= 0 can be derived from (9).

We expect that the FSS formulae (8) and (9)
are valid not only for the O(n) vector model but
also for generic systems of continuous phase tran-
sitions at d > dc. An example is given for perco-
lation that has dc = 6. It was observed [29] that,
at criticality, the probability distributions of the
largest-cluster size follow the same scaling function

for 7D periodic hypercubes and on the complete
graph.

In this work, we focus on the FSS for the O(n)
vector model at the upper critical dimensionality
d = dc. In this marginal case, it is known that multi-
plicative and additive logarithmic corrections would
appear in the FSS. However, exploring these loga-
rithmic corrections turns out to be notoriously hard.
The challenge comes from the lack of analytical in-
sights, the existence of slowfinite-size corrections, as
well as the unavailability of very large system sizes in
simulations of high-dimensional systems.

For the O(n) vector model, establishing the
precise FSS form at d = dc is not only of fun-
damental importance in statistical mechanics and
condensed-matter physics, but also of practical rel-
evance due to the direct experimental realizations of
the model, particularly in three-dimensional quan-
tum critical systems [3–6,10,11]. For instance, to
explore the stability of Anderson–Higgs excitation
modes in systems with continuous symmetry break-
ing (n≥ 2), a crucial theoretical question is whether
or not the Gaussian r-dependent behavior g(r) 

r−2 is modified by some multiplicative logarithmic
corrections.

SUMMARY OF THE MAIN FINDINGS
At the upper critical dimensionality (dc = 4) of
the O(n) model, state-of-the-art applications of FSS
are mostly restricted to a phenomenological scal-
ing form proposed by Kenna [30] for the sin-
gular part of the free-energy density, which was
extended from Aktekin’s formula for the Ising
model [31],

f (t, h) = L−4 f̃ (t L yt (lnL) ŷt , hL yh (lnL) ŷh )
(10)

for n ≥ 0 and n �= 4, where the renormaliza-
tion exponents yt = 2 and yh = 3 are given by
(4). Furthermore, the renormalization-group cal-
culations predicted the logarithmic-correction ex-
ponents as ŷt = (4 − n)/(2n + 16) and ŷh = 1/4
[32,33]. The leading FSS of χ 0 is hence given by
χ 0 
 L2(lnL)1/2, independent of n.

Motivated by recent progress inO(n)models for
d > dc [15–21], we hereby propose that, at d = dc,
the scaling form (10) for the free energy should be
revised as

f (t, h) = L−4 f̃0(t L yt , hL yh )

+L−4 f̃1(t L yt (ln L) ŷt , hL yh (ln L) ŷh ),

(11)
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and the critical two-point correlation g(r,L) behaves
as

g (r, L) 

{
r−2, r ≤ O(L/(lnL) p̂),

L−2(lnL) p̂ , r ≥ O(L/(lnL) p̂),
(12)

with p̂ = 2 ŷh = 1/2. By (12), we explicitly point
out that nomultiplicative logarithmic correction ap-
pears in the r dependence of g(r, L) 
 r−2, which is
still Gaussian-like. By contrast, the plateau for r ≥
ξ1 ∼ L/(lnL) p̂ is modified as L−2(lnL) p̂ . In other
words, along any direction of the periodic hyper-
cube, we have g (r, L) 
 r−2 + vL−2(lnL) p̂ , with
v a nonuniversal constant. The r−2 decay at shorter
distances in (12) is consistent with analytical cal-
culations for the 4D weakly self-avoiding random
walk and the O(n) φ4 model directly in the ther-
modynamic limit (L → ∞) [34], which predict
g (r ) 
 r−2(1 + O(1/lnr )).

