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Abstract

Previous reports have described that neural activities in midbrain dopamine areas are sensitive to unexpected reward
delivery and omission. These activities are correlated with reward prediction error in reinforcement learning models, the
difference between predicted reward values and the obtained reward outcome. These findings suggest that the reward
prediction error signal in the brain updates reward prediction through stimulus–reward experiences. It remains unknown,
however, how sensory processing of reward-predicting stimuli contributes to the computation of reward prediction error.
To elucidate this issue, we examined the relation between stimulus discriminability of the reward-predicting stimuli and the
reward prediction error signal in the brain using functional magnetic resonance imaging (fMRI). Before main experiments,
subjects learned an association between the orientation of a perceptually salient (high-contrast) Gabor patch and a juice
reward. The subjects were then presented with lower-contrast Gabor patch stimuli to predict a reward. We calculated the
correlation between fMRI signals and reward prediction error in two reinforcement learning models: a model including the
modulation of reward prediction by stimulus discriminability and a model excluding this modulation. Results showed that
fMRI signals in the midbrain are more highly correlated with reward prediction error in the model that includes stimulus
discriminability than in the model that excludes stimulus discriminability. No regions showed higher correlation with the
model that excludes stimulus discriminability. Moreover, results show that the difference in correlation between the two
models was significant from the first session of the experiment, suggesting that the reward computation in the midbrain
was modulated based on stimulus discriminability before learning a new contingency between perceptually ambiguous
stimuli and a reward. These results suggest that the human reward system can incorporate the level of the stimulus
discriminability flexibly into reward computations by modulating previously acquired reward values for a typical stimulus.
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Introduction

Reward prediction is an important function used by humans and

animals to make appropriate decisions in various environments.

Humans and animals learn whether the sensory information of

incoming stimuli is rewarding or harmful through stimulus–reward

experiences. Previous reports have described that reward prediction

error (the difference between the predicted reward value and

obtained reward outcome) occurs when updating reward prediction

associated with sensory stimuli. Schultz and colleagues described

that the activity of dopamine neurons in monkey midbrain areas

(ventral tegmental area, VTA, and substantia nigra) is correlated

strongly with reward prediction error [1,2,3,4]. Human neuroim-

aging studies have demonstrated that fMRI signals in the midbrain

and basal ganglia are correlated with reward prediction error

[5,6,7,8]. Computational studies have described these reward

prediction error activities using reinforcement learning models such

as the Rescorla–Wagner model and the temporal difference (TD)

model [2,7,9,10,11,12,13,14]. These results suggest that the reward

prediction error signal is represented in the midbrain dopamine

neurons and that it is used for updating the association between

reward prediction and sensory stimuli.

However, in the natural world, sensory stimuli are often less

distinctive depending on environmental factors (e.g. weather and

lighting conditions) than they are under experimental conditions in

which sensory information of a stimulus is discrete. In the natural

environment, stimuli might be difficult to identify as rewarding or

harmful. How do animals calculate reward values in such

ambiguous circumstances? One possible strategy is trial-by-trial

reinforcement learning by repeated stimulus–reward pairings [15],

i.e., learning new associations repeatedly between each condition

of stimulus and reward outcomes. Another possible strategy might

be stimulus-dependent adjustment of reward values, i.e., modu-

lating already-acquired reward values for a typical stimulus

according to the discriminability of incoming stimuli.

Results of previous studies of stimulus processing have suggested

that information related to stimulus discriminability is represented

quantitatively in sensory cortices [16,17,18,19]. How is such a

sensory computation incorporated into the computation of reward

prediction error in the brain? Recent electrophysiological studies
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of primates have revealed that the activities of dopamine neurons

are modulated by the discriminability of visual stimuli [20],

suggesting that the level of stimulus discriminability is reflected in

the reward-predicting activity in the brain. Nevertheless, it

remains unclear how such sensory information contributes to

reward computation in the human brain.

To explore this issue, we investigated the effect of stimulus

discriminability on the reward prediction error signal in the human

brain by manipulating luminance contrast of a reward-predicting

stimulus. We measured the activity of the human brain using fMRI.

We used Gabor patch stimuli as reward-predicting stimuli (Figure 1).

