Hindawi Publishing Corporation
BioMed Research International

Volume 2014, Article ID 253013, 7 pages
http://dx.doi.org/10.1155/2014/253013

Research Article

Polyglot Programming in Applications Used for Genetic

Data Analysis

Robert M. Nowak

Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

Correspondence should be addressed to Robert M. Nowak; rbmnowak@gmail.com

Received 30 May 2014; Revised 22 July 2014; Accepted 31 July 2014; Published 14 August 2014

Academic Editor: Brian Oliver

Copyright © 2014 Robert M. Nowak. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance,
flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple
programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which
uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications

and it reduced the time and costs of development.

1. Background

The number of computer programs for the analysis of
genetic data is increasing significantly, but it still needs to be
improved greatly because of the importance of result analysis
with appropriate methods and the exponential growth in the
volume of genetic data.

Genetic data are typically represented by a set of strings
[1], where each string is a sequence of symbols from a given
alphabet. The string representation, called primary structure,
reflects the fact that the molecules storing genetic informa-
tion (DNA and RNA) are biopolymers of nucleotides, while
proteins are polypeptide chains. The secondary, tertiary, and
quaternary structures need to be considered to understand
the interactions among nucleotides or amino acids, but they
are used less frequently in computer programs. The secondary
structure includes the hydrogen bonds between nucleotides
in DNA and RNA and the hydrogen bonds between peptide
groups in proteins, where the molecules are represented by
graphs. The tertiary structure refers to the positions of atoms
in three-dimensional space, and the quaternary structure
represents the higher level of organization of molecules. The
representations of molecules are extended based on con-
nections between sequences or subsequences, which denotes
similarity from various perspectives. Moreover, these data
are supplemented with human-readable descriptions, which

facilitate an understanding of the biological meanings of the
sequence, that is, its function and/or its structure.

The large number of possible candidate solutions dur-
ing the analysis of genetic data means that the employed
algorithms must be selected carefully [2]. Exhaustive search
algorithms must be supported by heuristics based on biologi-
cal properties of the modeled objects. Of particular impor-
tance in this field are dynamic programming algorithms,
which allow us to find the optimal alignment of biological
sequences (i.e., arranging the sequences by inserting gaps
to identify regions of similarity [1]) in polynomial time,
although the search space grows exponentially. Dynamic
programming is used to search for similarity (local or global),
to generate a multisequence representation (profile), and to
examine sequences with hidden Markov models. In addition,
backtracking algorithms are used to search for motifs (i.e.,
identifying meaningful patterns in genetic sequences), greedy
algorithms to detect genome rearrangements and to sort by
reversals, divide-and-conquer algorithms to perform space-
efficient sequence alignments, and graph algorithms for DNA
assembly.

A characteristic feature of the computer programs applied
to genetic data is the necessity to analyze large amounts of
data using complex algorithms, which means that high per-
formance is crucial. Different user and system requirements
mean that the flexibility of software is also important. Finally,

http://dx.doi.org/10.1155/2014/253013

users prefer a graphical interface that is accessible from a web
browser and applications that update automatically.

Scientists are becoming increasingly involved in software
development [3]. They should use software engineering
practices and tools to avoid common mistakes and to speed
up the development tasks [4]. The architecture of working
application with explanation of development decisions could
help in developing new computer programs. Biological and
medical terminology is simplified to invite developers to
discuss the presented solutions.

In this study, I describe the bioweb framework, includ-
ing application architecture, the programming languages,
libraries, and tools, used to develop applications for process-
ing genetic data. I propose a multilanguage platform using
C++, Python, and JavaScript. The use of appropriate and
tested architectures, libraries, and tools decreases the risk of
failure in software system development as well as reduces the
costs and time requirements. The use of appropriate systems
also facilitates rapid prototyping, which allows us to verify
concepts by obtaining the requisite information from end
users: biologists and doctors.

2. Results

2.1. Deployment Model. A three-layer software architecture
was selected where the presentation layer, data processing
layer, and data storage layer were kept separate. The use of
a multilayered model makes computer programs flexible and
reusable, because applications have different responsibilities.
Thus, it is beneficial to segregate models into layers that com-
municate via well-defined interfaces. Layers help to separate
different subsystems, and the code is easier to maintain, clean,
and well structured.

