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N o w

Abstract: Background: Exposure to high altitudes determines several adaptive mechanisms affecting
in a complex way the whole cardiovascular, respiratory, endocrine systems because of the hypobaric
hypoxic condition. The aim of our study was to evaluate the circulatory adaptive mechanisms at
high altitudes, during a scientific expedition in the Himalayas. Methods: Arterial distensibility was
assessed measuring carotid-radial and carotid-femoral pulse wave velocity. Tests were carried out
at several altitudes, from 1350 to 5050 m above sea level, on 8 lowlander European researchers and
11 highlander Nepalese porters. Results: In Europeans, systolic blood pressure and pulse pressure
increased slightly but significantly with altitude (p < 0.05 and p < 0.001, respectively). Norepinephrine
showed a significant increase after the lowlanders had spent some time at high altitude (p < 0.001).
With increasing altitude, a progressive increase in carotid-radial and carotid-femoral pulse wave
velocity values was observed in lowlanders, showing a particularly significant increase (p < 0.001)
after staying at high altitude (carotid-radial pulse wave velocity, median value (interquartile range)
from 9.2 (7.9-10.0) to 11.2 (10.9-11.8) m/s and carotid-femoral pulse wave velocity from 8.5 (7.9-9.0)
to 11.3 (10.9-11.8) m/s). At high altitudes (3400 and 5050 m above sea level), no significant differences
were observed between highlanders and lowlanders in hemodynamic parameters (blood pressure,
carotid-radial and carotid-femoral pulse wave velocity). Conclusions: The progressive arterial
stiffening with altitude observed in European lowlanders could explain the increase in systolic and
pulse pressure values observed at high altitudes in this ethnic group. Further studies are needed to
evaluate the role of aortic stiffening in the pathogenesis of acute mountain sickness.

Keywords: altitude; altitude sickness; aortic stiffness; aortic distensibility; atrial natriuretic factor;
blood pressure; pulse wave velocity; vascular stiffness

1. Introduction

Exposure to high altitudes determines several adaptive mechanisms which affect in a
complex way the whole cardiovascular, respiratory, and endocrine systems because of the
hypobaric hypoxic condition. Altitude may lead to detrimental effects on health, the most
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common of which is Acute Mountain Sickness (AMS). This condition is favoured by rapid
ascent, exercise, cold, and individual predisposition [1,2] and is characterized by a clinical
syndrome which may result in pulmonary and cerebral oedema, which are potentially
lethal events [3,4]. The interrelation of several haemodynamic factors contributes to the
development of pulmonary oedema. With the scope to evaluate the role of cardiovascular
alterations in the pathogenesis of high-altitude pulmonary oedema, several studies have
been conducted on humans to study the pulmonary and cardiac adaptations to high
altitudes [5]. The adrenergic system activation is particularly important for the control of the
cardiac function and of the vascular tone in the first phases of high altitudes adaptation [6].
In men, this activation seems to be particularly evident during a sub maximal physical
stress [7] and could be responsible for the increased values of the basal renin plasmatic
activity observed in these individuals [8]. Further studies have also demonstrated a
modification in the number and functions of beta-adrenergic receptors in highlanders [9].
In the critical conditions of high altitudes, some human populations, such as Nepalese
highlanders, have developed some phenotypic traits influenced by hypoxia, namely, a
broader chest, larger lung capacity, and increase haemoglobin concentration [10-12]. The
biological response of healthy lowlanders exposed to high altitude may therefore differ
from that of native highlanders.

Despite the large number of studies conducted on humans to study the pulmonary
and cardiac adaptations to altitude, the adaptive mechanisms of the large elastic arteries at
very high altitude are not yet clearly understood. Given the difficulty and complexity of
performing clinical research in extreme hypoxic-hypobaric conditions, a very small number
of studies evaluated a possible process of aortic stiffening induced by exposure at very high
altitudes. Lewis et al. [13] assessed arterial viscoelastic properties on 12 healthy lowlanders
and 12 highlanders at very high altitude. In this study aortic distensibility, estimated
by carotid-femoral pulse wave velocity (PWV), was measured in lowlanders at sea level,
upon arrival at 5050 m above sea level (a.s.l.), and after 12-14 days of acclimatization,
while highlanders completed only one session at 5050 m a.s.l. Compared with lowlanders
at sea level, highlanders showed a higher aortic PWV; however, once lowlanders were
exposed to high altitude, these between group differences were not present. However,
the small number of people involved in the study and the absence of assessments at
intermediate altitudes require further studies to confirm these results. On the other hand,
acute ascent at an altitude of 4559 m a.s.l. (HIGHCARE Alps Study, Capanna Regina
Margherita, Monte Rosa, Italy) did not show a significant change in aortic PWV in a group
of 22 healthy volunteers [14].

