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Abstract

The complexity of navigation in cities has increased with the expansion of urban areas, creating challenging transportation problems
that drive many studies on the navigability of networks. However, due to the lack of individual mobility data, large-scale empirical
analysis of the wayfinder’s real-world navigation is rare. Here, using 225 million subway trips from three major cities in China, we
quantify navigation difficulty from an information perspective. Our results reveal that (1) people conserve a small number of repeat-
edly used routes and (2) the navigation information in the subnetworks formed by those routes is much smaller than the theoretical
value in the global network, suggesting that the decision cost for actual trips is significantly smaller than the theoretical upper limit
found in previous studies. By modeling routing behaviors in growing networks, we show that while the global network becomes
difficult to navigate, navigability can be improved in subnetworks. We further present a universal linear relationship between the
empirical and theoretical search information, which allows the two metrics to predict each other. Our findings demonstrate how
large-scale observations can quantify real-world navigation behaviors and aid in evaluating transportation planning.
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Significance Statement:

Evaluating network navigability is crucial for understanding transportation efficiency. However, the real-world wayfinder naviga-
tion is understudied due to the lack of mobility data. Using large-scale subway trips from three mega-cities in China, we quantify
navigation difficulty via information bits and find that the decision information in the subnetworks formed by repeatedly used
routes is much smaller than the theoretical upper limit shown in previous studies. By modeling routing behaviors in growing
networks, we show that navigability can be improved for actual trips even if the theoretical navigability of the network is deterio-
rating. We also reveal a universal linear relationship between the empirical and theoretical navigation information. These findings
partially explain why people are not getting lost in complex transportation networks.

Introduction
With the expansion of urban transportation networks, the effi-
ciency and navigability of cities have attracted increasing atten-
tion (1–5). In particular, the rapidly increasing number of edges
(routes) in transportation networks has increased the complexity
of navigation while making it easier for people to move around a
city (6, 7). However, interestingly, people are not “lost” in complex
transportation networks, which makes us wonder how individuals
navigate during network evolution. The exploration of this ques-
tion has important implications for understanding the correlation
between the navigability of transportation networks and public
travel behaviors.

Quantifying the routing costs in networks has offered novel in-
sights into the navigation problems of transportation networks
(8–11), brain networks (12–14), social networks (15), wireless net-
works (16), and many other disciplines (17–20). Among these stud-
ies, the information approach proposed by Rosvall et al. (9, 10) is
an important starting point. By modeling navigation in a road net-

work as a signal transmission process, Rosvall et al. developed a
“search information” metric to quantify navigation difficulty (9,
10). Unlike route choice models, which are widely used in trans-
portation engineering (21–23), search information focuses more
on measuring the complexity of the network [rather than model-
ing travelers’ route choices and traffic assignment (24, 25)]. Specif-
ically, the search information can be easily understood as the
number of yes or no questions that a traveler has to answer when
locating a route from a bird’s-eye view of a map. However, previ-
ous studies on search information typically assumed that travel-
ers have a global view of networks (8–11, 17), ignoring the critical
fact that travelers generally use information from only part of the
network during their actual navigation (26–28). More importantly,
due to the lack of mobility data, previous studies often did not
consider the actual traffic between network nodes, making it dif-
ficult to reflect the complexity of navigation in real networks.

Here, using 225 million subway ridership records from Beijing,
Shanghai, and Shenzhen (three mega cities in China), we estimate
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Fig. 1. Search information. (A) A simplified schematic of a subway network. (B) The corresponding information network of panel (A). Nodes represent
subway lines (a–f), and edges represent transfer stations (1–9). (C) Route p(i, s; j, t) (highlighted in yellow) from station i on line s to station j on line t. (D)
Search in the global information network. One needs to answer log2k yes or no questions to locate the next line or log2(k − 1) excluding the line that it
has come from. (E) Search in the subnetwork. We delimit the subnetwork of actual trips by the stations and lines within the set P(i, j) of route choices
from i to j. Subway lines without consideration are in faded colors. (F) The information network in solid colors is mapped from the subnetwork in panel
(E). In contrast with the 3.6 (log212) yes or no questions based on global search in panel (D), travelers only need to make one decision during their
search in the subnetwork (log22), i.e. to decide whether to travel on the dark blue or light blue line.

