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Abstract

Delineating common and separable neural alterations in substance use disorders

(SUD) is imperative to understand the neurobiological basis of the addictive process

and to inform substance-specific treatment strategies. Given numerous functional

MRI (fMRI) studies in different SUDs, a meta-analysis could provide an opportunity

to determine robust shared and substance-specific alterations. The present study

employed a coordinate-based meta-analysis covering fMRI studies in individuals with

addictive cocaine, cannabis, alcohol, and nicotine use. The primary meta-analysis

demonstrated common alterations in primary dorsal striatal, and frontal circuits

engaged in reward/salience processing, habit formation, and executive control across

different substances and task-paradigms. Subsequent sub-analyses revealed

substance-specific alterations in frontal and limbic regions, with marked frontal and

insula-thalamic alterations in alcohol and nicotine use disorders respectively.

Examining task-specific alterations across substances revealed pronounced frontal

alterations during cognitive processes yet stronger striatal alterations during reward-

related processes. Finally, an exploratory meta-analysis revealed that neurofunctional

alterations in striatal and frontal reward processing regions can already be deter-

mined with a high probability in studies with subjects with comparably short

durations of use. Together the findings emphasize the role of dysregulations in fron-

tostriatal circuits and dissociable contributions of these systems in the domains of

reward-related and cognitive processes which may contribute to substance-specific

behavioral alterations.
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1 | INTRODUCTION

Problematic use of illicit and licit drugs and substance use disorders

represent a major challenge for society, in terms of individual suffering

and socioeconomic costs (Degenhardt et al., 2013; Liao, Deng, &

Kang, 2010; Rehm & Shield, 2019). Substance use disorders are esti-

mated to contribute to 20% of the world mental illness (Whiteford

et al., 2013) and recent large scale surveys estimate that worldwide
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over 35 million people fulfill the criteria for a substance use disorder

(America & America, 2019). Disorders related to alcohol, nicotine,

stimulant (e.g., cocaine), and cannabis use are among the most preva-

lent. Despite increasing treatment demand for problematic use of

these substances (European Monitoring Centre for Drugs and

Drugs, 2019) treatment options remain limited and of moderate effi-

cacy (van den Brink, 2012).

Based on animal models and human neuroimaging research sub-

stance use disorders, particularly addiction as a common pathologi-

cal endpoint, has been reconceptualized as a chronic relapsing

disorder of the brain that is characterized by a preoccupation with

drug-seeking and taking, compulsive use, loss of behavioral control,

and withdrawal (DSM-5) (American Psychiatric Association, 2013).

On the neural level, the transition from volitional use to problematic

and ultimately compulsive use is driven by progressive dys-

regulations in the brain's motivational and cognitive circuits, particu-

larly the frontostriatal circuits engaged in incentive salience and

reward processing, habit formation, and executive control (Everitt &

Robbins, 2016; Koob & Volkow, 2016; Zilverstand, Huang, Alia-

Klein, & Goldstein, 2018).

Based on early animal studies demonstrating that the acute rein-

forcing effects of all drugs of potential abuse increase dopamine in

the terminal regions of the mesocortical-striatal system including the

ventral striatum (Di Chiara & Imperato, 1988)—which with repeated

use may drive dysregulations in incentive salience and habit formation

(Everitt & Robbins, 2016; Robinson & Berridge, 2001)—most research

emphasizes the common neuropathological endpoints across sub-

stances and substance use disorders. In line with animal models dem-

onstrating that neuroplastic changes in the striatum mediate

exaggerated salience to drug cues at the expense of natural rewards

and habitual responses to cues repeatedly paired with the drug

(Robbins, Ersche, & Everitt, 2008), exaggerated striatal drug cue reac-

tivity and blunted striatal processing of nondrug rewards has been

demonstrated in functional MRI studies in human drug users with reg-

ular and addictive use of different substances (Chase, Eickhoff, Laird, &

Hogarth, 2011; Kühn & Gallinat, 2011; Vollstädt-Klein et al., 2010;

Zhou et al., 2019; Zimmermann et al., 2019). However, despite

convergent evidence for striatal maladaptations across different sub-

stance use disorders, substance-specific predisposing factors (Becker

et al., 2015; Cheng et al., 2019; Elsayed et al., 2018; Zilberman, Yadid,

Efrati, & Rassovsky, 2019) and addiction-related alterations have been

increasingly recognized, such that frontal regions have been found to

be differentially impacted by stimulant or opioid use (Badiani, Belin,

Epstein, Calu, & Shaham, 2011) and neurocognitive deficits in domains

associated with frontostriatal circuits such as inhibitory control and

cognitive flexibility have been found to be differentially impacted by

alcohol, stimulants, and cannabis (Fernández-Serrano, Pérez-García, &

Verdejo-García, 2011; Smith, Mattick, Jamadar, & Iredale, 2014). Fur-

ther evidence for substance use disorder-specific brain alterations

comes from a recent qualitative review suggesting that different

addictions may be associated with alterations in distinct brain systems

and particularly alterations in frontal regions appear to be substance-

specific (Zilberman, Lavidor, Yadid, & Rassovsky, 2019).

The differences might result from common versus substance-

specific predisposing factors that render individuals vulnerable to

develop escalation of use in general versus for a particular substance

(George & Koob, 2010). Furthermore, differences in the neurobiologi-

cal effects of the substances may arise from the specific neurotoxic

profiles and neurotransmitter systems. In addition to shared effects

on the dopamine system, the substances engage different primary

neurotransmitter systems (Nestler, 2005), which may lead to transmit-

ter system-specific neuroadaptations in long-term users. In addition,

the acute rewarding effects of all substances engage the dopamine

system leading to the down-regulation of dopamine receptors

(Koob & Volkow, 2016) for chronic users. The acute effects of canna-

bis are mediated by the endocannabinoid system and regional-specific

downregulation of the cannabinoid CB1 receptor (Hirvonen et al.,

2012), the acute effects of nicotine are primarily mediated by its stim-

ulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs)

and long-term nicotine exposure leads to neuroplastic adaptations in

nACh receptor expression (Becker & Hurlemann, 2016; Perez, Bordia,

McIntosh, Grady, & Quik, 2008), and the acute effects of cocaine are

primarily mediated by effects on the dopamine system and marked

neuroplastic changes of striatal dopamine receptors have been consis-

tently reported in cocaine use disorder (Payer et al., 2014; Schlaepfer,

Pearlson, Wong, Marenco, & Dannals, 1997).