Four possible deployment models were considered for the
three-layer architecture: the desktop, the database server, the
thin client, and the web application, as shown in Figure 1. The
desktop architecture (Figure 1(a)) was rejected because the
framework was designed to support multiuser applications.
Collaboration features were hard to implement in this archi-
tecture because of the lack of central data server that could
be accessed by multiple users. The oftline mode is rarely used
because the Internet is available almost everywhere and the
transmission costs are negligible compared with the costs of
maintaining the system. Furthermore, sequence databases are
publicly available via the Internet, so an Internet connection
is essential for the analysis of genetic data.

An application architecture with a shared database
and data processing modules deployed on client machine
(Figure 1(b)) was rejected because of the requirement for high
client computer performance. Another problem is the need
to update the software on the client side when changes and
additions are made, which is time consuming and requires
support for a wide range of platforms so the development
costs are high.

Deploying the calculation modules on a server machine
allows the execution of these modules by clients on differ-
ent platforms, which reduces the development costs. The
computational power of the server is important because

BioMed Research International

it determines the computational time, which means that
poorly equipped client machines can be used. The opti-
mum solutions are a thin client architecture, as shown in
Figure 1(c), and a web application architecture, as shown in
Figure 1(d).

Deploying the calculation modules on a server machine,
as shown in Figures 1(c) and 1(d), allows the use of many
platforms on the client side, which reduces the development
costs. Importantly, the computational power of the server
is used, so the computational time can be relatively short,
even for poorly equipped client machines. These solutions
simplify scalability if the size of the problem or the number of
clients grows, because only the servers need to be upgraded.
Web applications have advantages compared with application
produced with a thin client architecture because the client
contains a portion of the data processing layer, which can
handle activities such as output reformatting, graph gen-
eration, and user input validation. Client-based processing
reduces the amount and frequency of client-server traffic,
and it reduces the load on the server while the reactions
to user actions are faster. This solution uses web browser
plugins (such as Flash) or HTML5/JavaScript programs on
the client side. The client modules are downloaded during
initialization, which helps to avoid the issue of updating the
software.

2.2. Architecture and Programming Languages. The software
used by presented framework and the framework itself were
created with C++, Python, and JavaScript with HTMLS5. The
use of multiple languages in a single project is quite common
and it is an alternative to using PHP, NET, or Java. The set
of used languages facilitates high performance, versatility,
customizable modules, and the production of a web browser
interface. The modules produced for a typical application
based on bioweb using these programming languages are
shown in Figure 2.

The algorithms are implemented in C++. The source
code is translated (compiled) into machine language, which
makes algorithm execution more efficient because the code is
executed directly by the processor. The language has higher-
level abstractions missing in other languages translated into
binary code (C and Fortran). C++ supports object-oriented
programming by providing virtual functions and multibase
inheritance and exceptions and facilitates functional and
genetic programming, including templates and lambda func-
tions. The standard C++ library is compact but it is well
tested and efficient. It includes support for inputs and outputs,
strings and string operations such as regular expressions, and
sets of collections, such as vectors, lists, sets, and associative
arrays using trees and/or hash tables. It should be mentioned
that concurrency support mechanisms are included in the
C++11 standard (ISO/IEC 14882:2011), so the full capabili-
ties of modern computers with multiple processors and/or
multiple cores can be exploited. If an older C++ compiler
that does not support C++11 is used, it may be necessary
to employ the Boost [5] libraries: BoostThread to create
portable multithread applications, Boost.Regex for regular
expressions, and Boost.Chrono for time utilities. In addition,

BioMed Research International

Client
Client
Presentation Presentation
Client Processing
Presentation
Server
Processing
Server Processing
“ “
(a) (®) (©
Client
Presentation
Processing
Server
Processing

(d)

FIGURE 1: Three-layer application deployment models: desktop application (a), database server (b), thin client (c), and web application (d).
This solution supports the creation of applications using a web application architecture.

vector calculations provided by modern graphics processing
unit (GPU) are available in C++ and the OpenCL [6] standard
is applied.