The roles of terms with f̃0 and f̃1 in (11) are
analogous to those in (9). The former arises from
the Gaussian fixed point, and the latter describes the
‘background’ contributions (k = 0) for the FSS of
macroscopic quantities.However, note that the term
with f̃1 can no longer be regarded as an exact coun-
terpart of the FSS of the complete graph, due to the
existence of multiplicative logarithmic corrections.
By contrast, the exact complete-graph mechanism
applies to the f̃1 term in (9), where the logarith-
mic correction is absent and f̃1 corresponds to the
free energy of the standard complete-graph model.
According to (11), the FSS of various macroscopic
quantities at d= dc can be obtained as follows.

(i) The magnetization density m ≡
L−d 〈| �M|〉 
 L−1(ln L) ŷh [1 +
O((ln L)− ŷh )].

0.001

0.010

0.100

Figure 1. Evidence for conjectured formulae (11) and (12) in the example of the critical four-dimensional (4D) XY model. (a) Correlation function g(r, L)
on a log-log scale. The solid line denotes r−2 behavior. (b) Scaled correlation g(r, L)L2 with r = L/2 versus lnL on a log-log scale. Thus, the horizontal
axis is effectively on a double logarithmic scale of L. The solid line represents logarithmic divergence with p̂ = 1/2. (c) Scaled magnetic susceptibility
χ 0L−2 versus lnL on a log-log scale. The solid line accounts for logarithmic divergence with p̂ = 1/2. (d) Scaled k �= 0 magnetic fluctuations χ 1L−2 and
χ 2L−2, with k1 = (2π/L, 0, 0, 0) and k2 = (2π/L, 2π/L, 0, 0), respectively. The horizontal lines strongly indicate the absence of logarithmic corrections
in the scaling of χ k.

(ii) The magnetic susceptibility χ0 

L2(ln L)2 ŷh [1 + O((ln L)−2 ŷh )].

(iii) The magnetic fluctuations at k �= 0 Fourier
modes χ k 
 L2.

(iv) TheBinder cumulantQmaynot take the ex-
act complete-graph value, due to the mul-
tiplicative logarithmic correction. Some ev-
idence was observed in a recent study by
Y.D. and his coworkers for the self-avoiding
randomwalk (n= 0) on 4Dperiodic hyper-
cubes, in which themaximum system size is
up to L= 700.

The FSS of the energy density, its higher-order
fluctuations and the �-moment Fourier modes at
k �= 0 can be obtained.

In quantities like m and χ 0, the FSS from the
Gaussian fixed point effectively plays the role of
finite-size corrections. Nevertheless, we note that
in the analysis of numerical data, it is important to
include such scaling terms.

We remark that the FSS formulae (11) and (12)
for d = dc are less generic than (8) and (9) for
d > dc. For the O(n) models, a multiplicative log-
arithmic correction is absent in the Gaussian r de-
pendence of g(r, L) in (12). Although the two
length scales are possibly generic features of models
with logarithmic finite-size corrections at upper crit-
ical dimensionality, multiplicative logarithmic cor-
rections to the r dependence of g(r, L) require case-
by-case analyses. Equation (11) can be modified in
some of thesemodels, which include the percolation
and spin-glass models in six dimensions.

We proceed to verify (11) and (12) using exten-
sive Monte Carlo (MC) simulations of the O(n)
vector model. Before giving the technical details,
in Fig. 1 we present complementary evidence for
(11) and (12) in the case of the critical 4D XY
model. In Fig. 1(a) we show the extensive data of
g(r, L) for 16 ≤ L ≤ 80, of which the largest system
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contains about 4× 107 lattice sites. To demonstrate
the multiplicative logarithmic correction in the
large-distance plateau indicated by (12), we plot
g(L/2,L)L2 versus lnLon a log-log scale inFig. 1(b).
The excellent agreement between the MC data and
the formula v1(lnL)1/2 + v2 provides a first piece
of evidence for the presence of the logarithmic cor-
rection with exponent p̂ = 1/2. The second piece
of evidence comes from Fig. 1(c), which suggests
that the χ 0L−2 data can be well described by the
formula q1(lnL)1/2 + q2. Finally, in Fig. 1(d) we
plot the k �= 0magnetic fluctuations χ 1 and χ 2 with
k1 = (2π/L, 0, 0, 0) and k2 = (2π/L, 2π/L, 0, 0),
respectively, which suppress the L-dependent
plateau and show the r-dependent behavior of g(r,
L). Indeed, the χ 1L−2 and χ 2L−2 data converge
rapidly to constants as L increases.