Despite emerging evidence for common but also substance-

specific neurobiological alterations, most previous research empha-

sized common pathological pathways. Although the determination of

common pathways of addiction may promote the development of

general treatment approaches, the identification of substance-specific

neurobiological mechanisms is essential to further enhance our under-

standing of predisposing factors as well as to develop specialized

treatment options. To address common limitations of single studies

such as low sample size, study-specific characteristics of the sample

and inclusion of one substance only, the present study employed a

meta-analytic approach covering previous task fMRI studies on alco-

hol, cannabis, cocaine, and nicotine substance use disorder to deter-

mine common and disorder-specific neural alterations. To this end, we

conducted a quantitative coordinate-based meta-analysis (CBMA)

covering previous fMRI studies in substance use populations

employing whole-brain foci from the studies selected according to our

inclusion criteria. The CBMA approach was preferred to other

methods like image-based meta-analysis because it takes advantage

of the published coordinates, and quantitatively provides a summary

of the presented results under the specific research question, while

the latter approach is limited by the availability of whole-brain images

(statistical images are currently only availiable for a limited number of

studies). We first conducted a main ALE analysis to determine core

regions that neurally underpin substance use disorders across sub-

stances. This was followed by sub-meta-analyses employing

substance-specific subtraction and conjunction analysis to further

specify common and substance-specific neural alterations as well as

functional domain-specific alterations for reward and cognitive pro-

cesses. Based on previous animal models and human imaging

research, we hypothesized common alterations in striatal systems
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engaged in reward/motivation (ventral striatum) and habit formation

(dorsal striatum) as well as partly dissociable effects on frontal sys-

tems engaged in executive control and behavioral regulation. More-

over, we examined whether the observed substance-specific

alterations are driven by an interaction between the substance used

and the class of task paradigms employed.

2 | METHODS

2.1 | Literature selection

We obtained articles including four kinds of substances that are regu-

larly abused namely cocaine, cannabis, alcohol, and nicotine (cigarettes

or tobacco). Utilizing Scopus, PubMed, and Web of Science, peer-

reviewed studies published between January 1, 2000 and November

1, 2019 were collected using the following search terms; “Alcohol” or

“Cocaine” or “Cannabis” or “Nicotine/Tobacco/cigarette” and “Func-

tional magnetic resonance imaging” or “fMRI.” The reference list of

the selected articles was inspected separately. We targeted articles

that reported: whole-brain coordinates either in the main paper or

supplementary material with stereoscope coordinates in either

Talairach or MNI (Montreal Neurological Institute) space, comparisons

between healthy controls and patients with substance dependency or

heavy usage. The exclusion criteria were as follows: (a) Articles

reporting only region-of-interest (ROI) results (if the study additionally

reported whole-brain corrected findings these were included),

(b) Articles with poly-drug users and high comorbidities with psychiat-

ric or somatic disorders (e.g., schizophrenia or HIV), (c) Articles focus-

ing on parental exposure, and (d) Articles reporting results from the

exact same data set from previous studies. The breakdown of article

screening and exclusion for the main and sub-meta-analysis is shown

in Figure 1.

2.2 | Study approach: Activation likelihood
estimation

In initial meta-analyses, the brain functional alterations for each sub-

stance use disorders (SUD) were computed relative to their respective

control groups. Next, we used a three-step approach (a) to establish

brain functional alterations across all SUDs in comparison to their

control groups, (b) to establish common and distinguishable alterations

between the SUDs by employing conjunction and differential

F IGURE 1 PRISMA procedure
for inclusion of articles
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contrasts that compare the SUD-specific activation likelihood estima-

tion (ALE) maps (SUD vs. control groups, separately computed for

each SUD category and their respective control groups) between the

SUD categories by means of conjunction and subtraction analysis,

and, (c) to investigate whether common neurofunctional alterations

across the SUDs are related to the classes of experimental task para-

digms employed or by the effects of the drug use in the study

populations.

In line with the study goals, we performed a series of coordinate-

based meta-analyses using the GingerALE 3.0.2 command-line version

(Eickhoff et al., 2009; Eickhoff et al., 2011; Eickhoff, Bzdok, Laird,

Kurth, & Fox, 2012), specifically to compute (a) individual ALE in each

SUD, (b) subtraction and conjunction ALEs between each pair of SUD

category. In each step of the analysis, all foci in MNI space were

converted to Talairach space. To address the spatial uncertainty linked

to the foci, the three-dimensional Gaussian probability distribution

was applied to centers of the coordinates and images derived from

the foci for all experiments obtained as modeled activation (MA). It is

worth noting that ALE tries to find a strong agreement between the

included experiments. This is achieved by computing the union

between the generated maps while taking into account the disparities

between true activation and noise. For all meta-analyses family-wise

error correction (FWE) with a corrected p < .05 on the cluster-level

was applied to control for multiple comparisons. In line with recent

recommendations for the application of cluster-based correction

methods (Eickhoff et al., 2016) an initial cluster forming threshold of

p < .001 was employed.

2.2.1 | Step 1: Direct comparison of ALEs
in individual SUD categories

We computed single group ALE analysis for the four substances, using

the parameters described above. Coordinates from each substance

group were combined as one study before computing the ALE. This

was done to ascertain the overall maximum activations across

the SUD.

2.2.2 | Step 2: Subtraction and conjunction
analysis between pairs of SUD categories

We examined differences and overlaps between all six pairs of sub-

stances. The comparisons were done without specific a priori hypoth-

eses (although co-use of the substances is often reported in research,

(see [Karriker-Jaffe, Subbaraman, Greenfield, & Kerr, 2018]) in the fol-

lowing manner: cannabis versus cocaine, alcohol versus cocaine, alco-

hol versus cannabis, cannabis versus nicotine, cocaine versus nicotine,

and nicotine versus alcohol. ALE analysis for individual substance

groups was conducted first. The pooled foci were further used to

compute the cluster-level FWE corrected maps and subsequently to

obtain ALE images. Furthermore, we conducted a subtraction analysis

to obtain the differences in ALE between the substance groups. In all

of the results, clusters of brain regions were identified including the

number of studies that contributed to them.