We defined the stimulus discriminability of Gabor patch based on

the orientation discrimination performance of each subject at

various luminance contrast levels. We calculated the luminance

contrast of the Gabor patch corresponding to 60% and 90%

discrimination performance through preliminary psychophysical

experiment in each subject (Figure 1). Figure 2 presents the

sequence of one trial in the experiment. Subjects learned the

contingency between the orientation of the Gabor patch (right or

left) and delivery of a juice reward or artificial tasteless saliva in pre-

experiment conditioning sessions using maximum (99%) contrast

stimuli for which subjects can discriminate orientation almost

perfectly (100% discrimination performance). In experimental

sessions with fMRI scanning, Gabor patch stimuli with decreased

contrast (90% or 60% correctness of orientation discrimination

performance for each subject) were presented in a pseudo-random

order. To examine the effect of stimulus discriminability on reward

prediction error, the orientation-reward contingency was reversed

in half of the trials to maximize the number of prediction error trials

(unpredicted reward delivery or omission; see Materials and

Methods). We examined trial-by-trial variation of brain activities

using computational reinforcement learning models (Rescorla–

Wagner model) [21].

We used the Rescorla–Wagner rule to evaluate the computa-

tional reward prediction error at the time of juice/saliva delivery.

We compared two models, one with and one without the factor of

stimulus discriminability, to evaluate the relevance of the stimulus

information in the computation of reward prediction error (see

Materials and Methods). Although our main interest in this study

was to explore brain activities related to the reward prediction error

signal at the juice/saliva delivery, we also examined brain regions

whose activities were correlated with predicted reward values for the

Gabor patch stimuli at the time of the stimulus presentation.

Materials and Methods

Subjects
In the experiment, 23 healthy normal subjects (8 female, mean

age 24.0 years old, SD 4.8) participated. Additionally, six subjects

were scanned, but they were excluded from subsequent analyses

because of excessive head movements they made during fMRI

scanning (.2 mm) or because of their extremely low preference

ratings for the juice reward. Two subjects participated only in

three experimental sessions (session 1 to session 3) out of four

experimental sessions. To maximize the physiological reward

value of the juice, subjects were asked to refrain from eating and

drinking for 12 hr before the experiment. All subjects gave written

informed consent to the experiment. This study, which was

approved by the ethical committee of Tamagawa University,

followed all Declaration of Helsinki guidelines.

Stimuli
We used a Gabor patch as the visual stimulus (Figure 1). Stimuli

were 11.4611.4 deg (visual angle). We presented a Gabor patch

(SD = 1.3 deg; spatial frequency = 0.8 cycles/deg) stimulus at the

center of the stimulus area. The Gabor patch was oriented 17 deg

to the left or right. We manipulated the luminance contrast of the

Gabor patch, and overlaid dynamic random-dot noise patterns to

make the left–right orientation judgment sufficiently difficult.

Dynamic noise patterns were generated for each frame (refresh

rate: 60 Hz) during the presentation of Gabor patch, and overlaid

on the whole part of the stimulus. The stimuli were created using

Psychophysics Toolbox [22,23] implemented in Matlab 7 (The

MathWorks Inc., USA). The stimuli were backprojected onto a

screen located at the end of the MRI magnet bore by a liquid

crystalline video-projector. Subjects viewed the stimuli on the

screen via a mirror suspended from a head-coil of the MRI

scanner. The viewing distance was approximately 60 cm.

We used juice (orange, apple, laichi, or sports drink) as a reward

stimulus and tasteless artificial saliva (25 mM KCl and 2.5 mM

NaHCO3) [24,25] as a control stimulus. Before the experiment,

subjects were asked to evaluate the preference for each juice. We

used the juice that the subject most preferred as the reward

stimulus in the experiment. The juice and saliva were delivered to

the subject’s mouth through a plastic tube that ended with a

mouthpiece. The amount and timing of the delivery were

regulated by an electric solenoid valve that was controlled by a

stimulus presentation computer.