the route for each origin–destination (OD) record and obtain the
subnetwork formed by route choices to represent traveler net-
works for route planning. By mapping the subway network into
an information network, we calculate the search information (the
measure of navigability) along the path in the information net-
work (Fig. 1). According to ref. (9), the log2k bit is the minimal
information necessary to locate the next move from k options,
where k corresponds to the node degree in the information net-
work [in Fig. 1(D), at each node except the origin node of the path,
the incoming path is excluded from the k options, resulting in an
information value of log2(k − 1) bits]. Notably, the degree k of the
same node may be smaller in the subnetwork than in the global
network, indicating that people are navigating with fewer line op-
tions (for transferring) in practice (Fig. 1).

We observe that most people only make a small number of
route choices during a trip, which implies that people use a small
subnetwork when planning their routes. This directly results in
lower search costs during actual travel than in theoretical studies
(8, 9, 11). By applying a simple route choice model to the histor-
ical subway networks of the three cities, we further investigate
the impact of network growth on the decision information. We
find that as the network grows, the navigation complexity of the
subnetworks remains unchanged or even declines, while the theo-
retical global navigation complexity increases significantly. These
differences suggest that the navigability of a network can be im-
proved for actual travel behaviors, even if the global navigabil-
ity is reduced during network growth. Moreover, we find a univer-
sal 3/4 linear relationship between empirical search information
and theoretical search information, reflecting the hidden corre-
lation between these two metrics in the complex network. This
work bridges existing network navigability studies with traveler
routing behaviors and has the potential to be used in evaluating
urban transportation planning and understanding navigation in
cities (29–32).

Results
The conserved number of routes
We estimate actual traveler routes using smart card data, subway
networks, and a travel survey dataset. Here, we briefly introduce
the data process; the detailed data description, the travel time es-
timation of a path, and the discrete choice model are provided
in the “Materials and methods” section. First, for a given station
pair, the top 10% and the bottom 10% of smart card records are
trimmed according to the travel time distribution to exclude ab-
normal data. Second, for each record, those paths in the subway
network whose temporal distances are within 10 min from the
travel time of the record, are the candidate paths to be matched.
Third, by adopting a discrete choice model considering travel time,
distance, and the number of transfers, we estimate the probabil-
ity of each candidate path being chosen. The parameters of the
model are calibrated by the travel survey data (see the “Materi-
als and methods” section). Finally, we match each record to the
path with the largest probability of being chosen. To verify the
matching results, we aggregate the flows by subway lines and cal-
culate the correlation between the matched results and the of-
ficial published number during the same period in Beijing (Sup-
plementary Material Appendix, Fig. S1) (33). The high goodness of
fit (R2 ≈ 0.99) indicates the effectiveness of our matching method
(Fig. 2B).

The matched results show that, despite the large number of
possible routes between a station pair, most people only use a few
routes (Fig. 2C–E). For example, in 95% of the station pairs, people
take no more than 4 routes in Beijing and Shanghai, and in Shen-
zhen, this ratio is 99%. Among those limited number of routes,
we further find that more than 90% of people follow the simplest
route to travel in the network (Supplementary Material Appendix,
Fig. S2), i.e. the route with the fewest transfers (34). As more trans-
fers usually mean higher time costs due to walking and waiting
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Fig. 2. Route matching based on smart card records of subway systems. (A) The estimated flow map of the Beijing subway network. (B) Correlation
between the estimated flow and the official released flow on 16 lines in the Beijing subway. Each point represents a subway line. The flow is normalized
by the summation value and indicates proportions in the plot. (C–E) The number of routes followed by travelers between stations in the three studied
cities. The distributions are displayed in a histogram (gray) and a cumulative distribution (black), respectively. The dashed lines mark the number of
routes followed by travelers between 90%/95%/99% of the station pairs.

for the next transfer (35), the simplest route can minimize trans-
fer costs and tends to dominate people’s choices.