2.2.3 | Step 3: Post hoc analysis based on the
functional domain

Based on the results in Step 2, we divided pairs of SUD categories

that had conjunction (matched/overlapped pairs) activation into two

categories of task paradigms that reflected distinct functional

domains; that is, “Reward” comprising the processing of reward, moti-

vation, or anticipation and “Cognition” with cognitive-control, behav-

ior, and emotion tasks. Despite conceptual frameworks proposing

differential alterations with respect to the processing of drug-

associated rewards (particularly drug cue reactivity) and natural

rewards, specifically exaggerated reactivity to drug-associated

rewards and attenuated reactivity to nondrug rewards we decided to

pool these studies under the domain reward processing. This decision

increased the power of the corresponding meta-analyses and addi-

tionally adhered to the main aim of the study which was to determine

neurofunctional alterations in SUD while not further disentangling

hyper- from hypo-activations on the analytic level. The examination

of the different paradigm domains serves the primary purpose to

investigate whether the conjunctions were influenced by the experi-

mental design or solely by the substances abused. To this end we

computed whole-brain ALE firstly for all studies based on the experi-

mental task, secondly, we grouped the foci into patient and control

per each SUD category and computed the cluster ALE to ascertain the

group interactions under the two categories of experimental para-

digms. We also extracted the foci generated by the probabilities of

functional change from each cluster including the task associated,

using the Kruskal-Willies test we computed the dependency test to

ensure homogeneity between the two categories of tasks forming the

conjunction. Significant threshold was set to p < .05. Finally, to

explore we conducted an exploratory meta-regression based on the

duration of drug used in years and the MA values obtained from the

combined meta-analysis describing the common neurofunctional

alterations across all SUD using spearman rank correlation with 95%

confidence level. The main purpose of this analysis was to explore

whether the identified regions differentially vary in their ALE probabil-

ity with respect to the duration of drug use.

3 | RESULTS

3.1 | Included study sample characteristics

Out of the 99 studies included in the meta-analysis, cocaine studies

contributed to 30% (828) of the total foci, while cannabis, alcohol, and

nicotine contributed to 23.01% (637), 27.45% (760), and 19.44%

(538), respectively of the total foci analyzed, indicating no bias toward

a single substance for the ALE computations. Table 1 shows the

demography of the four groups of substance abuse study categories
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TABLE 1 Subject characteristics for each study in a group

Study source

Participants (N) Age, mean (SD)

Type of experiment/taskSUD HC SUD HC

Cocaine studies

(Barrós-Loscertales et al., 2011) 16 16 34.38(7.15) 34.2(8.86) Stroop task

(Barrós-Loscertales et al., in press) 30 28 35.9(6.31) 38.89(10.5) Stop-signal task

(Bustamante et al., 2011) 15 15 32.4(7.56) 34.2(8.86) Verbal working memory task

(Caldwell et al., 2015) 219 87 34.9(8.08) 32.15(9.07) Moral judgment task

(Crunelle et al., 2015) 51 32 32(8) 33(9) Emotional face matching task

(Ersche et al., 2013) 18 18 34.3(7.2) 32.7(6.9) Stroop task

(Garavan et al., 2000) 31 17 34(0.5) 26(0.7) Working memory task

(Ide, Hu, Zhang, Mujica-Parodi, & Li, 2016) 75 88 39.9(7.6) 38.7(10.9) Stop signal task

(Kaag et al., 2016) 40 51 31.3(7.9) 31(8.5) Fear conditioning paradigm

(Kaag, Reneman, Homberg, van den Brink,

& van Wingen, 2018)

59 58 31.4(7.6) 30.5(8.1) Cue reactivity paradigm

(Kirschner et al., 2018) 22 28 29.73(7.99) 28.2(6.72) Prospective imagery task

(Kober et al., 2016) 30 73 43.78(13.06) 32.22(11.06) Craving/emotional response task

(Ma et al., 2015) 13 10 37.4(5.3) 35.2(7.3) Go/NoGo task

(McHugh, Gu, Yang, Adinoff, & Stein, 2017) 45 22 43.42(7.04) 42.05(8.4) Wisconsin card sorting task

(Mitchell et al., 1998) 15 15 39(10.4) 40.9(7.4) Stroop task

(Moeller et al., 2010) 19 14 40.8(8.4) 34.5(1.8) Working memory task

(Moeller et al., 2015) 37 55 43.62(6.7) 40.28(7.44) Stroop task

(Moeller et al., 2015) 33 20 43.55(8.3) 39.6(5.5) Inhibitory control task

(Moeller et al., 2018) 37 26 46.05(8.3) 43.1(7.2) Drug-choice task

(Potenza, Hong, Lacadie, Fulbright, &

Tuit, 2012)

30 36 36.9(6.4) 31.2(9) Individualized scripts for stress

(Sinha et al., 2005) 20 8 38.75(4.77) 32.8(4.74) Stress and neutral script

(Tau et al., 2014) 13 13 37.7(6.8) 36.6(6) Reward-based spatial learning task

(Worhunsky et al., 2013) 20 20 38.6(9.3) 36.8(8.9) Stroop task

(Yip et al., 2016) 20 21 38.6(9.29) 34.57(11.99) Monetary incentive delay task

(Zhang et al., 2016) 100 100 40.3(7.4) 38(10.6) Stop signal task

Cannabis studies

(Abdullaev, Posner, Nunnally, &

Dishion, 2010)

14 14 19.5(0.8) 19.7(1.4) Attention network task

(Ames et al., 2013) 16 17 21.15(1.9) 20.27(2.3) Implicit association test

(Chang, Yakupov, Cloak, & Ernst, 2006) 24 19 28.77(2.81) 30.57(1.83) Nonverbal visual-attention task

(Cousijn et al., 2014) 32 41 21.65(2.4) 22.25(2.35) N-back task

(De Bellis et al., 2013) 15 41 16.4(7.3) 16(1.2) Decision-reward uncertainty task