Experimental procedure
The experiment was conducted on two days. On the first day,

subjects took part in a psychophysical test and the first

conditioning session. On the second day, they participated in the

second conditioning session and four experimental sessions. The

psychophysical test was performed to measure each subject’s

psychometric function of the orientation judgment. The subjects

were presented 10 different Michelson contrast levels of Gabor

patch stimuli and were asked to judge the orientation of the Gabor

Figure 1. Gabor patch with random dot noise. (a) Stimulus with maximal contrast (99% Michelson contrast) used during conditioning sessions.
(b) Typical examples of the stimuli with the contrast corresponding to 90% and (c) 60% correctness of orientation discrimination.
doi:10.1371/journal.pone.0028337.g001
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patch by pressing the corresponding button. Stimuli of each level

were presented 20 times in random order. We fitted each subject’s

behavioral results to the psychometric function of the orientation

judgment using Psignifit toolbox (ver. 2.5.6 for Matlab; http://

bootstrap-software.org/psignifit/), which implemented the maxi-

mum-likelihood method [26]. From the psychometric function, we

estimated contrast values corresponding to 90% and 60%

correctness for each subject. We used these two contrast values

as high (90% correctness) and low (60% correctness) contrast

stimuli in the experimental sessions.

In the conditioning and experimental sessions, Gabor patch

stimuli were presented for 500 ms with subsequent delivery of

juice or saliva after 4000 ms delay. The subjects were asked to

judge the orientation of the Gabor patch by pressing a

corresponding button as quickly as possible after the Gabor patch

onset. Subjects were allowed to drink the liquid stimuli when the

color of the central fixation point changed from white to blue

(Figure 2).

In the conditioning sessions, a perceptually distinctive Gabor

patch (99% Michelson contrast) was used. Subjects were able to

discriminate its orientation almost perfectly. To establish condi-

tioning, juice was always associated with one particular orientation

and saliva was associated with the other orientation. The delivery

of juice or saliva did not depend on each subject’s orientation

judgment (classical conditioning). The orientation associated with

juice was counterbalanced across subjects. Each conditioning

session included 20 trials of juice delivery and 20 trials of saliva

delivery.

In the experimental sessions, high-contrast and low-contrast

Gabor patch stimuli were used. In half of the trials (prediction

error trials), juice (or saliva) was delivered after the orientation

associated with saliva (or juice) in the conditioning sessions.

Therefore, the experimental session consisted of eight conditions

(stimulus orientation (left or right)6stimulus contrast (60% or

90%)6liquid delivery (juice or saliva)). Each session consisted of 40

trials (5 trials for each condition) in a pseudo-random order. The

inter-trial interval (ITI) was 2 s or 7 s. Because of the presence of

ITI of two types, the subjects were unable to predict the time of the

onset of the next trial. In the experimental session, the subjects

were informed of the possibility of the juice/saliva delivery after an

orientation associated with saliva/juice (i.e. prediction error trial).

The percentage of the prediction error trials, however, was not

told to the subjects. After each conditioning and experimental

session, subjects were asked to evaluate their preference for juice

and saliva using a scale ranging from 25 to 5, where 25 = most

unpleasant, 5 = most pleasant, and 0 = neutral. After the experi-

ment, 22 subjects filled in a questionnaire about impression of the

task. In the questionnaire, subjects were asked to estimate how

frequently unpredicted reward or saliva delivery occurred (i.e., the

percentage of the prediction error trial) during the experimental

sessions.

Imaging procedure
Whole-brain functional imaging data were acquired using an

MRI scanner (1.5 T, Magnetom Sonata; Siemens AG, Germany)

with T2*-weighted echo planar imaging (EPI) sequence sensitive to

blood-oxygenation-level dependent (BOLD) contrast (4-mm-thick

slices; 2 mm inter-slice gap; repetition time 2100 ms; echo time

50 ms; 90 deg flip angle; 192 mm field of view; 64664 matrix). We

used a horizontal–coronal oblique slice orientation of 30 deg

relative to the anterior–posterior commissure line [27]. During

each experimental session, 250 EPI volumes were acquired.

Image analysis
Image analyses were performed using SPM2 (www.fil.ion.ucl.ac.

uk/spm) [28]. Functional images were corrected for different slice

acquisition time, spatially realigned to the first volume of each

session to correct for head movements, then spatially normalized

to a standard EPI template (Montreal Neurological Institute (MNI)

reference brain) [29] with a resampled voxel size of 36363 mm.

Spatial smoothing was applied using a Gaussian kernel with full-

width at half-maximum (FWHM) of 8 mm.