Information measures
The adopted number of route choices observed in our data implies
that actual travel occurs within subnetworks. It is possible that
the information used for rider decisions consists of more than the
subnetworks formed by the actual routes. However, since we can
only observe traveled routes in our datasets, we assume that peo-
ple’s travel decisions are based on subnetworks formed by route
choices in this paper. Here, we use the term “route” to denote peo-
ple’s route choices and the term “path” to denote the segments on
the networks (the two terms are interchangeable).

First, we measure the navigation complexity in the information
network via the information bits. Recall that a matched path p(i,
s; j, t) from station i on line s to station j on line t can be mapped
to the information network (Fig. 1F), where each node represents
a subway line and each edge represents the transfer station of the
connected lines. According to ref. (11), the total amount of infor-
mation S needed to locate p(i, s; j, t) in the information network
is

S(p(i, s; j, t)) = log2 ks +
∑

n∈p(i,s; j,t)

log2(kn − 1), (1)

where ks is the degree of node s. kn is the degree of node n on path
p(i, s; j, t) (except s and t), and one has to locate the next move from
the kn − 1 options. S measures the difficulty of locating a particular
path, and a lower S means that the network has better navigability
between the station pair. When there are multiple matched paths
between i and j, we calculate the station-level empirical search
information (ESI) by performing the flow-weighted average on all

the matched paths P(i, j) = {p(i, s; j, t)} connecting i and j (see the
“Materials and methods” section). The value of ESI indicates how
difficult it is for travelers to find their way from i to j during the
actual trip.

Unlike the definition of search in the subnetwork formed by
actual trips, the theoretical search information (TSI) defines the
information required to find the simplest path in the global infor-
mation network (9, 11), i.e. the path with the fewest nodes from
s to t. There may be multiple simplest paths between the sta-
tions; for simplicity, we use the fastest simplest path to define
the station-level TSI according to ref. (11). The calculation for the
TSI is the same as Eq. (1), but the node degrees ks and kn are cal-
culated in the information network transformed from the whole
network.

Figure 3(A) shows that the ESI values of most station pairs
(> 81%) are smaller than the theoretical global values. In the Bei-
jing subway, the mean value of ESI and the mean value of TSI
are approximately 0.7 bits and 4.0 bits, respectively, indicating
that the decision cost for travelers to determine their routes is
much smaller than what they theoretically need to spend. Simi-
lar results can also be found in Shanghai and Shenzhen (Supple-
mentary Material Appendix, Fig. S3). The main reason is that the
subnetworks formed by route choices only include the lines and
transfer stations that people have considered and adopted, and
the number of these lines and transfer stations is far less than
that of the whole network. This directly results in the node de-
grees of the subway lines in the subnetworks being smaller than
those in the whole network when calculating the amount of in-
formation (Fig. 3(B) presents an example).

Although the TSI is greater than the ESI between most stations,
we find that a small number of station pairs in the three cities
have an ESI equal to a TSI (Fig. 3A). Most of these station pairs
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Fig. 3. Station-level and line-level search information. (A) The station-level ESI and TSI. In the left panel, each dot represents a station pair, and 〈·〉
denotes the average over all pairs. In the right panel, the bars show the proportions of station pairs with TSI > ESI, TSI = ESI, and TSI < ESI. (B) An
example of a station pair whose TSI > ESI. The subnetwork (right) formed by the four matched paths contains fewer lines and transfer stations than
the global network (left), which makes ESI < TSI. (C) Time difference T − Tsim and information difference ESI−TSI at the station-level. For a station pair,
T is the flow-weighted average of time for all the matched paths, and Tsim is the travel time of the simplest path. (D) The line-level ESI and TSI. Similar
to panel (A). (E) An example of a station pair whose TSI < ESI. Between this station pair, people choose the paths with more transfers (C = 4.0,
T = 61.6 min) in the subnetwork than the simplest path (Csim = 1, Tsim = 89.7 min ) in the global network, making the ESI exceed the TSI. (F) Transfer
difference C − Csim and information difference ESI−TSI at the station-level. The bars in panels (C, F) denote the 95% CIs.

are located on the same subway lines without any transfers, and
hence both empirical and theoretical decision costs are zero.