NUMERICAL RESULTS AND FINITE-SIZE
SCALING ANALYSES
Using a cluster MC algorithm [35], we simulate
Hamiltonian (1) on 4D hypercubic lattices up to
Lmax = 96 (Ising, XY) and 56 (Heisenberg), and
measure a variety of macroscopic quantities, includ-
ing the magnetization density m, the susceptibil-
ity χ 0, the magnetic fluctuations χ 1 and χ 2 and
the Binder cumulant Q. Moreover, we compute the

Figure 2. Locating Tc for the 4D XY model. (a) The Binder cumulant Q with finite-size
corrections being subtracted, namely, Q∗(L, T) = Q(L, T) − b(lnL)−1/2, with b≈ 0.1069
according to a preferred least-squares fit. The shadow marks Tc and its error margin.
(b) The magnetization density m rescaled by L−1 versus lnL around Tc = 3.314 44 on a
log-log scale.

two-point correlation function g(r, L) for the XY
model up to Lmax = 80 bymeans of a state-of-the-art
wormMC algorithm [36].

Estimates of critical temperatures
In order to locate the critical temperatures Tc, we
perform least-squares fits for the finite-size MC data
of the Binder cumulant to

Q(L , T) = Qc + at L yt (lnL) ŷt + b(lnL)− p̂

+ c
ln(lnL)
lnL

, (13)

where t is explicitly defined as Tc − T, Qc is a uni-
versal ratio, and a, b, c are nonuniversal parame-
ters. In addition to the leading additive logarithmic
correction, we include c(ln(lnL))/lnL proposed by
Kenna [30] as a high-order correction, ensuring the
stability of fits. In all fits, we justify the confidence in
a standard manner: the fits with Chi squared (χ 2)
per degreeof freedom(DF) isO(1) and remains sta-
ble as the cutoff size Lmin increases. The latter is a
caution against possible high-order corrections not
included. The details of the fits are presented in the
online supplementary material.

By analyzing thefinite-size correctionQ(L,Tc)−
Qc, we find that the leading correction is nearly pro-
portional to (lnL)−1/2, consistent with the predic-
tion of (11) and (12). We let Qc be free in the fits
and haveQc = 0.45(1), close to the complete-graph
result Qc = 0.456 947. Besides, we perform simula-
tions for theXY andHeisenbergmodels on the com-
plete graph andobtainQc ≈0.635 and0.728, respec-
tively, also close to thefitting results of the4DQdata.
We obtain Tc(XY)= 3.314 437(6), and in Fig. 2(a)
we illustrate the location of Tc byQ.

We further examine the estimate ofTc by the FSS
of other quantities, such as the magnetization den-
sitym. For the XY model, in Fig. 2(b) we give a log-
log plot of themL data versus lnL forT= Tc, as well
as for Tlow = 3.314 40 and Tabove = 3.314 50. The
significant bending-up and bending-down features
clearly suggest that Tlow < Tc and Tabove > Tc, pro-
viding confidence for the finally quoted errormargin
of Tc.

The final estimates of Tc are summarized in
Table 1. For n = 1, we have Tc = 6.680 300(10),
which is consonant with and improves over
Tc = 6.680 263(23) [37] andmarginally agrees with
Tc = 6.679 63(36) [38] and 6.680 339(14) [13].
For n = 2, our determination Tc = 3.314 437(6)
significantly improves over Tc = 3.31 [39,40] and
3.314 [41]. For n = 3, our result Tc = 2.198 79(2)
rules out Tc = 2.192(1) from a high-temperature
expansion [42].
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Table 1. Estimates of Tc for the 4D O(n) vector models.