The large arteries play an important role in blood pressure and peripheral flux regula-
tion. It is well known that large arteries physiologically have not only a conduit function
but also a buffering function, and owing to their distensibility, they are able to decrease the
pulsatile systolic output of the left ventricle. Therefore, the large arteries have a regulation
role, redeeming the pulsatility of the systolic ejection and transforming the regime of the
cardiac pump from discontinuous to continuous. This buffering function results from
the viscoelastic properties of the arterial wall, which depend on the arterial structure and
tone. Structure is determined by the three arterial wall components: elastin, collagen, and
smooth muscle cells. On the other hand, the arterial tone is mainly modulated by the
autonomic nervous system’s activity and by other vasoactive systems (adrenergic system,
renin-angiotensin system, vasopressin, etc.) [15]. The functional and structural conditions
of the arteries determine their ability to buffer the systolic wave and influence systemic
blood pressure values [16].

The aim of our research was to study the changes in blood pressure and haemodynamic
parameters during the ascent and staying at high altitudes, in two groups of European
lowlanders and Nepalese highlanders.
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2. Materials and Methods

This study was performed during the scientific expedition in the Himalayas “Circu-
latory adaptive mechanisms at high altitudes”, inside the research project Everest-K2 of
the Italian National Research Council (CNR). Our scientific expedition involved a group of
white European lowlander researchers, who lived permanently almost at sea level, and a
group of Nepalese highlanders, of Rai ethnicity, born and residing in the Khumbu valley
between 3400 and 4930 m a.s.l., on average at 4007 & 583 m a.s.l. The presence of chronic
disease involving habitual therapy was considered an exclusion criterion from the study.
No chronic treatments were taken by the study participants, and no drugs were taken
during the high-altitude ascension.

The lowlanders, coming from Europe (Milan and Paris), after a 3-day stay in Kath-
mandu (Nepal, 1350 m a.s.l.), were taken by air transport to Lukla airport (2840 m a.s.L).
Nepalese highlander porters were enrolled at Lukla airport. Enrolment was random, linked
to the needs of the scientific expedition (transport of scientific instruments and personal
baggage of the researchers). After staying overnight in the nearby village of Phakding
(2500 m a.s.L), the group of lowlanders and highlanders trekked the next day to the village
of Namche Bazaar (3400 m a.s.l.), where they stayed two full days for ac-climatization. From
Namche Bazaar, the two groups of lowlanders and highlanders hiked together for 3 days
to Lobuche (5050 m a.s.l.) on the Nepalese side of Everest at the “Pyramid International
Laboratory” of the Italian National Research Council (CNR).

Data were collected at Kathmandu and Namche Bazaar in hotel rooms and at Lobuche
in the Pyramid International Laboratory. Barometric pressure was recorded by a micro-
climatic station at the time of each study. Ambient temperature was similarly recorded
and kept constant throughout the study. Examinations were performed in the morning
after at least 18 h of physical rest and after a stay of at least 1 h in a room with a constant
temperature of 19 =1 °C.

2.1. Protocol of the Study

Participants were studied at different altitudes.
For the Europeans, measurements were performed (Figure 1):

6000 -4 m above sea level
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Figure 1. Timing, altimetry, and steps of the scientific expedition.
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In Italy, at sea level (only clinical and blood parameters);

On the second day of permanence in Kathmandu, at 1350 m a.s.L;
On the second day of permanence in Namche Bazar, at 3400 m a.s.L;
On the second day of permanence in Lobuche, at 5050 m. a.s.1,;

On the eighth day of stay in this high altitude laboratory.

For Nepalese participants, the same measurements were performed the same day as
for the Europeans at 3400 m a.s.l. and the second day after their arrival in Lobuche.

2.2. Arterial Stiffness Assessment

The viscoelastic properties of large arteries were estimated by measuring PWV. Cur-
rently, carotid-femoral PWV (cf-PWV) is considered the most reliable non-invasive method
for assessing aortic stiffness, while carotid-radial PWV (cr-PWV) reflects the stiffness of the
muscular arteries in the upper limb [17]. A Millar Mikro-Tip Pulse Transducer SPT-301B
tonometer (Millar Instruments, Inc., Houston, TX, USA) [16,18,19] integrated into a Car-
dioline Delta 3 electrocardiograph (Remco SpA, San Pedrino di Vignate, Italy) was used
to record pulse pressure curves. PWV was measured by recording pressure wave curves
in the carotid and peripheral arteries (femoral or radial) in rapid succession. PWV was
defined as 80% of the distance between measurement sites [20] divided by the time delay
between the distal (femoral or radial) pulse wave and the proximal (carotid) pulse wave,
using the ECG trace as a reference. This method was previously described in detail [21,22].