A counter-intuitive finding is that there are still 1% station pairs
with ESI > TSI (Fig. 3A and Supplementary Material Appendix,
Fig. S3). This is mainly because people will trade higher naviga-
tion complexity for shorter times on some trips . Figure 3(C)
shows that when ESI > TSI (i.e. the higher navigation complex-
ity), the travel time between stations is shorter than the sim-
plest path time (T − Tsim < 0). Figure 3(E) shows a typical exam-
ple. From Zhongguancun to Laiguangying, most people choose
shorter paths with four transfers rather than the simplest path
with one transfer in the whole network. Since the search infor-
mation is accumulated at each transfer along the path, the in-
creased number of transfers (i.e. C − Csim) makes the ESI more
likely to exceed the TSI (Fig. 3F). Further analysis of station pairs
with ESI > TSI also verifies our assumption (Supplementary Ma-
terial Appendix, Fig. S4): The actual paths with more transfers are
much shorter in travel time than the simplest path with fewer
transfers.

In addition to the complexity of navigation between stations,
another important dimension is the navigation between lines. In
subway travel, the most important decision is how to best reach
the destination through the choice of lines (rather than stations).
Therefore, we average the amount of information on all the route
choices that start on line s and end on line t to obtain the line-
level search information Sl between the line pair s to t (see the
“Materials and methods” section). In Fig. 3(D) and Supplementary
Material Appendix, Fig. S5, we again observe that more than 87%
of the line pairs have a lower ESI than TSI. The similar results be-
tween the station-level and line-level search information suggest
that the small decision costs are universal across navigation di-
mensions in empirical navigability.

Evolution of navigation complexity
Subway systems in China have changed dramatically over the
past two decades, giving us the opportunity to investigate the
impact of network growth on navigation. To better understand
the navigation complexity in historical networks without real-
world trip data, we model navigation behaviors using the follow-
ing steps: (1) generating a choice set, i.e. m alternative paths by the
repeated shortest path algorithm (36) and (2) making the route
decision based on the discrete choice models used in matching
smart card records with network paths (see the “Materials and
methods” section). In the second step, we further assume that the
path with the highest probability (among the m paths) can rep-
resent the final route choice and use this path to measure the
navigability in actual trips.

Specifying the size of choice set m is challenging for route
choice modeling and it is usually based on laboratory settings due
to the lack of empirical support (37, 38). Here, based on our find-
ings (Fig. 2C–E), we use m = 13 in Beijing, m = 12 in Shanghai,
and m = 6 in Shenzhen to characterize the choice sets and infer
the subnetworks that people use for route decisions. To validate
the robustness of the results, we also conduct tests on different
values of m and obtain similar results (Supplementary Material
Appendix, Figs. S6 and S7).

Figure 4(A) shows that both ESI and TSI increase over time as
the network grows larger, but the growth rate of ESI is substan-
tially lower than that of TSI. To obtain a closer look at the changes,
we classify the trips into three groups based on the changes in
value from the search information. The results show that the
search information for the vast majority of trips is increasing in
the global network (Fig. 4B). In Beijing, for example, more than 70%
of the inter-line trips have an increased TSI. However, for search
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Fig. 4. Line-level search information. (A) The development of Sl (s, t) for ESI and TSI. (B) Line-level TSI is decomposed into three categories. Each bin
represents the number of line pairs in the subway network of the year. The colors distinguish the line pairs whose TSI values increase (red), decrease
(blue), or remain unchanged (pale) due to the network changes in that year. (C) Similar to panel (B), the ESI is decomposed into three categories. (D)
The network changes in the Beijing subway from 2012 to 2013. The newly opened segments/lines are highlighted in yellow. (E, F) The impact of
network changes on navigability. The inter-line trips are drawn in the arcs that point from the start lines to the end lines. The colors indicate the
differences in search information between 2012 and 2013. The extension of Line 10 connecting the Yizhuang Line makes navigation from the Yizhuang
Line to other northern lines, such as Line 15 and Line 8, much easier (F), while it increases the difficulty of global navigation for most trips (E).