Model Tc Reference

Ising (n= 1) 6.679 63(36) [38]
6.680 339(14) [13]
6.680 263(23) [37]
6.680 300(10) This work

XY (n= 2) 3.31 and 3.314 [39–41]
3.314 437(6) This work

Heisenberg (n= 3) 2.192(1) [42]
2.198 79(2) This work

Finite-size scaling of the two-point
correlation
We then fit the critical two-point correlation
g(L/2, L) to

g (L/2, L) = v1L−2(lnL) p̂ + v2L−2, (14)

where the first term comes from the large-distance
plateau and the second term comes from the
r-dependent behavior of g(r, L). With p̂ = 1/2
being fixed, the estimate of the leading scaling term
L−1.98(4) agrees well with the exact L−2. With the ex-
ponent−2 inL−2 being fixed, the result p̂ = 0.5(1)
is also well consistent with the prediction p̂ = 1/2.
These results are elaborated in the online supple-
mentary material.

We remark that FSS analyses for g(L/2, L) have
already been performed in [16] with the formula

T = 2.198 80

T = 6.680 30

Figure 3. The magnetic fluctuations (a)χ 0 and (b)χ 1 rescaled by L2 versus lnL on a log-
log scale for the critical Ising and Heisenberg models. The black lines in (a) represent
the least-squares fits, and the red line in (b) denotes a constant.

g(L/2, L) = AL−2[ln(L/2 + B)]1/2 (A and B are
constants) and in [13] with a similar formula.These
FSSs in the literature correspond to the first scaling
term in (14).Hence, (14) serves as a forward step for
complete FSS by involving the scaling term v2L−2,
which arises from the Gaussian fixed point.

Finite-size scaling of the magnetic
susceptibility
According to (11) and (12), we fit the critical sus-
ceptibility χ 0 to

χ0 = q1L2(lnL) p̂ + q2L2 (15)

with q1 and q2 nonuniversal constants. For p̂ = 1/2
being fixed, we obtain fitting results withχ 2/DF� 1
for each n = 1, 2, 3, and correctly produce the lead-
ing scaling form L2. The scaled susceptibility χ 0L−2

versus lnL is shown inFig. 1(c) for theXYmodel and
in Fig. 3(a) for the Ising and Heisenberg models.

We note that previous studies based on a FSS
without high-order corrections produced estimates
of ŷh (= p̂/2), considered to be consistent with
ŷh = 1/4 [38,43–45]. The maximum lattice size
therein was Lmax = 24, four times smaller than
Lmax = 96 of the present study. In particular, it
was reported [43] that 2 ŷh = 0.45(8) and 4 ŷh =
0.80(25). Nevertheless, we find that the fit χ0 =
q1L2(lnL)2 ŷh by dropping the correction term q2L2
would yield ŷh = 0.21(1) (Ising), 0.20(1) (XY),
and 0.19(1) (Heisenberg), which are smaller than
and inconsistent with the predicted value ŷh = 1/4.
This suggests the significance of q2L2 in the suscep-
tibility χ 0, which arises from the r dependence of
g(r, L).

Finite-size scaling of the magnetic
fluctuations at nonzero Fourier modes
We consider the magnetic fluctuations χ 1 with
|k1|= 2π/L andχ 2 with |k2| = 2

√
2π/L .We have

compared the FSSs of χ 0, χ 1 and χ 2 in Fig. 1(c)
and (d) for the critical 4DXYmodel. As L increases,
χ 1L−2 and χ 2L−2 converge rapidly, suggesting the
absence of a multiplicative logarithmic correction.
This is in sharp contrast to the behavior of χ 0L−2,
which diverges logarithmically. For the Ising and
Heisenberg models, the FSS of the fluctuations at
nonzero modes is also free of a multiplicative loga-
rithmic correction (Fig. 3(b)).