2.3. Blood Pressure Measurement

Blood pressure measurements were carried out by means of mercury sphygmo-
manometer and a validated oscillometric system (Dinamap, model 1846 SX, Critikon,
Tampa, FL, USA). Blood pressure with the latter device was acquired every 2 min in the left
arm, during the tonometric recording.

2.4. Oxygen Saturation

Arterial oxygen saturation was measured by means of a Kontron Pulse Oximeter 7845
(Kontron, S&T group, Linz, Austria) with finger clip sensor.

2.5. Biochemical Dosages

The radioenzymatic assay was performed for the dopamine, epinephrine, and nore-
pinephrine assays and the radioimmunoassay for the determination of the atrial natriuretic
factor. These dosages were performed only at 1350 m a.s.1.,, at 5050 m a.s.l., and after stay at
5050 m a.s.L.

2.6. Statistical Analysis

Results are expressed as median and interquartile range. Normal distribution of
variables was assessed by Shapiro-Wilk test. Differences between two groups (Europeans
and Nepalese) for all variables were evaluated with Student’s t-test for unpaired data or
with independent samples Mann-Whitney U test for variables not normally distributed.
Levene’s test was used to assess equality of variances. Statistical analysis of parameter’s
alterations with altitude was calculated using Friedman’s test and the subsequent two tailed
Wilcoxon test for non-parametric paired data. Multivariate analysis using logistic regression
models adjusted for age and body mass index were performed to assess differences in
parameters between the European and Nepalese groups. Statistical analysis was performed
by using the Statistical Package for the Social Sciences (SPSS for Windows, Release 20.0;
SPSS, Chicago, IL, USA). A p value less than 0.05 was considered as significant.

3. Results
3.1. Population

All 8 European participants in the scientific expedition (6 men and 2 women) and
11 male Nepalese porters belonging to the Rai ethnic group agreed to participate in the
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study. Table 1 shows how highlander Nepalese were significantly shorter and leaner than
European lowlanders.

Table 1. Main anthropometric characteristics of participants.

Parameter Lowlanders Highlanders p-Value
Sex, f/m 2/6 0/11
Age, years 35.0 (1.5-37.7) 25.0 (23.0-33.0) 0.004
Height, cm 176.0 (167.0-178.7) 158.0 (155.0-166.0) <0.001
Weight, Kg 76.5 (70.5-82.2) 51.0 (49.0-54.0) <0.001
BMI, Kg/m? 25.0 (23.9-27.5) 20.6 (18.5-21.5) <0.001
BSA, m? 1.93 (1.81-2.01) 1.50 (1.47-1.56) <0.001

Data are shown as median (interquartile range). Significance is expressed by the p-value. BMI, body mass index;
BSA, body surface area; f, females; m, males.

Among the eight Europeans participating in this expedition, six reported headaches
after 4000 m a.s.l. Three had moderate dyspnoea at rest, and one experienced vomiting at
5000 m a.s.l. Finally, upon arrival at Lobuche, one person in the lowlander group presented
with signs of moderate cerebral oedema (ataxia, headache, dizziness, vomiting), which
rapidly regressed after oxygen and corticoid therapy. None of the highlander porters
reported any symptoms.

3.2. Blood Pressure and Large Arteries Parameters

Table 2 shows the clinical and haemodynamic parameters changes with altitude in the
lowlander European volunteers and in the Nepalese porters.

Table 2. Clinical and haemodynamic parameters changes with altitude in lowlander European
volunteers (n = 8) and in highlander Nepalese porters (n = 11).