information in the subnetworks, we observe that most trips are
not affected or are even easier to navigate during network growth
(Fig. 4C). Especially since 2017, more than half of the inter-line
trips have an unchanged or reduced ESI each year in Beijing and
Shanghai, which reflects a great improvement in the actual navi-
gability. When looking at the specific trips (Fig. 4D–F), we also find
that adding subway lines can facilitate navigation for travelers,
even if the difficulty of the theoretical global navigation increases.

Figure 4 focuses on the average value of the search informa-
tion, while the maximum value is also essential for a transporta-
tion network since the maximum value determines the navigation
obstacle. Similar to Fig. 4(A), Fig. 5(A) shows that the maximum
values of ESI and TSI increase as the network grows. In particu-
lar, the 8-bit upper limit of the TSI previously found in New York
City (11) can also be verified in Shanghai (Fig. 5A). In addition to
these specific values, we find a universal linear relationship with
a slope of 3/4 between these two metrics despite the apparent
complexity of network dynamics (Fig. 5B). This finding expresses
a very tight quantitative constraint on navigation behaviors and
allows the empirical search information to be predicted by global
search information. Given the 8-bit upper limit of the TSI and the
3/4 relationship, we estimate that the upper limit of the empiri-
cal search is approximately 6 bits, which is confirmed in the three
cities (Fig. 5A).

Discussion
In this work, we characterize traveler route choices from large-
scale datasets and find that (1) people adopt a small number of
repeatedly used routes and tend to prefer the simplest route; and
(2) the decision cost for wayfinding in the subnetworks is much
smaller than that in a theoretical global search. In analyzing the
search information required for actual navigation, we use the sub-
networks formed by route choices. This may miss some additional
routing information, as people may use more alternative routes
for decision-making, even if those routes are never traveled (in
the observed data). These unobserved routes would make search
information values larger than the empirical results in this paper
but would still be lower than the global theoretical values.

We discover a 6-bit information limit from dynamic networks,
which coincides with the bound of the human working mem-
ory capacity of 2–6 items in cognitive sciences (39–41). The 6-bit
search information can also be linked to the number of connec-
tions in the network (which corresponds to the edges in the in-
formation network). According to ref. (11), the approximate rela-
tionship between search information Sl and the number of con-
nections Ku of the information network is Sl = log2Ku, when con-
sidering paths with C = 2 connections (note that this equation is
derived assuming that the subway network is close to a regular
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year in panel (A). The maximum ESI is strongly correlated with the maximum TSI, and the slopes of the fitting lines are approximately 0.75.

10  2 15 1

1

4
13

2

10

8

9 8S

5 14E

15

7

6

7 13

13 10 2 9 4 8 5 14E8S

  6

A

B

Fig. 6. Line-level search information and the number of network connections. (A) Beijing subway network. Beijing subway lines have a grid-like
structure (left), and the information network is similar to the bipartite map (right). As loop lines (Lines 2/10/13) act both as horizontal and vertical
lines, we express them as two points (solid and dashed) with the same color in the information network. (B) Considering a path with two connections,
the average amount of line-level search information needed to locate the simplest path is close to Sl = log2Ku, where Ku is the number of edges in the
information network or the number of connections in the subway network (11).

lattice, as shown in Fig. 6(A); see (11) for details). We also ob-
serve similar relationships between Sl (s, t|C = 2) and the number
of connections in the dynamic networks of the three cities (Fig. 6B).
Therefore, the 6-bit limit implies that people are disturbed by 64
(26) connections in the subnetwork during the search for the most
complex trips.

Notably, both our 6-bit and the previous theoretical 8-bit limits
are obtained when only the routes with two transfers are consid-
ered (11), and in fact, many trips require more than two (some re-
quire even five) transfers to reach the destination. Therefore, the
information limit summarized from the two transfer routes could
be limited in representing the complexity of the network and
defining the navigation complexity at different scales (or trans-
fer numbers) can provide a more comprehensive evaluation of

the network structure (42). Furthermore, identifying information
limits may be critical, but reducing these travel complexities and
designing a well-navigated transportation network are more pro-
found.