Functional time-series data were then modeled as a two-stage

mixed-effects model for statistical inference. In the first stage, four

sessions of 250 EPI volumes each were modeled using a subject-

specific, fixed effects general linear model (GLM). Five regressors

were incorporated into the GLM according to the computational

reward prediction error model based on the Rescorla–Wagner

Figure 2. Sequence of one trial. A Gabor patch stimulus was presented to subjects for 500 ms: juice or tasteless saliva was delivered after
4000 ms delay. Subjects were requested to judge the orientation of stimulus as quickly as possible after the stimulus onset. After delivery of the juice
or saliva, subjects were allowed to swallow the liquid during presentation of the blue fixation period.
doi:10.1371/journal.pone.0028337.g002
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rule [21], i.e., two event regressors corresponding to presentation

of Gabor patch stimuli and liquid delivery and three parametric

regressors corresponding to the predicted reward value V(t) at the

Gabor patch presentation, the reward prediction error d(t), and the

binomial reward/non-reward effect at the liquid delivery (see

‘‘reward prediction error model’’ below). High-pass temporal

filtering with a cut-off value of 128 s was applied when estimating

the GLM. The serial auto-correlation of the fMRI time-series data

were modeled as an AR(1) model.

In the second stage, contrast images of the five regressors in the

first-stage model of the 23 subjects were incorporated into a one-

way analysis of variance (ANOVA) model without a constant term.

Correction for non-spherically distributed error terms was applied

to the estimation of the across-subjects random-effects ANOVA

model [30]. We used data from the first to the third experimental

sessions because behavioral results suggested maintenance of the

conditioning (reward effects on reaction times) only up to the third

session (see Results section). We examined the significance of the

temporal correlation of the reward prediction error d(t) and

predicted reward value V(t) with BOLD signals by testing whether

the contrast value for d(t) and V(t) was significantly greater than

zero on a voxel-by-voxel basis. The statistical threshold was set as

P,.05, corrected for the false discovery rate [31] and P,.001,

uncorrected for multiple comparison for the whole brain analysis.

We also examined the temporal correlation of d(t) and BOLD

signals in each session to examine the session-by-session variation

of temporal correlation.

To elucidate the specificity of the BOLD activity to our

hypothetical reward prediction error model that incorporated the

effect of stimulus discriminability, we constructed two models: with

and without the factor of stimulus discriminability. Then we

examined the correlation between trial-by-trial variance of model

value d(t), which describes the reward prediction error at the juice/

saliva delivery, and V(t), which describes the predicted reward

value at Gabor patch presentation with the BOLD signals

separately for the two models. Statistical models for fMRI

regression analyses (the first level GLM for each subject) had the

same degrees of freedom across the two reinforcement learning

models because they had the same numbers of factors and data

samples (brain image data).

Based on the behavioral results showing the reward effect only

up to session 3 (Figure 3), we compared the averaged effect sizes

from session 1 to session 3 at the peak voxels in areas which

showed a significant correlation with d(t) at the time of reward

delivery or that with V(t) at the time of Gabor patch presentation

(see Table 1 and Table 2, respectively). We compared the effects of

d(t) and V(t) between two models using paired t-tests without data

from the last session (session 4).

Reward prediction error model
We adopted the conventional Rescorla–Wagner rule [21] to

model the trial-by-trial reward prediction at the Gabor patch

presentation and the prediction error at the juice/saliva delivery.

In the model, V(t) represents the reward-prediction value at trial t,

r(t) represents the obtained reward value (1 for juice, 0 for tasteless

saliva), a represents a learning rate, and d(t) represents a reward

prediction error at the trial t. Here, d(t) is defined as the difference

between the obtained reward r(t) and the reward-prediction value

V(t).

d(t)~r(t){V (t) ð1Þ

The reward-prediction value at the next trial V(t+1) is updated

based on V(t) and d(t). In the equation below, a is the factor of

effectiveness of learning (learning rate), ranging from 0 to 1.

Figure 3. Reaction time results. Reaction time data for each stimulus discriminability, orientation, and session (reward, stimulus conditioned with
reward; non-reward, stimulus conditioned with tasteless saliva; tr, average of conditioning sessions; 60%, low-contrast stimuli; 90%, high-contrast
stimuli; 100%, maximal contrast stimuli used in conditioning session). Reaction times for stimuli conditioned with reward were significantly shorter
than those with non-reward from the conditioning session to experimental session 3. In session 4, this pattern of reaction time difference
disappeared. Error bars represent 61 s.e.m.
doi:10.1371/journal.pone.0028337.g003
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V (tz1)~V (t)za:d(t) ð2Þ

Reward predictions for stimulus orientations conditioned with

reward and those with non-rewarding tasteless saliva in the

conditioning sessions were expected to be different. Therefore, in

the model simulation, we separately modeled the reward

prediction value for an orientation conditioned with a reward

as Vr(t) and that with non-rewarding saliva as Vn(t). At the first

trial of the experimental session, Vr(1) and Vn(1) were set,

respectively, as 1 and 0. For trials in which the subject’s judged

orientation was not congruent with the stimulus orientation

(incorrect trials), we defined Vr(t) and Vn(t) based on the judged

orientation by subjects, not the orientation of the presented

stimulus.