European Lowlanders

5050 m a.s.l.
Parameters Sea Level 1350 m a.s.l. 3400 m a.s.l. 5050 m a.s.l. after 8 Days of Stay
Sa0;, % 96.0 (95.2-97.0) 95.9 (95.4-97.0) 92.6 (89.0-94.5) 80.5 (77.0-84.0) ** 83.5 (77.8-89.5) **

Respiratory Rate, breaths/m
Heart Rate, beat/m
Systolic BP, mmHg
Diastolic BP, mmHg

Mean BP, mmHg
Pulse Pressure, mmHg
Carotid-femoral PWV, m/s
Carotid-radial PWV, m/s

10.5 (10.0-11.0)
62.6 (62.0-69.3)
109.2 (107.7-115.2)
71.3 (68.0-79.5)
84.0 (81.2-93.7)
39.3 (32.3-44.0) 45
8.47 (7.87-9.00) 8.
9.21 (7.90-10.06)

10.0 (10.0-10.7)
67.2 (59.8-74.9)
112.7 (109.1-116.4)
66.7 (62.6-71.3)
81.6 (78.6-87.1)

9.76 (8.00-10.01)

12.0 (11.2-13.7)
71.2 (54.8-86.7)
118.5 (112.2-120.9)
68.0 (64.7-77.1)
84.8 (81.4-91.8)
46.8 (42.3-49.1) *
9.75 (9.13-10.11) *
9.58 (8.43-10.01)

3(44.3-47.7) *
97 (7.82-9.78)

14.0 (12.2-15.0) *
78.3 (74.6-82.4)
119.2 (114.5-122.2)
70.5 (66.2-75.6)
87.2 (82.5-90.0)
48.0 (46.0-51.7) **
8.90 (8.63-10.09) *
9.83 (9.07-10.19)

14.0 (12.3-15.0) *
76.5 (63.8-83.7)
121.0 (111.5-133.0) *
70.5 (63.1-80.2)
87.3 (79.7-97.3)
50.7 (46.0-55.1) **
11.27 (9.82-12.96) **
11.17 (10.90-11.76) **

Nepalese Highlanders
Parameters 3400 m a.s.l. 5050 m a.s.l.
Sa0;, % 94.0 (92.4-95.5) 85.0 (83.0-91.0) *+*

Respiratory Rate, breaths/m
Heart Rate, beat/m
Systolic BP, mmHg
Diastolic BP, mmHg

Mean BP, mmHg
Pulse Pressure, mmHg
Carotid-femoral PWV, m/s
Carotid-radial PWV, m/s

11.0 (11.0-12.0)
62.7 (57.0-69.7)
115.0 (109.7-118.7)
70.0 (66.7-76.0)
85.1 (80.8-90.2)
427 (40.0-45.3)
8.65 (7.73-9.97)
9.59 (8.54-11.64)

12.0 (12.0-13.0) *
64.3 (60.7-79.0)
118.3 (102.7-121.3)
72.3 (70.7-78.7)
88.7 (81.6-92.4)
42.7 (36.0-46.7)
9.09 (8.59-11.17)
10.42 (8.92-12.21)

Data are shown as median (interquartile range). Significance is expressed by the p-value. *, p < 0.05; **, p < 0.001;
versus basal condition (sea level for lowlanders and 3400 m a.s.l. for highlanders). *, p < 0.05; highlanders versus
lowlanders at the same altitude (unadjusted data). BP, blood pressure; PWYV, pulse wave velocity; SaO,, arterial
oxygen saturation.

In the European group, systolic blood pressure and pulse pressure increased slightly
but significantly with altitude (Figure 2), reaching the highest levels eight days after the
arrival at 5050 m (p < 0.05). Diastolic blood pressure and mean blood pressure did not show
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significant changes with altitude. In the Nepalese participants, blood pressure values did
not change between 3500 and 5050 m.

130 -
*| SBP, mmHi
120 » mmg
110 4
100 -
90 -
} MAP, mmHg
/ SaOz %
80 -
‘\ HR, beat/min
) V % | DBP, mmHg
60 -
%
50 4 o PP, mmHg
N %
40 -
014 ! | : :
Sea level 1350 3400 5050 5050 m a.s.l.
8th day

Figure 2. Heart rate (HR, green line), arterial oxygen saturation (SaO,, violet line), and blood pressure
(red lines) changes with altitude in 8 lowlander European volunteers. Data are shown as median and
interquartile range. Significance is expressed by the p-value: *, p < 0.05; **, p < 0.001 versus sea level
values. a.s.l., above sea level; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse
pressure (= SBP — DBP); SBP, systolic blood pressure.