The server application uses the Python language in
presented solution, mainly because this type of development
is faster compared with C++. Modules that do not constitute
a bottleneck during calculations should be implemented in
Python. Python is a scripting language, so it is small and has
a simple, regular syntax. This language is dynamically type-
checked, uses a uniform data model, and provides reference
counting memory management, so there is no problem with
memory leaks. The Python repository of software (PIP)
https://pypi.python.org/pypi contains over 30,000 packages
and a number of ready-made solutions can be used, partic-
ularly the packages for exchanging data and packages that
support the creation of the web applications I used. It should
be noted that the Biopython library [7] provides a set of tools
for biological computation which are written in Python.

In bioweb the Boost.Python [5] library enables interoper-
ability between the C++ modules and the Python modules.

Other solutions, such as using C API from Python directly,
code generation using Simplified Wrapper and Interface Gen-
erator (SWIG), Py++, Pyrex, and cython, were considered
to be less useful because the interface was less convenient
and there was a lack of support for the techniques used in
genetic data software development. The Boost.Python uses
C Python API and metaprogramming techniques, which
allows the exposure of C++ classes, functions, and objects to
Python and vice-versa, thereby supporting the use of Python
facilities inside C++ code. Boost.Python allows the exposure
of elements and the register of conversions using a simple
syntax and being easy to learn.

The use of a compiler and an interpreter makes the devel-
oped software more flexible. The application customization
requires the use of an interpreter in any case, because chang-
ing the settings should not demand the software rebuilding.
The use of Python to store the user settings simplifies the
customization of applications greatly, because the settings do
not need to be lists of names and values, and the Python
control instructions can be used.

4
Client Web browser Client Web browser
User interface User interface
(Adobe Flex) (JavaScript, HTMLS5)
Server \
Calculation WW Server
library (C++) | | (ighttpd)
|
4> Application
Database server
(Python)

FIGURE 2: Modules produced for a typical application based on the
proposed framework using various programming languages.

A client application request is sent to the standard
port using the HTTP protocol and it is retransmitted by
the web server using interprocess communication mech-
anisms (e.g., sockets and named pipes) to the server
application. Three web servers were investigated: Apache
http://httpd.apache.org, Lighttpd http://www.lighttpd.net,
and Nginx http://nginx.org. The Lighttpd configuration is
known to be simple and its performance is very good, so the
presented solution only includes settings for this web server,
but bioweb is also able to use Apache and Nginx. So scripts
available on project website only include a setting for this
web server. Lighttpd retransmission uses mod_fastcgi and a
socket mechanism. Three open source Python libraries were
considered: Flup from PIP, Web2py http://www.web2py.com,
and Django https://www.djangoproject.com. The libraries
support the Web Server Gateway Interface (WSGI), the
Python standard interface between web servers and
applications.

Flup is a simple WSGI server but its library is small
(256 kB), so the facilities are limited to the python function
call when an http request is received from a client and the
function results are sent back to the client application using
a web server. More advanced libraries are Web2Py (9 MB)
and Django (22 MB), where the facilities include parame-
ter conversion, authentication, authorization, and database
support using object-relational mapping. All Flup, Web2py,
and Django were tested in the present study, because the
characteristics of Web2py and Django are similar. However,
Django is recommended because all of the available facilities
are written explicitly and this library has the best docu-
mentation. Django uses Flup internally to cooperate with
Lighttpd in current version of software; this configuration
works correctly under all popular modern operating systems
(Linux, Windows, iOS, etc.).

Bioweb provides two competitive solutions for client
modules, where the first is based on JavaScript with HTMLS5,
and the second uses Apache Flex and the Adobe Flash Player
plugin. JavaScript with HTML5 web applications uses the
Ajax techniques available on modern web browsers, mainly
XMLHttpRequest objects, so client applications developed

BioMed Research International

Client

Request
answer
C++
Task manager ’SZh_e:h;l;;lﬁi:":":l
| i
/
oooos Task queue
S—— ! Thread
L

FIGURE 3: Active object implementation delivered by the framework.
The client requests are transformed into commands automatically,
which are executed by separate threads.

in JavaScript can send and retrieve data in the background.
The data are interchanged using the JavaScript Object Nota-
tion (JSON), and the Python standard library module sup-
ports JSON encoders and decoders. The HTML5 standard
includes scalable vector graphics support, which improves the
graphical user interface. JavaScript is interpreted by a web
browser and it conforms to international standard ISO/IEC
16262:2011. The current version uses Model View ViewModel
(MVVM) client-side JavaScript framework Angular]S [8].