(Enzi et al., 2015) 15 15 26.33(2.94) 27.13(8.85) Monetary incentive delay task

(Filbey et al., 2016) 53 68 30.66(7.48) 31.41(10.2) Cannabis cue-exposure task

(Filbey, Schacht, Myers, Chavez, &

Hutchison, 2009)

38 25 23.74(7.25) 22.04(5.63) Cue-elicited craving paradigm

(Gilman et al., 2016) 20 23 20.6(2.5) 21.6(1.9) Visual discrimination task

(Gruber, Rogowska, & Yurgelun-Todd, 2009) 15 15 25(8.8) 26(9.0) Masked affective tasks

(Harding et al., 2012) 21 21 36.5(8.8) 31(11.7) Multi-source interference task

(Heitzeg, Cope, Martz, Hardee, &

Zucker, 2015)

20 20 19.84(1.45) 20.51(1.26) Emotion-arousal word task

(Kanayama, Rogowska, Pope, Gruber, &

Yurgelun-Todd, 2004)

12 10 37.9(7.4) 27.8(7.9) Working memory task

(Continues)
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TABLE 1 (Continued)

Study source

Participants (N) Age, mean (SD)

Type of experiment/taskSUD HC SUD HC

(Kober, Devito, Deleone, Carroll, &

Potenza, 2014)

20 20 26.65(9.81) 29.2(10.06) Stroop task

(Milivojevic, Constable, & Sinha, 2005) 8 18 36(7.5) 37.2(5.6) Script-guided imagery paradigm

(Lopez-Larson et al., 2012) 24 24 18.2(0.7) 18(1.9) Finger-tapping task

(Ma et al., 2018) 23 23 28.2(3.5) 28.7(3.7) N-back working memory task

(Nestor, Roberts, Garavan, & Hester, 2008) 49 52 23.35(0.95) 23.05(0.85) Face-name task

(Schweinsburg et al., 2008) 15 17 18.1(0.7) 17.9(1.0) Spatial working memory task

(Tervo-Clemmens et al., 2018) 22 63 14.12(0.33) 14.21(0.37) Spatial working memory task

(Tervo-Clemmens et al., 2018) 14 15 28.16(0.69) 28.16(0.71) Visuospatial working memory task

(van Hell et al., 2010) 14 13 24.5(4.45) 24(2.7) Monetary reward task was

(Wesley, Hanlon, & Porrino, 2011) 16 16 26.4(3.6) 26.6(6.1) Iowa gambling task

(Zimmermann et al., 2019) 23 23 23.86(3.36) 23.67(2.88) Interpersonal touch paradigm

(Zimmermann et al., 2017) 23 20 21.24(2.59) 21.1(3.61) Event-related cognitive reappraisal

Alcohol studies

(Akine et al., 2007) 9 9 34.6(6.5) 36.2(7.2) Long-term memory retrieval task

(Bagga et al., 2014) 18 18 36.5(5.0) 35.2(3.7) Abstract reasoning task

(Beylergil et al., 2017) 34 26 44.73(8.3) 41.92(9.6) Reward-guided decision-making task

(Brumback et al., 2015) 22 16 17.93(0.7) 17.42(0.7) Alcohol pictures cue reactivity task

(Chanraud et al., 2009) 24 24 47.8(7.7) 45(5.6) Free and cued selective reminding test

verbal episodic memory assessment

(Dager et al., 2014) 23 33 18.9(0.6) 18.7(0.4) Figural memory task

(Deserno et al., 2015) 13 14 45.08(6) 43.86(9.2) Reversal learning task reversal

(Gilman et al., 2015) 18 18 37.7(7.8) 34.5(8.0) Risk-taking task

(Gorka, Kreutzer, Petrey, Radoman, &

Phan, 2019)

38 27 23.8(3.0) 24.3(2.8) Startle threat task

(Grodin, Lim, MacKillop, Karno, & Ray, 2019) 24 22 36.41(14) 32.29(9.9) Cue reactivity task

(Grodin, Steckler, & Momenan, 2016) 17 17 32.25(6.9) 27.72(4.3) Monetary incentive delay task

(Grüsser et al., 2004) 10 10 36(11.0) 41(8.0) Cue response task

(Heinz et al., 2007) 12 12 39(7.0) 40(8.0) Cue response task

(Hermann et al., 2006) 10 10 40(7.0) 38(5.0) Cue response task

(Hu, Ide, Zhang, Sinha, & Li, 2015) 24 70 38.7(8.3) 35.1(9.9) Stop signal task

(Jang et al., 2007) 20 20 43.5(6.0) 44.5(7.4) Mixed cognitive tests

(Jansen et al., 2019) 39 39 41.64(8.6) 44.06(11.0) Emotion reappraisal task

(Kienast et al., 2013) 11 13 41.9(7.0) 43.2(9.5) Emotional task

(Maurage, Bestelmeyer, Rouger, Charest, &

Belin, 2013)

12 12 24.2(4.5) 23.4(4.2) Two-alternative forced choice task

(Park et al., 2007) 9 9 23.22(2.5) 23(2.6) Cue response task

(Reiter et al., 2016) 43 35 44.42(10.21) 42.00(10.49) Anticorrelated decision-making task

(Sjoerds et al., 2013) 31 19 48.5(8.5) 47.7(11.0) Instrumental learning task was

(Squeglia, Schweinsburg, Pulido, &

Tapert, 2011)

40 55 17.9(0.9) 17.88(1.0) Spatial working memory task

(Wesley, Lile, Fillmore, & Porrino, 2017) 24 11 33.3(8.4) 28.8(7.8) The N-Back working memory task

(Wetherill, Castro, Squeglia, & Tapert, 2013) 40 20 18.4(2.1) 18.3(1.4) Go/no-go task

(Wiers et al., 2015) 38 17 44.39(7.3) 42.71(9.2) Cue reactivity task

(Worbe et al., 2014) 19 21 23.21(3.52) 24.14(3.13) Risk-taking task

(Wrase et al., 2002) 37 44 43.5(8.7) 34.2(9.3) Cue reactivity task
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and the type of experimental task used in each SUD study. The com-

bined data set yielded data from a total of 2,692 substance users

(mean (SD) age, 33.9 (11.7)) and 2,564 control subjects (mean (SD)

age, 31.3 (11.6)), with no significant difference between the four SUD

groups χ2 = 1.3, p = 0.7.