Carotid-femoral and carotid-radial PWYV increased in Europeans with altitude
(Figures 3 and 4) showing the highest significant values (p < 0.001) on the eighth day
in Lobuche (carotid-femoral: from 8.5 (7.9-9.0) to 11.3 (10.9-11.8) m/s, carotid-radial: from
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9.2 (7.9-10.0) to 11.2 (10.9-11.8) m/s). As for systolic blood pressure in the Nepalese, no
changes in PWV were observed with altitude.

| Europeans
m/s B Nepalese

12 A
E *%
o 11 -
©
E 10 - I*
8 94 p
N
s ¥
3 7

Sea level 1350 3400 5050 5050 ma.s.l.
8t day

Figure 3. Changes in carotid-femoral pulse wave velocity (PWV) during the ascent and stay at
very high altitudes in Europeans and Nepalese. Data are shown as median and interquartile range.
Significance versus basal condition (sea level for lowlanders and 3400 m a.s.l. for highlanders) is
expressed by the p-value: ¥, p < 0.05; **, p < 0.001.

_| Europeans
m/s B Nepalese

12 -
E I**
. 11 -
S 10 |
S
©
9 -
o
(4]
o 7.

Sea level 1350 3400 5050 5050 ma.s.l.
8th day

Figure 4. Changes in carotid-radial pulse wave velocity (PWV) during the ascent and stay at very high
altitudes in Europeans and Nepalese. Data are shown as median and interquartile range. Significance
versus basal condition (sea level for lowlanders and 3400 m a.s.l. for highlanders) is expressed by the
p-value: **, p < 0.001.



J. Clin. Med. 2022, 11, 3843

8of 12

A constant elevation of norepinephrine was observed in lowlanders at high altitude
(5050 m a.s.l.), especially on the eighth day compared to the values recorded at 1350 m
a.s.l. (p <0.05): from median (interquartile range) 18 (9-45) pg/mL at 1350 m a.s.l. to 186
(158-222) pg/mL at 5050 m a.s.l,, to 350 (193-833) pg/mL after 8 days of stay at 5050 m
a.s.l. Nepalese people had higher levels of norepinephrine than the Europeans at the same
altitude (428 (326-572) pg/mL at 5050 m a.s.l., p < 0.05). Epinephrine, dopamine, and
atrial natriuretic factor tended to increase with altitude in lowlanders, without reaching
statistical significance (Figure 5). No significant differences were found in the dosages of
these molecules between lowlanders and highlanders at 5050 m a.s.1.

pg/ mL
800
600 t
400 + *
200
0

Norepinephrine

250
200
150
100
50 :

Epinephrine

200
150
100

50 Il
0 P

30

Dopamine

20 |

0 - |

| I I
1350 5050 5050 m a.s.l.

8th day

ANF

Figure 5. Changes in norepinephrine, epinephrine, dopamine, and atrial natriuretic factor values
in lowlanders (red lines) with altitude. Data recorded in highlanders at 5050 m a.s.l. are shown as
green lines. Data are shown as median and interquartile range. a.s.l., above sea level. Significance
is expressed by the p-value: *, p < 0.05 versus values at 1350 m a.s.l; 1, p < 0.05 highlanders
versus lowlanders.
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4. Discussion

Our study provides three main findings. One, in healthy lowlander volunteers, acute
exposure to high altitude causes a significant increase in arterial stiffness, as documented by
the increase in PWV. Two, this process of stiffening of the large arteries not only affects the
aorta but also involves the large muscular arteries of the upper limbs. Three, PWV values
(both carotid-femoral and carotid-radial) recorded in Nepalese highlanders were similar
to those recorded in European lowlanders at the same altitude. These changes remained
significant after adjusting for mean arterial pressure and heart rate changes with altitude.

The viscoelastic properties of the aorta and of the large elastic arteries are guaranteed
by an adequate ratio between elastic and collagen fibres of the arterial wall, as well as
by a balance between these fibres, the extracellular matrix, and the smooth muscle cells.
While changes in arterial wall structure may be evoked as an adaptation phenomenon
for Nepalese highlanders, on the other hand, it is difficult to hypothesize that structural
changes in the arterial wall can occur in the relatively short time of high-altitude ascension.
A further element that makes PWV change at high altitude unlikely to be due to structural
changes in the arterial wall comes from the results of the HIGHCARE Study. In agreement
with results of our study, the HIGHCARE study showed, after an increase in PWV values
at high altitudes, a rapid return of the PWV to baseline after returning to Europe at
sea level [23].