Apache Flex is a freely available set of software develop-
ment tools, which support the construction of applications
that use the Adobe Flash Player plugin. This plugin, which
is available for most web browsers, allows the user to view
multimedia, vector graphics, and animations. The Apache
Flex application is loaded from web server and executed
on the client side. Communication with the server uses
the Action Message Format (AMF), which is supported in
Python by the pyAMF library. At present, this technology is
being replaced by HTMLS5, which is supported directly by
web browsers, so HTML5 and JavaScript are recommended
for use in new applications.

2.3. Parallel Service Requests. The framework was designed
to create the software that serves multiple users at the same
time. The users communicate independently with the server
via the Internet and the framework includes a component
with the active object pattern [9] implementation to enhance
concurrency and to exploit the server resources fully. This
component, which is part of bioweb, is shown in Figure 3.
The execution of calculation tasks is decoupled from
task invocation to enhance concurrency and to simplify
multithread usage, as shown in Figure 4. Calculation requests
sent from the client application are converted into C++
objects. These objects are commands (the command design
pattern is used) which contain specific parameters as well as
algorithm and synchronization mechanisms. Commands are
stored in the task queue and executed by separate execution
threads from the thread pool. The command handlers are
accessible from Python, so the user can examine the current
command state, that is, tasks that are awaiting execution
in the queue, executed tasks, and completed tasks. This
component uses an observer (from observer design pattern),

BioMed Research International 5
Client Task Scheduler Queue Thread
(JavaScript) manager (C++) (C++) (C++)
(Python)
M Request M M Command
d Request Create (Ct+)
Status enqueue
Dequeue
Call
Getstatus
Status
Result

FIGURE 4: Cooperation among active object participants. The client request is converted into a command managed by the task manager on
the Python side and by the scheduler in C++. The command is stored in the queue, and it is executed when an unoccupied thread is available.
The client can request the current command status and the command progress.

to support the command progress notification. The active
object module can be used independently of bioweb; it is
supplied separately as a C++ library, whose sources are
available at http://mt4cpp.sourceforge.net.

2.4. Testing. Software testing is an integral part of the devel-
opment process. Thus, testing techniques and libraries that
support this process are specified in presented framework.
Three types of tests are considered: unit tests, integration
tests, and system tests. Unit testing checks individual func-
tions, procedures, and classes in isolation. Integration tests
examine the communication between modules, based on a
consideration that they are created in different programming
languages. System tests examine the functions of a computer
program as a whole, without the knowledge of the internal
structure of the software.

Unit testing uses Boost.Test [5] for C++ modules, the
standard Python unittest package for Python code, and QUnit
http://qunitjs.com for modules written in JavaScript. C++
unit testing is performed in both environments: g++ and
msvc. Integration tests are implemented with the same tools
and libraries as unit tests, but the features of C++ modules
exported to Python by the Boost.Python library are tested in
Python using unittest.

System testing uses the Python language and splinter
http://splinter.cobrateam.info library. This tool automates
browser actions such as visiting URLSs, navigation, verifying
page context, finding elements in the page, testing mouse and
keyboard events, reading the text properties of elements, and
other tasks. The system tests allow the automatic evaluation
of test scenarios, without any requirement for manual testers,
which reduces the time and the cost of the overall system
examination.

The test quality measure is the source code coverage
during unit, integration, and system testing. This measure
provides numerical data related to the performance of test
procedures, which helps to identify inadequately tested parts
of the software. The analytic tools used to evaluate coverage
in bioweb are gcov from the GNU Compiler Collection for
C++ modules, Coverage.py from Python Package Index (PIP)

for Python modules, and Blanket.js http://blanketjs.org/ for
JavaScript code.

2.5. Tools. This section describes the programming tools
used to create applications in bioweb. It is important that the
latest versions of the tools described are used.