3.2 | Step 1: Combined ALE analysis of all SUDs

We initially conducted a main meta-analysis that incorporated the

ALE maps from all SUDs versus the respective control groups (Step 1).

This analysis aimed at determining neurofunctional alterations across

all SUDs and revealed neurofunctional alterations primarily located in

the dorsal striatum, including the caudate and putamen as well as the

prefrontal, limbic and insular cortex, including inferior, superior, and

medial frontal regions as well as the anterior cingulate cortex (ACC)

and the anterior insula (Figure 2, Table 2).

3.3 | Step 2: Subtraction and conjunction analyses
between pairs of SUD categories

The subtraction (direct voxel-wise subtraction of ALE images) analyses

aimed at determining differential neurofunctional alterations between

the SUDs and revealed primarily differential neurofunctional alter-

ations in frontal regions (details provided in Figure S1, Table S2). For

instance, comparing alcohol with cannabis users revealed that the

alcohol group shows greater alterations in the left middle frontal gyrus

compared with the cannabis group that is characterized by pro-

nounced alterations in the right caudate, right insula, right superior

TABLE 1 (Continued)

Study source

Participants (N) Age, mean (SD)

Type of experiment/taskSUD HC SUD HC

(Wrase et al., 2007) 16 16 42.38(7.52) 39.94(8.59) Monetary incentive delay task

(Yang et al., 2013) 15 15 42.3(7.1) 45.5(8.5) Anticipatory anxiety paradigm

(Yoon et al., 2009) 12 12 32(5.2) 31(6.2) Memory encoding tasks

Nicotine studies

(Artiges et al., 2009) 13 13 26(4.0) 24(4.0) Smoking cues emotion recognition task

(Carroll, Sutherland, Salmeron, Ross, &

Stein, 2015)

23 19 35(10) 30.2(7.2) Speeded flanker task

(Bühler et al., 2010) 21 21 28(4.3) 25.7(6.1) Event-related instrumental motivation

task

(Galván et al., 2013) 18 25 19.47(1.33) 19.08(1.15) Balloon analogue risk task

(Hong et al., 2017) 17 16 39.9(4.9) 39.2(5.2) Cue reactivity task

(Kobiella et al., 2014) 27 33 41.3(7.9) 41.3(7.9) Intertemporal choice task

(Okuyemi et al., 2006) 17 17 37.65(9.4) 35.8(10.95) Cue viewing task

(Lawn et al., in press) 19 19 29.5(10.7) 22.7(4.4) Value-based decision-making task

(Lesage et al., 2017) 24 20 35.8(9.9) 30.4(7.2) Probabilistic reversal learning task

(Liberman et al., 2018) 5 5 21.7(3.8) 21.7(3.8) Cue viewing task

(Luijten et al., 2013) 25 23 22.56(2.84) 21.74(1.82) Go/NoGo task

(Luo, Ainslie, Giragosian, &

Monterosso, 2011)

35 36 34.1(7.9) 31.3(7.1) Adaptive intertemporal choice task

(Maynard, Brooks, Munafò, &

Leonards, 2017)

39 19 21.95(3.5) 24(3) Memory task

(Rose et al., 2013) 28 28 32.68(10.02) 30.11(7.83) Monetary incentive delay task

(Rubinstein, Luks, Dryden, Rait, &

Simpson, 2011)

12 12 16(1.4) 16(1.4) Cue reactivity paradigm

(Wagner, Cin, Sargent, Kelley, &

Heatherton, 2011)

17 17 23.1(NA) 21.4(NA) Cue response task

(Weywadt, Kiehl, & Claus, 2017) 81 38 59(1.5) 61(1.36) Go/no-go task

(Yalachkov, Kaiser, Görres, Seehaus, &

Naumer, 2012)

15 15 28.3(3.7) 27(5.01) Visual stimuli

Note: References for the included articles can be found in the supplementary material.

Abbreviations: HC, healthy controls; N, the number of participants; SD, standard deviation; SUD, substance use disorder.

KLUGAH-BROWN ET AL. 4465



frontal gyrus, and right inferior frontal gyrus. In addition, nicotine

associated changes are greater in the bilateral caudate and left ante-

rior cingulate compared to cocaine and alcohol. The conjunction

analysis aimed at determining overlapping foci of neurofunctional

alterations between pairs of SUD categories as indicated in Step 2

in the method section. In the alcohol versus the cocaine group, eight

clusters were obtained from the pooled foci results; we observe two

clusters—one in the frontal gyrus and the other in the dorsal stria-

tum (Figure 3a). Similarly, the contrast between cannabis and

cocaine reveals four significant clusters, exhibiting an overlap of one

cluster with the striatum (dorsal) and of two clusters with the frontal

lobe (Superior Frontal Gyrus and Medial Frontal Gyrus; Figure 3b).

There is no conjunction between alcohol and cannabis. Details of

the other conjunction analyses are shown in Figure 3c–e and

Table 3.

3.4 | Step 3: Post hoc analyses: Contribution
of reward and cognitive domains and associations
with duration of use