Our work is helpful in evaluating transportation planning (43)
and has implications for understanding human navigation in
cities through large-scale datasets (44, 45). With the help of big
data, quantifying real-world navigation behaviors may shed light
on research in spatial cognition and psychology (32, 46–48), which
is usually based on experimental data from volunteer participants
(49–51). Our understanding of navigation complexity is still lim-
ited; especially due to the limitations of the data, we only study
a subway network, which is a relatively simple public transporta-
tion network. Further research on multimodal networks (e.g. sub-
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ways, buses, and other modes of transportation) and spatial cog-
nition mechanisms will provide a deeper understanding of urban
navigation (29–31).

Materials and methods
Data
The 225 million smart card records include 10.8 million users of
the Beijing subway in 2019 May, 10.3 million users of the Shanghai
subway in 2015 April, and 2.7 million in the Shenzhen subway in
2017 October (Supplementary Material Appendix, Table S1). Each
record consists of a card identification, the entry and exit times-
tamps, and names of the entry and exit stations and lines. For
each record, the interval between the entry and exit timestamps
is calculated as the travel time of that trip.

The subway network data include 15 snapshots of the Beijing
subway from 2003 to 2020, 18 snapshots of Shanghai from 2000
to 2020, and 8 snapshots of Shenzhen from 2004 to 2020 (Supple-
mentary Material Appendix, Tables S2–S4). We obtain the stations
and lines from the official online subway maps. The coordinates
of the stations and the travel time between stations are collected
from Baidu Maps.

To calibrate the discrete choice model and validate the esti-
mated travel time adopted in this paper, we collected 272 subway
trips with known routes and durations through questionnaires
in the three studied cities (Supplementary Material Appendix,
Figs. S8 and S9). Participants were asked to upload a screenshot
of their subway ride record, including the entry and exit stations
and times and the subway lines and transfer stations they took
during the trip.

Travel time estimation and validation
In a subway network, nodes represent stations and edges repre-
sent subway lines connecting two consecutive stations. We set the
in-vehicle time between a connected station pair as the temporal
attribute of the edge and further assume that the travel time be-
tween the same adjacent stations between 2000 and 2020 is equal
to the value in 2020 (not considering the effect of train speed in-
creases).

To estimate the temporal distance of a specific path pij from
stations i to j, we decompose the travel time into three parts: the
in-vehicle time, transfer delay, and access/egress delay. We esti-
mate each time separately: the in-vehicle time Tveh

pi j
is obtained by

the sum of the in-vehicle times on each edge; the transfer delay
is assumed to be the product of the number of transfers Cpi j and
the average transfer delay Ttrans; and the access/egress delay is as-
sumed to be a constant value Tconst. The temporal distance of pij

is

Test
pi j

= Tveh
pi j

+ Cpi j × Ttrans + Tconst, (2)

where Tveh
pi j

and Cpi j can be obtained from the subway network data.
Although we assume that the average transfer delay Ttrans and the
access/egress delay Tconst are constant at all stations, they are still
difficult to observe. To solve this issue, we need to find some trips
to be able to know their Test

pi j
and Cpi j and estimate Ttrans and Tconst

as two regression coefficients. To do so, we assume that the trip
with the least number of transfers among the k shortest paths is
the most time-efficient trip, whose travel time is the shortest (ar-
rival time − departure time) derived from the card data. This trip
is also known as the Pareto-optimal trip (52). Here, we use k = 3,
and we also test this on different k values(Supplementary Mate-
rial Appendix, Fig. S10). Test

pi j
is estimated by the mean travel time

of the time-efficient trips between stations i and j. We then con-
duct the regression on the inputs of all station pairs to estimate
the coefficients Ttrans and Tconst based on Eq. (2).