The C++ modules require a C++ compiler and it is
recommended to use at least two different compilers, partic-
ularly the g++ compiler from the GNU Compiler Collection
http://gcc.gnu.org and the Microsoft Visual C++ Compiler
(msvc) http://msdn.microsoft.com. The use of different com-
pilers increases the probability of capturing errors in the code
and it ensures that the code is portable. The C++ modules use
the standard C++ library and the Boost http://www.boost.org
libraries. The server uses the Python interpreter, the Python
standard library, and packages from the Python repository
(PIP). The client uses the JavaScript interpreter built-in
web and the Angular]S [8] framework, jQuery libraries
http://jquery.com. The Bower [10] automatically manages
client-side package dependencies. An alternative is to use the
Apache Flex software developer’s kit http://flex.apache.org.
The Scons http://www.scons.org is used to create modules, for
testing, and to consolidate the whole system, while Redmine
http://www.redmine.org is used for project management, and
mercurial http://mercurial.selenic.com is used as the version
control system.

3. Discussion

To speed up the creation of new software, the developer
can use a specialized framework. The most popular, freely
available frameworks are Bioconductor [11], MEGA tool [12],
and OpenMS [13]. On the other hand, the programmer can
use general-purpose programming language and specialized
libraries, for example, C++ with NCBI C++ Toolkit [14],
Python with BioPython [7], Java with BioJava [15], and
BioWeka [16]. All these solutions impose limitations con-
nected with the usage of only one programming language [17]
and do not support the user interface in a web browser.

The polyglot environment is common among web soft-
ware, that is, software accessible from a web browser, because
the client-side software (JavaScript, HTML, and CSS) has dif-
ferent responsibilities compared to server side. The ubiquity
of mobile applications and the advent of big data change
the software development to use multiple languages [18].
Similar trends are evident in the bioinformatics software
and the examples are GBrowse [19] or GEMBASSY [20].
Bioweb provides a framework for the construction of such
applications.

There are many application development frameworks that
connect C++ with Python or Python with JavaScript. Pre-
sented solution is similar but combines three programming
languages.

The bioweb is small, but it can be extended, and it can
use specialized libraries. The heavyweight web-based genome
analysis frameworks, such as Galaxy [21], have a lot of ready-
made modules and meet most of the requirements for systems
for the genetic data analysis. However, creating custom
modules and algorithms is not trivial. Presented framework
allows the user to create smaller and independent solutions,
which are easier to manage and to customize. It could be
easily extended to use GPU and/or computing clusters, which
is required in production-scale analysis.

4. Conclusion

The bioweb framework is freely available from http://
bioweb.sourceforge.net under GNU Library or Lesser Gen-
eral Public License version 3.0 (LGPLv3). All of the libraries
and applications used in bioweb are available for free and they
can be used in commercial software.

This framework was used to create several applications to
analyze genetic data: DNASynth application for synthesizing
artificial genes (i.e., completely synthetic double-stranded
DNA molecules coding peptide), the DNAMarkers applica-
tion for analyzing DNA mixtures, the CodonHmm appli-
cation for protein back-translation, the WebOmicsViewer
application for storing and analyzing genomes, the PETconn
application to create scaffolds using paired-end tags, and the
DNAAssembler for assembling DNA using next-generation
sequencing data. The source code for these applications is
available on the project website.

This genetic data analysis software development project
was performed in academia and it supports students who
have a limited amount of time available and who also lack
experience in design and programming. I found that agile
methodologies [22] worked well in this project because they
support the transfer of biological and medical knowledge
from the users of the application. They let us avoid the
duplication of information and allowed minimal documen-
tation production, so a task could be completed relatively
quickly by new users. In particular, the SCRUM [23] and
the extreme programming (XP) [24] techniques were used,
that is, SCRUM roles (product owner, development team, and
scrum master), SCRUM iterations (sprint planning meeting,
end meetings), SCRUM task management and prioritizing,

BioMed Research International

XP test-driven development, and XP coding and documen-
tation.

Presented framework is still being developed; the Gun-
corn [25] Python HTTP Server is added to the upcoming ver-
sion. This cancels the Flup on Unix platforms and accelerates
data transfer between client and server.

Availability and Requirements

(i) project homepage: http://bioweb.sourceforge.net;
(ii) operating systems(s): OS Portable;

(iii) programming language: C++ and Python and
JavaScript;

(iv) license: GNU Library or Lesser General Public
License version 3.0 (LGPLv3);

(v) getting started: to build a “Hello World” applica-
tion please download the latest version, extract the
files from the archive, install additional software as
described inREADME_EN (text file in main bioweb
directory), and run scons command in the directory
where you placed the bioweb. To start the client and
server locally run scons r=1.