To determine whether the employed task paradigms contributed to

the identified neurofunctional alterations observed in the main meta-

analysis, interactions between the most commonly employed task par-

adigms were examined. Given that the majority of studies employed

reward-related and cognitive paradigms these domains were

examined (given the low number of original studies that employed

emotion processing paradigms these were not included). Conse-

quently, a total of 39 reward-related and 55 cognitive processing

studies entered this analysis. Detailed results of this analysis are pro-

vided in Figures 4-6 (see also Tables S3 and S4 for detailed coordinate

information). Briefly, the analysis reveals pronounced neurofunctional

alterations in the frontal lobe during cognitive tasks in SUD. In addi-

tion, SUD exhibits stronger functional alterations in the reward sys-

tem during reward-related task paradigms, primarily in the dorsal

striatum and frontal lobe regions involved in reward and salience

processing. In addition, to determine whether different task-

paradigms employed may contribute to the neurofunctional differ-

ences and conjunctions we examined the contributions of the task

paradigms to the corresponding analyses (see Figure S3 for subtrac-

tion analysis between the pair of SUDs). Using the Kruskal-Wallis test,

we did not find significant differences between the number of foci

contributed by the category of task paradigm to the conjunction

results (χ2 = 1.97, p = .37, see also Figure S2 for the percentage distri-

bution of the task and foci). Together these additional analyses sug-

gest that differences in the task paradigms are unlikely to bias the

determination of the distinct and common neurofunctional alterations

between the SUDs. Finally, a meta-regression with the duration of

use in years and the eight identified foci of the main meta-regression

across all substances was performed (number of studies with available

data for duration n = 69). Findings from this exploratory analysis rev-

ealed that striatal and medial frontal regions involved in reward and

F IGURE 2 ALE for combined studies. All slices in transverse view with ascending slice number. Displayed at FWE < 0.05
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value processing showed a higher probability to be identified in stud-

ies with participants with shorter duration of use while frontal regions

engaged in regulatory and executive control such as the inferior, supe-

rior and precentral gyrus exhibited a higher probability to be identified

in studies conducted in SUD samples with a longer duration of use

(p = .05, rho = 0.71) (see Figure 7).

4 | DISCUSSION

The present meta-analytic approach employed a whole-brain

coordinate-based meta-analysis to determine shared and substance-

specific alterations in the most prevalent substance use disorders

(alcohol, nicotine, cannabis, and cocaine) as determined in previous

fMRI studies. Given that most previous studies could be classified

in examining reward-related functions or cognitive functions, we addi-

tionally examined domain-specific alterations to determine whether

dysregulations in distinct behavioral domains are neurally mediated by

separable brain systems. In line with most overarching translational

addiction models (e.g., [Everitt & Robbins, 2016; Koob & Volkow,

2016; Zilverstand et al., 2018]) the main meta-analysis demonstrates

robust functional alterations in frontostriatal regions, particularly dor-

sal striatal regions involved in habit formation and compulsive

behavior, as well as prefrontal regions including anterior cingulate,

inferior frontal and medial prefrontal regions critically engaged in

executive control and behavioral regulation. Exploratory substance-

specific meta-analyses furthermore reveal a consistent pattern of

altered neural processing in striatal and prefrontal regions for the sep-

arate substances, with some evidence for less frontal impairments in

nicotine addiction. The comparative analyses between the substances

moreover indicate some evidence for differential effects in fron-

tostriatal regions as well as limbic regions such as the ACC and the

insular cortex. Further examining substance-specific differences

reveals that the experimental paradigm is independent of the

observed activations except for alcohol versus cocaine and nicotine

versus alcohol, these are mostly driven by reward-based experiments.

Cocaine and cannabis overlapped in the inferior frontal gyrus while

alcohol-related patterns showed no overlap with cannabis for the con-

trast between reward-related and cognitive paradigms. Examining

functional domain-specific alterations across all substances shows

that substance users demonstrate predominately striatal alterations

during reward processes but frontal alterations during cognitive pro-

cesses, suggesting that alterations in different behavioral domains are

mediated by alterations in separable neural systems. Finally, an explor-

atory meta-regression suggests higher meta-analytic probabilities of

neurofunctional alterations in reward-related processing regions,

TABLE 2 Detailed peak coordinates for the combined studies with the number of clusters for each volume

Cluster # x y z Vol Label

No. contributing

studies

1 10 6 10 15,272 Right cerebrum. Sub-lobar: Caudate 46

1 −14 8 2 Left cerebrum. Sub-lobar. Lentiform nucleus: Putamen

1 −12 −4 16 Left cerebrum. Sub-lobar: Caudate

1 12 −6 18 Right cerebrum. Sub-lobar: Caudate

1 6 −16 10 Right cerebrum. Sub-lobar: Thalamus-dorsal nucleus

1 −10 −18 8 Left cerebrum. Sub-lobar: Thalamus-dorsal nucleus

2 −2 10 44 9,000 Left cerebrum. Frontal lobe: Medial frontal gyrus 45

2 −4 16 34 Left cerebrum. Limbic lobe: Cingulate gyrus

2 2 4 54 Right cerebrum. Frontal lobe: Superior frontal gyrus

3 30 18 6 4,608 Right cerebrum. Sub-lobar. Claustrum 34

3 42 16 6 Right cerebrum. Sub-lobar: Insula

3 42 24 6 Right cerebrum. Frontal lobe: Inferior frontal gyrus

4 −8 46 8 4,504 Left cerebrum. Frontal lobe: Medial frontal gyrus 29

4 4 50 16 Right cerebrum. Frontal lobe: Medial frontal gyrus

4 −4 38 14 Left cerebrum. Limbic lobe: Anterior cingulate

4 −6 36 20 Left cerebrum. Limbic lobe: Anterior cingulate

5 44 6 30 2,976 Right cerebrum. Frontal lobe: Inferior frontal gyrus 24

5 50 4 16 Right cerebrum. Frontal lobe: Inferior frontal gyrus

6 22 42 20 2,448 Right cerebrum. Frontal lobe: Superior frontal gyrus 21

6 30 48 14 Right cerebrum. Frontal lobe: Superior frontal gyrus

7 −46 4 34 2040 Left cerebrum. Frontal lobe: Precentral gyrus 19

8 −38 18 2 1864 Left cerebrum. Sub-lobar: Insula 20

Abbreviations: Cluster #; cluster number; Vol, volume in mm3.
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particularly the striatum and medial frontal regions, in studies examin-

ing SUD subjects with a shorter duration of use, while frontal regions

engaged in regulatory and executive control such as the inferior, supe-

rior and precentral gyrus exhibited a higher probability to be identified

in studies conducted in SUD samples with a longer duration of use.