To summarize, in a model that did not consider the factor of

stimulus discriminability (hereinafter, WITHOUT model), we

calculated the model values based on the formula below.

(A) WITHOUT model
For trials in which subjects judged the orientation as the reward

direction:

V (t)~Vr(t)

d(t)~r(t){V (t)

For trials in which subjects judged the orientation as the non-

reward direction:

V (t)~Vn(t)

d(t)~r(t){V (t)

In contrast, in the model that considered modulation by the

factor of stimulus discriminability (hereinafter, WITH model), we

manipulated the reward-prediction value V(t) by multiplying the

discriminability factor, p(t) (0.6 or 0.9 for 60% or 90% correctness

stimulus, respectively). As shown in the formula below, V(t) was

calculated as a fractional summation of Vr(t) and Vn(t) multiplied

by p(t) and (1-p(t)). The reward prediction value for the orientation

relevant to the trial was multiplied by p(t). That for the irrelevant

orientation was multiplied by (1-p(t)). For the incorrect trials in

which judged orientation by the subjects was incongruent with the

true stimulus orientation, p(t) was multiplied on the reward-

prediction value for judged orientation and (1-p(t)) was multiplied

on that for the other orientation. The other formula was

equivalent to the WITHOUT model.

(B) WITH model
For trials in which subjects judged the orientation as the reward

direction:

V (t)~Vr(t):p(t)zVn(t):(1{p(t))

d(t)~r(t){V (t)

For trials in which subjects judged the orientation as the non-

reward direction:

V (t)~Vr(t):(1{p(t))zVn(t):p(t)

d(t)~r(t){V (t)

Table 1. Regions with BOLD responses correlated with reward prediction error values d(t) at the time of juice/saliva delivery
(a = 0.05).

X Y Z Z Score Difference between models

WITH model

Midbrain* 0 29 212 5.03 WITH.WITHOUT, P,.01

Inferior Frontal Gyrus Right 30 18 224 3.68

Medial Frontal Gyrus Left 212 54 18 3.62

Precentral Gyrus Right 66 23 24 5.03 WITH . WITHOUT, P,.05

Fusiform Gyrus Left 245 239 215 3.9

Inferior Temporal Gyrus Right 48 26 221 3.89

Parahippocampal Gyrus Left 239 218 221 3.82

Thalamus Right 18 215 3 4.11

WITHOUT model

Midbrain 0 29 212 4.1

Precentral Gyrus Right 66 23 24 4.35

Cuneus Right 9 278 9 3.38

Thalamus Right 18 215 3 4.2

Only foci with cluster size .5 are reported.
*, P,.05, FDR correction. Other areas were significant at P,.001, uncorrected for multiple comparison. The rightmost column shows statistical significance between the
WITH model and the WITHOUT model (two-tailed paired t-test). WITH.WITHOUT, significantly higher effect size in the WITH model than in the WITHOUT model.
WITHOUT.WITH, significantly higher effect size in the WITHOUT model than in the WITH model.
doi:10.1371/journal.pone.0028337.t001
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In both models, the predicted reward value in the next trial was

modulated by the reward prediction error, d(t), as described below.

For trials in which subjects judged the orientation as the reward

direction:

Vr(tz1)~Vr(t)za:d(t)

Vn(tz1)~Vn(t)

Table 2. Regions with BOLD responses correlated with predicted reward values V(t) at the time of presentation of Gabor patch
stimuli (a = 0.05).