Surprisingly, we find that the scaled fluctuations
χ 1L−2 ≈ 0.15 are equal within error bars for the
Ising, XY and Heisenberg models.
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L =
L =
L =
L =
L =

L =

Figure 4. Data collapses for the magnetic fluctuations (a) χ 1 and (b) χ 2 rescaled by
L 2yh−d and L yt (yh = 3, yt = 2, d= 4) for the 4D XYmodel. The insets show the scaled
fluctuations versus T, and the dashed lines denote Tc.

Furthermore, we show in Fig. 4χ 1 andχ 2 versus
T for the 4D XY model. We observe that the mag-
netic fluctuations at nonzero Fourier modes reach
maximumatTc and that theχ 1L−2 (χ 2L−2) data for
different Ls collapse well not only atTc but also for a
wide range of (T − Tc )L yt with yt = 2.

DISCUSSIONS
We propose formulae (11) and (12) for the FSS
of the O(n) universality class at the upper critical
dimensionality, which are tested against extensive
MC simulations with n = 1, 2, 3. From the FSS
of the magnetic fluctuations at zero and nonzero
Fourier modes, the two-point correlation function
and the Binder cumulant, we obtain complemen-
tary and solid evidence supporting (11) and (12). As
byproducts, the critical temperatures for n = 1, 2, 3
are all located up to an unprecedented precision.

An immediate application of (12) is to the mas-
sive amplitude excitation mode (often called the
Anderson–Higgs boson) due to the spontaneous
breaking of the continuous O(n) symmetry [46],
which is at the frontier of condensed matter re-
search. At the pressure-induced quantum critical
point (QCP) in the dimerized quantum antiferro-
magnet TlCuCl3, the 3D O(3) amplitude mode
was probed by neutron spectroscopy and a rather
narrow peak width of about 15% of the excitation
energy was revealed, giving no evidence for the
logarithmic reduction of the width-mass ratio [3].

This was later confirmed by a quantumMC study of
a 3D model Hamiltonian of O(3) symmetry [5,6].
Indeed, (12) provides an explanation why the
logarithmic-correction reduction in the Higgs reso-
nancewasnotobservedat the3DQCP. Innumerical
studies of theHiggs excitationmode at the 3DQCP,
the correlation function g(τ ≡ |τ 1 − τ 2|) is mea-
sured along the imaginary-time axis β , and numer-
ical analytical continuation is used to deal with the
g(τ) data. In practice, simulations are carried out at
very low temperatureβ →∞, and it is expected that
g(τ) 
 τ−2 for a significantly wide range of τ . Fur-
thermore, it is the τ -dependent behavior of g(τ), in-
stead of the L dependence, that plays a decisive role
in numerical analytical continuation.

In the thermodynamic limit, the two-point
correlation function decays as g (r ) ∼ r−2 g̃ (r/ξ),
where the scaling function g̃ (r/ξ) quickly drops
to zero as r/ξ � 1. It can be seen that no mul-
tiplicative logarithmic correction exists in the
algebraic decaying behavior. On the other hand,
as the criticality is approached (t → 0), the cor-
relation length diverges as ξ(t) ∼ t−1/2|lnt |ν̂ ,
and ν̂ = (n + 2)/2(n + 8) > 0 implies that
ξ diverges faster than t−1/2 [30,33]. Since the
susceptibility can be calculated by summing the
correlation as χ0 ∼ ∫ ξ