Conflict of Interests

The author declares that there is no conflict interests.

Acknowledgments

This work was supported by the statutory research of Institute
of Electronic Systems of Warsaw University of Technology.
The author would like to thank the editor and anonymous
reviewer for their constructive comments. The author is
grateful to the students of the Faculty of Electronics and
Information Technology of Warsaw University of Technol-
ogy, who acted as the early users of this software, and to
Hanna Markiewicz for the proofreading.

References

[1] R. Durbin, Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids, Cambridge University Press,
Cambridge, UK, 1998.

[2] N. C. Jones and P. Pevzner, An Introduction to Bioinformatics
Algorithms, The MIT press, Cambridge, Mass, USA, 2004.

[3] J. M. Osborne, M. O. Bernabeu, M. Bruna et al., “Ten simple
rules for effective computational research,” PLoS Biology, vol. 10,
no. 3, Article ID 1003506, 2014.

[4] G. Wilson, D. Aruliah, C. T. Brown et al., “Best practices for
scientific computing,” PLoS Biology, vol. 12, no. 1, Article ID
e1001745, 2014.

[5] R. Nowak and A. Pajak, C++ Language: mechanisms, design
patterns, libraries, BTC, Le gionowo, Poland, 2010.

[6] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: a parallel
programming standard for heterogeneous computing systems,”
Computing in Science and Engineering, vol. 12, no. 3, Article ID
5457293, pp. 66-72, 2010.

BioMed Research International

[7] P.J. A. Cock, T. Antao, J. T. Chang et al., “Biopython: freely
available python tools for computational molecular biology and
bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422-1423,
2009.

[8] P. B. Darwin and P. Kozlowski, Angular]S Web Application
Development, Packt Publishing, Birmingham, UK, 2013.

[9] R. G. Lavender and D. C. Schmidt, “Active object—an object
behavioral pattern for concurrent programming”

[10] Bower, a package manager for the web, http://bower.io/.

[11] R. C. Gentleman, V.]. Carey, D. M. Bates et al., “Bioconductor:
open software development for computational biology and
bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80, 2004.

[12] S.Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software
for molecular evolutionary genetics analysis and sequence
alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150-163,
2004.

[13] M. Sturm, A. Bertsch, C. Gropl et al., “OpenMS—an open-
source software framework for mass spectrometry,” BMC Bioin-
formatics, vol. 9, no. 1, article 163, 2008.

[14] D. Vakatov, The NCBI C++ toolkit book, 2004.

[15] R. C. G. Holland, T. A. Down, M. Pocock et al., “BioJava: an
open-source framework for bioinformatics,” Bioinformatics, vol.
24, no. 18, pp. 2096-2097, 2008.

[16] J. E. Gewehr, M. Szugat, and R. Zimmer, “BioWeka: extending
the Weka framework for bioinformatics,” Bioinformatics, vol. 23,
no. 5, pp. 651-653, 2007.

[17] M. Fourment and M. R. Gillings, “A comparison of common
programming languages used in bioinformatics,” BMC Bioin-
formatics, vol. 9, article 82, 2008.

[18] A. Binstock, The quiet revolution in programming. Dr. Dobb’s,
2013, http://www.drdobbs.com/architecture-and-design/the-
quiet-revolution-in-programming/240152206.

[19] M. Wilkinson, “Gbrowse Moby: a Web-based browser for
BioMoby services,” Source Code for Biology and Medicine, vol.
1, no. 1, article 4, 2006.

[20] H. Itaya, K. Oshita, K. Arakawa, and M. Tomita, “GEMBASSY:
an EMBOSS associated software package for comprehensive
genome analyses,” Source Code for Biology and Medicine, vol. 8,
article 17, 2013.

[21] J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: a com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences;
Genome Biology, vol. 11, no. 8, article R86, 2010.

[22] M. Fowler and J. Highsmith, “The agile manifesto,” Software
Development, vol. 9, no. 8, pp. 28-35, 2001.

[23] K. Schwaber, Agile Project Management with SCRUM, O’Reilly
Media, Sebastopol, Calif, USA, 2004.

[24] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change, Addison-Wesley Professional, Boston, Mass,
USA, 2004.

[25] Gunicorn, Python WSGI HTTP server for UNIX, http://
gunicorn.org/.