X Y Z Z Score Difference between models

WITH model

Anterior Cingulate Cortex* Left 212 39 6 4.81

Left 29 33 27 3.81

Superior Frontal Gyrus Left 26 12 66 4.04

Right 3 0 66 3.72

Middle Frontal Gyrus Left 245 3 39 4.21

Left 248 233 26 3.67 WITH.WITHOUT P,.05

Left 248 21 27 3.49

Left 221 33 48 3.89

Precentral Gyrus Right 42 6 30 4.02 WITH.WITHOUT P,.05

Right 48 26 45 3.87

Precuneus Left 224 266 39 4

Right 21 260 45 3.58

Postcentral Gyrus Left 212 245 66 3.92

Right 39 239 60 3.51

Inferior Parietal Lobule Left 248 239 45 3.52

Fusiform Gyrus Right 33 275 218 3.38

Cerebellum Left 242 245 248 3.88

Left 212 257 212 3.63

Right 36 257 233 4.15

Right 24 254 236 3.89

Right 12 281 239 3.66

Right 3 239 0 3.49

Thalamus Left 26 215 6 3.67

Putamen/Lateral Globus Pallidus Left 215 0 29 3.49 WITH.WITHOUT P,.05

WITHOUT model

Anterior Cingulate Cortex Left 212 36 9 3.53

Right 9 48 23 4.24 WITHOUT.WITH P,.01

Superior Frontal Gyrus Left 0 15 54 3.5

Precentral Gyrus Left 239 29 33 3.53

Left 254 29 39 3.28

Right 57 23 27 3.63

Precuneus Left 224 263 39 3.52

Left 26 266 51 3.36

Right 18 275 33 3.23

Inferior Parietal Lobule Left 245 239 42 4.4 WITHOUT.WITH P,.05

Left 254 230 24 3.6 WITHOUT.WITH P,.05

Lingual Gyrus Left 26 263 0 3.6

Only foci with cluster size .5 are reported.
*, P,.05, FDR correction. Other areas were significant at P,.001, uncorrected for multiple comparison. The rightmost column shows statistical significance between the
WITH model and the WITHOUT model (two-tailed paired t-test). WITH.WITHOUT, significantly higher effect size in the WITH model than in the WITHOUT model.
WITHOUT.WITH, significantly higher effect size in the WITHOUT model than in the WITH model.
doi:10.1371/journal.pone.0028337.t002
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For trials in which subjects judged the orientation as the non-

reward direction:

Vr(tz1)~Vr(t)

Vn(tz1)~Vn(t)za:d(t)

The number of free parameters was equivalent across the

WITH model and the WITHOUT model. The common free

parameters in the two models were initial values of predicted

reward value (Vr(1) and Vn(1)) and the learning rate (a). Given that

the learning rate a was not known a priori [7], we tested eight a
values for the analysis: a = 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2

and 0.4. We calculated model values (d(t) and V(t)) separately for

each learning rate value, and examined temporal correlation

between the model values and the brain activity, as measured by

fMRI, for each learning rate.

Results

Behavioral results
The average correct rate of orientation judgment on the Gabor

patch stimuli during the experimental sessions was 89.5% (SD

7.3%) for high-contrast stimuli (equivalent to 90% discrimination

performance) and 65.5% (SD 10.1%) for low-contrast stimuli

(equivalent to 60% discrimination performance). The correct rate

for stimulus orientation conditioned with reward was 91.1% (SD

9.5%) for high-contrast stimuli and 65.4% for low-contrast stimuli

(SD 16.5%). The correct rate for stimulus orientation conditioned

with tasteless saliva was 88.0% (SD 10.0%) for high-contrast

stimuli and 65.6% for low-contrast stimuli (SD 15.1%). The

difference of the correct rate between stimulus orientations

(conditioned with reward vs. tasteless saliva) was not statistically

significant (two-tailed paired t-test; t(22) = 1.135, P..2 for high-

contrast stimuli; t(22) = 0.0254, P..2 for low-contrast stimuli).

In contrast, the reaction time was influenced clearly by

conditioning with a reward or tasteless saliva. Figure 3 shows

reaction time data for each stimulus discriminability, stimulus

orientation (conditioned with reward or tasteless saliva) and

session. The first five trials of the first experimental session (session

1) were excluded from analyses because reaction times in these

trials were significantly longer than those of later trials. Except for

the last session, average reaction times for stimuli conditioned with

the reward were shorter than those with the tasteless saliva. For

statistical analysis, we divided each session into two sub-blocks (the

former half trials and the latter half trials). First, to elucidate the

reward effect on reaction times in the first three sessions, we

examined the effect of conditioning (stimulus orientation) on the

reaction time statistically using data up through session 3. A three-

way ANOVA (session block (six blocks of the former and latter

trials in sessions 1–3), stimulus orientation (reward versus

nonreward) and stimulus contrast (60% versus 90%) as within-

subject fixed factors and subjects as a random factor) revealed

significant main effects of stimulus orientation (F(1, 22.2) = 4.89,

P = .038) and stimulus contrast (F(1, 22.2) = 43.36, P,.001).