0 g (r )r d−1dr ∼ ξ 2, we
have χ0(t) ∼ t−1| ln t |γ̂ with γ̂ = 2ν̂. The ther-
modynamic scaling of χ 0(t) can also be obtained
from the FSS formula (10) or (11), which gives
χ0(t, L) ∼ L2yh−4(ln L)2 ŷh χ̃0(t L yt (ln L) ŷt ). By
fixing t L yt (ln L) ŷt at some constant, we obtain the
relation L ∼ t−1/yt | ln t |− ŷt/yt . Substituting this
into the FSS of χ 0(t, L) yields χ0(t) ∼ tγ | ln t |γ̂
with γ = (2yh − 4)/yt and γ̂ = −γ ŷt + 2 ŷh . With
(yt , yh , ŷt , ŷh) = (2, 3, (4 − n)/(2n + 16), 1

4 ),
we have γ = 1 and γ̂ = (n + 2)/(n + 8). The
thermodynamic scaling with logarithmic correc-
tions has been demonstrated in [4] in terms of the
magnetizationm of an O(3) Hamiltonian.

For the critical Isingmodel in five dimensions, an
unwrapped distance ru was introduced to account
for the winding numbers across a finite torus [18].
The unwrapped correlation was shown to behave as
g (ru) ∼ r 2−d

u g̃ (ru/ξu), where the unwrapped cor-
relation length diverges as ξ u ∼ Ld/4. This differs
from typical correlation functions that are cut offby a
linear system size of approximatelyL.We expect that
at dc = 4 the unwrapped correlation length diverges
as ξu ∼ L(ln L) ŷh , which gives the critical suscepti-
bility as χ0(L) ∼ L2(ln L)2 ŷh .

Besides, (12) is useful for predicting various
critical behaviors. As an instance, it was ob-
served that an impurity immersed in a 2D O(2)
quantum critical environment can evolve into a
quasiparticle of fractionalized charge, as the
impurity-environment interaction is tuned to a
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boundary critical point [47–49]. Equation (12)
precludes the emergence of such a quantum-
fluctuation-induced quasiparticle at the 3D O(2)
QCP.

We mention an open question about the spe-
cific heat of the 4D Ising model. The FSS formula
(10)predicts that the critical specificheat diverges as
C 
 (ln L)1/3. By contrast, an MC study demon-
strated that the critical specific heat is bounded [37].
The complete scaling form (11) is potentially useful
for reconciling the inconsistency.

Finally, it would be possible to extend the present
scheme to other systems of critical phenomena, as
the existence of upper critical dimensionality is a
common feature therein. These systems include the
percolation and spin-glassmodels at their upper crit-
ical dimensionality dc = 6. We leave this for a future
study.

METHODS
Throughout the paper, the raw data for any temper-
ature T and linear size L are obtained by means of
MC simulations, for which the Wolff cluster algo-
rithm [35] and the Prokof’ev–Svistunov worm al-
gorithm [36] are employed complementarily. Both
algorithms are state-of-the-art tools in their own
territories.

The O(n) vector model (1) in its original
spin representation is efficiently sampled by the
Wolff cluster algorithm, which is the single-cluster
version of the widely utilized nonlocal cluster
algorithms. The present study uses the standard
procedure of the algorithm, as in the original pa-
per [35] where the algorithm was invented. In some
situations, we also use the conventional Metropo-
lis algorithm [50] for benchmarks. The macro-
scopic physical quantities of interest have been
introduced in aforementioned sections for the spin
representation.

The two-point correlation function for the XY
model (n = 2) is sampled by means of the
Prokof’ev–Svistunov worm algorithm, which was
invented for a variety of classical statistical mod-
els [36]. Bymeans of a high-temperature expansion,
we perform an exact transformation for the origi-
nal XY spin model to a graphic model in directed-
flow representation. We then introduce two defects
for enlarging the state space of directed flows. The
Markov chain process of evolution is built upon bi-
ased random walks of defects, which satisfy the de-
tailed balance condition. It is defined that the evolu-
tion hits the original directed-flow state space when
the two defects meet at a site. The details for the ex-
act transformation and a step-by-step procedure for
the algorithm have been presented in [51].

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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