To validate the estimated travel time of the paths, we test Eq. (2)
on the routes of the survey data. We calculate the expected time
of each surveyed route in the network based on Eq. (2) and in-
vestigate the difference between this time and the actual travel
time. Supplementary Material Appendix, Fig. S11 shows that in
all three cities, the time difference peaks at approximately �T =
0, and most trips (approximately 95.2%) are in the range of |�T| ≤
10 min . The small gap verifies the effectiveness of the estimation
[Eq. (2)].

Discrete choice model
To match the smart card records with routes on subway networks,
we adopt the multinomial logit (MNL) model derived from utility
theory, which is widely applied to traffic assignment (21, 23, 53).

In the MNL model, the probability of choosing the path pij from
stations i to j in the choice set P(i, j) is defined as

Probpi j = eVpi j

�P(i, j)e
Vpi j

, (3)

where Vpi j is the deterministic utility function of pij and is usu-
ally defined by a linear combination of factors affecting traveler
route choices. We define the utility function by two explanatory
variables as

Vpi j = β0 × Test
pi j

+ β1 × PItrans
pi j

, (4)

where Test
pi j

is the travel time of pij. PItrans
pi j

is the cumulative trans-

fer penalty index (23), specified as (1 − e−Cpi j )/di j, where Cpi j is the
number of transfers on pij and dij is the Euclidean distance be-
tween i and j. This penalty index assumes that the impedance of
transfers to people’s route choice increases in a nonlinear form as
the number of transfers increases, and the effect of this cumula-
tive impedance is inversely proportional to the distance traveled
(23). β0 and β1 are the parameters measuring the effects of Test

pi j

and PItrans
pi j

.
To calibrate the MNL models for different cities, we estimate

the parameters by the maximum likelihood method using the sur-
vey data. According to the estimation, the parameters set for Bei-
jing (β0 = −0.0063, β1 = −30.99), Shanghai (β0 = −0.0023, β1 =
−127.7), and Shenzhen (β0 = −0.0031, β1 = −113.2) are statistically
significant (Supplementary Material Appendix, Tables S5–S7).

To validate the discrete choice models, we first calculate the
matching accuracy on the survey data. Based on the probability
of being chosen given by the MNL model, we match the path with
the highest probability in the choice set to that record and check
whether this is the correct match. We finally obtain an overall cor-
rect rate of 92.1% across the three cities, with small differences be-
tween each city (Supplementary Material Appendix, Fig. S12). We
then apply the models to the full set of smart card data and com-
pare the aggregated flows on each line to the official published
ridership numbers. The well-fitting regression also validates our
models (Fig. 2B).

Search information
We measure the difficulty of navigating a subway network based
on search information (9) and quantify the navigation complexity
at the station/line level by aggregating the information needed to
follow a path.
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Station-level and line-level search information
The station-level search information is measured by averaging
over all route choices P(i, j) = {p(i, s; j, t)} from stations i to j. Since
locating each path p(i, s; j, t) in P(i, j) may require different amounts
of information, we adopt a flow-weighted method for the aggre-
gation:

Ss(i, j) =
∑

P(i, j) S(p(i, s; j, t)) · w(p(i, s; j, t))
∑

P(i, j) w(p(i, s; j, t))
. (5)

For a given station pair i to j, ESI is calculated based on all the
matched paths, and w(p(i, s; j, t)) is the weight value defined by the
normalized flow on p(i, s; j, t). For the TSI, the fastest simplest path
is assumed to be the route choice between i and j according to ref.
(11), and hence, only the single path is in P(i, j), which simplifies
Eq. (5) to Ss(i, j) = S(p(i, s; j, t)).

Similarly, we summarize the line-level search information by
averaging over all route choices from line s to line t:

Sl (s, t) =
∑

{P(i, j)} S(p(i, s; j, t)) · w(p(i, s; j, t))
∑

{P(i, j)} w(p(i, s; j, t))
. (6)

For the ESI, {P(i, j)} contains all the matched paths whose origin
station i starts at line s and destination station j ends at line t.
For the TSI, {P(i, j)} contains all the fastest simplest paths between
these stations.
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