We can therefore hypothesize, at least in lowlanders, a prevalent role played by
functional factors in the changes in arterial distensibility at high altitudes. The role of
functional factors affecting arterial mechanical properties is complex, and their changes
are transitory. The main functional factors determining changes in vascular distensibility
include left ventricular systolic ejection function, heart rate, arterial smooth muscle, and
mean arterial pressure [16]. The sympathetic nervous system is considered to be one of the
major elements affecting arterial functional properties. The activation of the sympathetic
nervous system increases heart rate, ventricular contractility, and modulates the activity of
the smooth muscle cell of the arterial wall, inducing peripheral vasoconstriction, increase in
peripheral vascular resistance, and, therefore, a rise in mean arterial pressure. Additionally,
increased peripheral vascular resistance can modify the amplitude and distribution of
reflected pressure waves, increasing aortic systolic blood pressure as well as pulse pressure.

As already emerged in the HIGHCARE Study [23,24], and as shown by other research
at high altitude [25,26], we confirme that exposure to high-altitude hypoxia is accompanied
by a significant increase in plasma norepinephrine proportional to the altitude reached.
This sympathetic activation is accentuated during the stay at high altitude. The adrenergic
system activation is particularly important for the control of cardiac function and vascular
tone in the first phases of adaptation to high altitude [6,24]. A modification of the number
and functions of beta-adrenergic receptors in subjects who live at a high altitudes has been
clearly shown [9]. Indeed, elevated epinephrine values at high altitudes were also found in
our study, even in highlander porters.

The trend of the norepinephrine increase curve is associated with a corresponding
significant increase in PWV. The stiffening of the aorta at high altitudes, documented by the
increase in cf-PWYV, may justify the increase in systolic blood pressure and pulse pressure
recorded at high altitudes. The PWV values which were registered in the native people
are similar to those registered in the Europeans at the same altitude; therefore, it may
be inferred that the modifications which were observed in the Europeans are chronically
present in the natives.

Muscular arteries should be much more sensitive to the activity of the sympathetic
nervous system than the aorta and elastic arteries. We would therefore have expected a
greater increase in cr-PWV compared to cf-PWYV at high altitudes. Therefore, the weaker
increase in carotid-radial PWV with altitude suggests that other factors besides sympathetic
activation may influence the aortic stiffening. Among other factors that can contribute
to increased aortic stiffness at high altitudes, we can consider haemoconcentration with
consequent increase in blood viscosity [27], oxidative stress [28,29], interstitial oedema of
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the arterial wall [30], and endothelial dysfunction [31,32]. Previous studies have shown
a link between altitude-induced increases in pulmonary artery pressure and increases in
plasma and urinary tract endothelin-1 levels [33], suggesting that acute exposure to high
altitude may impair both endothelial and vascular smooth muscle cell function. At present
all these etiopathogenetic hypotheses are mainly based on speculative considerations,
and further experimental studies are necessary to define the mechanisms underlying the
increase in arterial stiffness related to hypobaric-hypoxia.

According to our knowledge, only the study developed by Lewis et al. compared
aortic PWV values in lowlanders and highlanders at the same altitude, above 5000 m a.s.L.,
and provided evidence of impaired vascular function in highlanders versus lowlanders
at sea level, as indicated by significantly higher central PWYV values [13]. These observed
changes in vascular function and central PWV in the Nepalese natives were remarkably
comparable to those of European lowlanders at 5050 m a.s.l., suggesting that these changes
may not depend on time spent at high altitudes. Contrary to what was evidenced in our
study and in Lewis’s study, Bruno et al. found no differences in aortic PWV values when
comparing a cohort of 95 Nepalese living permanently in three rural villages at 2600, 3800,
and 3800 m a.s.l. with a group of 64 Caucasian Italian volunteers, matched for age, sex,
mean arterial pressure, and body mass index [34]. The discrepancy between the results of
these studies could be attributed to a selection bias in the lowlander control group of the
latter study. Further studies are needed to clarify this issue.

The main limitation of our study was the relatively small number of enrolled indi-
viduals. However, the limit conditions in which the researchers worked must be taken
into account. Materials were carried on back by Nepalese porters and yaks (therefore,
the weight was limited to small amounts), the energy supply was scarce. In Namche, the
electric power was available only for few hours a day and sometimes it was unsteady.

5. Conclusions

These data demonstrate how altitude determines important and significant haemody-
namic changes. The stiffening of the aorta at high altitudes, documented by the increase in
cf-PWYV, could justify the increase in systolic blood pressure and pulse pressure recorded at
high altitudes [23,35]. Further studies are needed to evaluate the role of aortic stiffening
in the pathogenesis of high-altitude pulmonary oedema and of the cardiac hypertrophy-
dilation, which is often observed in people exposed to prolonged stays at high altitudes
and in highlanders affected by chronic mountain sickness.
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