In general, findings from the present meta-analysis confirmed the

extensive animal and human literature suggesting a critical role of the

frontostriatal circuits in addiction. Neuroadaptations in this circuitry

have been associated with behavioral dysregulations in the domains

of incentive salience and reward processing, habit formation and

executive control (Everitt & Robbins, 2016; Koob & Volkow, 2016;

Zilverstand et al., 2018) and may underpin the progressive loss of con-

trol that represents a key symptom across substance use disorders. In

line with the key symptomatic deficits in salience/reward processing

and executive control deficits in substance use disorders most previ-

ous studies employed corresponding task-based paradigms examining

associated neural processes. Comparing neural alterations in these

domains across substances demonstrate stronger alterations in frontal

regions during cognitive processes whereas alterations during

reward/salience processing are neurally underpinned by stronger

alterations in striatal regions and limbic regions, particularly the ACC.

These findings resonate with the critical engagement of the frontal

cortex in cognitive functions, including inhibitory control, decision

making, and working memory which have been consistently found

impaired in populations characterized by chronic substance use

(Goldstein & Volkow, 2011; Morein-Zamir & Robbins, 2015; Wesley &

Bickel, 2014). The ventral striatum represents one of the most com-

monly identified regions showing alterations in previous meta-

analyses encompassing neuroimaging studies in addiction, including

both drug-related as well as nondrug related reward processing

(Chase et al., 2011; Kühn & Gallinat, 2011). Together with the

orbitofrontal cortex and the ACC the ventral striatum is engaged in

evaluating the subjective value of stimuli in the environment

(Zilverstand et al., 2018) and has been associated with impulsive

choices and trait impulsivity (Barlow et al., 2018; Dalley &

Robbins, 2017). Accordingly, alterations in this region may reflect

adaptations in incentive-based learning processes that promote exag-

gerated salience attributed to the drug as well as deficits in controlling

impulsive behavior. The dorsal striatum, on the other hand, has been

strongly associated with habit learning and the transition from

reward-driven to compulsive behavior in addiction (Vollstädt-Klein

et al., 2010; Zhou et al., 2018, 2019) and may promote the develop-

ment of compulsive drug use in the context of progressive loss of

behavioral control (Everitt & Robbins, 2013). Together, these findings

emphasize that separable neural systems may mediate specific behav-

ioral dysregulations and key diagnostic symptoms that characterize

substance use disorders.

In line with the different neurobiological profiles of the substances

and increasing evidence for substance-specific alterations, the present

meta-analysis revealed evidence for differential alterations in the

substance-using populations. Alcohol use disorder was characterized

by stronger alterations in frontal regions compared to the other three

substances examined which may point to differential neurocognitive

deficits in substance use disorders with alcohol use disorder being

characterized by marked impairments in the domains of cognitive flex-

ibility and attention (Fernández-Serrano et al., 2011). In addition,

reduced self-control and the ability to obtain self-regulation are linked

with SUDs such as esaclating alcohol use, and other health-

threatening behaviors, thus, stronger self-regulation moderates the

usage of the substance (Neal & Carey, 2007; Wills, Ainette,

Stoolmiller, Gibbons, & Shinar, 2008). Alcohol, for instance, has been

shown to have a stronger effect in terms of self-regulation (Quinn &

F IGURE 3 Conjunction analysis for each study pair. (a) Alcohol
versus Cocaine, (b) Cannabis versus Cocaine, (c) Cannabis versus
Nicotine, (d) Cocaine versus Nicotine, and (e) Nicotine versus Alcohol.
Displayed at FWE < 0.05
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Fromme, 2010) which is a primary indicator of prefrontal processes.

For nicotine use disorder stronger alterations in striatal and insula

regions, yet comparably fewer alterations in frontal regions were

observed. These findings may underscore the high addictive potential

of tobacco, with rather moderate cognitive impairments in tobacco

users (Becker & Hurlemann, 2016) as well as an important role of the

insula in nicotine addiction (Gaznick, Tranel, McNutt, & Bechara,

2014). Given the high prevalence of nicotine addiction across

populations with substance use disorders (Agrawal, Budney, &

Lynskey, 2012) these findings furthermore stress the importance to

control for tobacco use in neuroimaging studies on addiction.

Moreover, overlapping alterations across the addictive disorders

were observed in the dorsal striatum and the superior frontal gyrus.This

may suggest an importnat role of the dorsal striatum engaged in asso-

ciative learning, cognitive control, and decision-making in addiction in

contrast to conceptualizations that stress the important role of the ven-

tral striatum such as reward and anticipation theories of addiction

(Blum et al., 2000; Cloninger, 1991). Cannabis use is associated with

greater alterations in frontal regions comparative to cocaine, suggesting

that impaired executive control may be dominant in cannabis compared

to cocaine use disorder which may be predominately driven by dys-

regulated reward anticipation. Long term cannabis use has been associ-

ated with dysfunctional frontal processes related to cognition such as

response time to decision cues and verbal memory (Lundqvist,

Jönsson, & Warkentin, 2001; Shrivastava, Johnston, & Tsuang, 2011)

while cocaine use has been repeatedly associated with marked dys-

regulations in motivation and executive functions (Breiter et al., 1997;

Luciana & Collins, 2012; Paulsen, Hallquist, Geier, & Luna, 2015). More-

over, alcohol and nicotine abuse shared common alterations in cortical

regions and generally showed similar alterations to the other drugs,

which may reflect the high rates of co-abuse of nicotine and alcohol in

many drug abusers (Cross, Lotfipour, & Leslie, 2017; Kohut, 2017).

However, alcohol use was additionally characterized by greater alter-

ations across limbic areas including the ACC suggesting stronger dys-

regulations in salience processing, reinforcement learning and decision

making in contrast to nicotine which may predominately disrupt striatal

TABLE 3 Peak ALE coordinates for the paired conjunctions

Cluster # x y z Vol Label

No. contributing

studies

Conjunction: Alcohol versus cocaine

1 14 6 4 592 Right cerebrum. Sub-lobar: Putamen 3

1 8 4 −2 Right cerebrum. Sub-lobar: Caudate

2 −8 48 8 496 Left cerebrum. Frontal lobe: Medial frontal gyrus 3

2 −4 48 6 Left cerebrum. Limbic lobe: Anterior cingulate

2 −4 44 2 Left cerebrum. Limbic lobe: Anterior cingulate

2 −8 36 2 Left cerebrum. Limbic lobe: Anterior cingulate

Conjunction: Cannabis versus cocaine

1 10 6 10 1,000 Right cerebrum. Sub-lobar: Caudate 8

2 −2 12 50 968 Left cerebrum. Frontal lobe: Superior frontal gyrus 8

2 −6 12 48 Left cerebrum. Frontal lobe: Superior frontal gyrus

3 20 40 20 208 Right cerebrum. Frontal lobe: Medial frontal gyrus 3

3 18 48 24 Right cerebrum. Frontal lobe: Superior frontal gyrus

Conjunction: Cannabis versus nicotine

1 0 12 42 1,104 Left cerebrum. Frontal lobe: Medial frontal gyrus 12

2 8 6 10 1,024 Right cerebrum. Sub-lobar: Caudate 7

3 30 18 8 1,008 Right cerebrum. Sub-lobar: Claustrum 3

4 −12 −4 18 984 Left cerebrum. Sub-lobar: Caudate 7

4 −12 6 12 Left cerebrum. Sub-lobar: Caudate

Conjunction: Cocaine versus nicotine

1 10 6 10 2,088 Right cerebrum. Sub-lobar: Caudate 9

1 20 4 0 Right cerebrum. Sub-lobar: Putamen

2 36 16 4 184 Right cerebrum. Sub-lobar: Insula

Conjunction: Nicotine versus alcohol

1 −14 10 0 1,736 Left cerebrum. Sub-lobar: Putamen 14

1 −6 8 −2 1,080 Left cerebrum. Sub-lobar: Caudate 7

2 10 8 2 Right cerebrum. Sub-lobar: Caudate

Abbreviations: Cluster #; cluster number; Vol, volume in mm3.
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F IGURE 4 Additional analysis aimed at determining the contribution of the cognitive and reward-based task paradigms for the main meta-
analysis across all substances. (a) ALE peak maps for the common (conjunction contrast) and differential (subtraction contrast) between the two
types of task paradigms. Red (cognitive processing tasks > reward processing tasks); Yellow (reward processing tasks > cognitive processing
tasks). (b) between the two types of task paradigm. Displayed at FWE < 0.05

F IGURE 5 Additional analysis aimed at mapping alterations in SUD (across all substances) relative to controls as well as common activities
between SUD and controls during reward-related task paradigms. (a) Subtraction ALE comparing SUD and controls during reward task paradigms.
Yellow (controls > SUD); Red (SUD > controls). (b) Conjunction ALE maps for reward-related task paradigms between SUD and control
participants. Displayed at FWE < 0.05
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reward-related processes. Furthermore, as mentioned in the method

section, we hypothesized that nicotine as often co-abused substance

across all other substances (Kohut, 2017) would share common func-

tional alterations with the other substances. Remarkably, our results

were consistent with the hypothesis but we additionally observed

nicotine-specific alterations in the thalamus that were not observed in

the main meta-analysis encompassing all drug classes. The thalamus

exhibits particularly high expressions of nicotine-sensitive receptors in

the brain, which may partly contribute to the nicotine-specific alter-

ations observed in this region (Wonnacott, 1997; Zubieta et al., 2001).

This nicotine-specific finding may reflect that in addition to striatal

reward-related dysregulations nicotine use induced neuroadaptations

in the thalamic circuit which may contribute to inhibition impairments

observed in both, animal and human models of nicotine addiction

(Huang, Mitchell, Haber, Alia-Klein, & Goldstein, 2018). The thalamus

may, therefore, specifically contribute to nicotine abuse.

Finally, results from an exploratory meta-regression suggest that

the meta-analytic probability of the fronto-striatal regions identified

in the main meta-analysis (across all substances) varies as a function

of the duration of use. Specifically, striatal and frontal regions

F IGURE 6 Additional analysis aimed at mapping alterations in SUD (across all substances) relative to controls as well as common activities
between SUD and controls during cognitive task paradigms. (a) subtraction ALE comparing SUD and controls during cognitive task paradigms.
Yellow (controls > SUD); Red (SUD > controls). (b) Conjunction ALE maps for cognitive task paradigms between SUD and control participants.
Displayed at FWE < 0.05

F IGURE 7 Results from the

meta-regression. Displayed are
results from a meta-regression
between meta-analytic probability
values and duration of life-time use
of substance. Each color represents a
cluster generated from the combined
meta-analysis of all substances. Brain
map shows the location of maximum
ALE with highest probability. Med,
medial; Inf, Inferior; Sup, superior
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engaged in reward processing showed a high probability of being

identified in studies conducted in SUD subjects with a comparably

short duration of use, while frontal regions engaged in regulatory and

executive control such as the inferior and superior frontal gyrus

exhibited a higher probability of being identified in studies conducted

in SUD subjects with a longer duration of use. Together these find-

ings may suggest that reward-related processing regions may become

compromised during earlier stages of the addictive process while

cognitive control regions become compromised during later stages.

Moreover, the findings may suggest that the observed alterations—at

least partly—represent consequences of continued substance use

rather than stable predisposing alterations that precede the onset of

drug use.

Although this meta-analysis revealed task-specific alterations

between the various groups of studies, we could not conduct substance-

specific sub-analyses comparing the different tasks within each sub-

stance group. This was due to the limited number of substance-specific

studies. The within-group task-based analysis would have thrown more

light on the substance-specific alterations for the individual substance

use disorders. Furthermore, the reproducibility of common models for

substance abuse in this meta-analysis may also be related to selection

and publication bias of studies. Moreover, despite our a priori hypothesis

rooted in extensive animal models and human imaging studies the meta-

analysis was not pre-registered. Finally, our analyses did not examine the

direction of activation alterations between SUD subjects and controls

and thus it cannot interfere whether the observed alterations represent

hyper- or hypo-activations in SUD.

5 | CONCLUSION

Summarizing, our analysis reveals consistent results with convergent

models from animal and human studies demonstrating that addiction

is characterized by neural dysregulations in systems subserving

salience/reward processes, habit learning, and executive control,

including decision-making and response inhibition, specifically the

dorsal striatum and the prefrontal cortex. On the other hand, the pre-

sent meta-analytic approach allowed us to determine substance-

specific alterations in frontal, limbic, as well as insular regions, pointing

to specific pathological alterations in addition to shared pathological

pathways.
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