Second, we replicated the same analysis for data including session

4. We found a significant main effect of stimulus contrast again

(F(1, 22.2) = 41.12, P,.001), whereas the main effect of stimulus

orientation no longer revealed statistical significance (F(1,

22.2) = 1.61, P = .217). However, a significant interaction was

found between the session block and stimulus orientation factors

(F(7, 150.8) = 2.13, P = .044), confirming the effect that the

reaction time difference was reversed in the final session

(Figure 3). Previous reports have described that reaction times

became shorter when the stimulus was conditioned with a reward

[32,33,34]. Consequently, the shorter reaction times observed for

stimuli with reward orientation from sessions 1–3 suggest

maintenance of the conditioning up to session 3 and extinction

of the conditioning in the final session.

After the completion of each session, subjects rated their

preferences for the juice and tasteless saliva. Figure 4 presents

results of average preference ratings. Ratings for both juice and

saliva decreased in later sessions. Results of a two-way ANOVA

(type of stimuli (juice versus saliva), session (conditioning session,

experimental sessions 1–4)) revealed significant main effects of the

Figure 4. Preference ratings. Rating scores for preference of juice and tasteless saliva in each session (tr: average of conditioning sessions). Error
bars represent 61 s.e.m.
doi:10.1371/journal.pone.0028337.g004

Reward Processing for Ambiguous Visual Stimulus

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e28337



type of stimuli (F(1,216) = 359.95, P,.001) and session (F(4,

216) = 3.69, P = .006). Post-hoc paired t-tests in each session

showed that the ratings for the juice in all sessions were

significantly higher than those for the saliva (two-tailed paired t-

test; t(22) = 9.75, 12.34, 8.3, and 8.81 for the conditioning session,

experimental sessions 1–3, respectively, and t(20) = 7.75 for

experimental session 4, P,.001 for all sessions, uncorrected for

multiple comparison). These results suggest that subjects in all

sessions preferred juice to the tasteless saliva.

After the experiment, subjects (excluding one subject) were

asked to estimate how frequently the unpredicted reward (or

saliva) delivery (reward prediction error trials) occurred in the

experimental session. On average, subjects estimated unpredicted

reward/saliva delivery occurred in 40.0% of trials (SD = 16.83).

This estimated percentage was significantly lower than the actual

percentage of reward prediction error trials (50%; two-tailed t test,

t(21) = 2.72, P,.05). This result suggests that subjects noticed the

presence of reward prediction error trials at some extent, although

the estimation of the frequency of reward prediction error trials

was lower than the actual one.

Model simulation results
Figure 5a shows changes of predicted reward values for the

orientation conditioned with reward (Vr(t)) for each model with

three typical learning rates (a = 0.01, 0.05, and 0.1). In the

WITHOUT model, Vr(t) decreased faster than in the WITH

model. In both models, Vr(t) decreased faster with larger learning

rates. We examined the percentage of trials in which Vr(t) was

higher than Vn(t) (predicted reward values for the orientation

conditioned with saliva) for each model with the three typical

learning rates (Figure 5b). For results obtained using a = 0.05, the

percentage significantly decreased in session 4, consistent with

behavioral results showing the extinction of conditioning at session

4 (Figure 3). However, for the higher learning rate (a = 0.1), the

percentage approached 50% already at the second session. For

lower learning rates (a = 0.01), the percentage remained 100%

even at the last session.

Figure 6 shows changes in d(t) for trials with unpredicted juice

delivery (positive prediction error trials) in two models with three

typical learning rates (a = 0.01, 0.05, and 0.1). Simulation results of

d(t) for high-contrast and low-contrast stimuli were quite different

in the WITH model, but they were almost identical in the

WITHOUT model. Results show that d(t) in positive prediction

error trials decreased gradually from the first through the last

session. In higher learning rates (e.g. a = 0.05, and 0.1), d(t)

became almost equivalent to the minimum value (0.5) in the last

session.

fMRI results
Correlation with reward prediction error at the time

of the juice/saliva delivery: We calculated the correlation

between the fMRI signal at the time of the juice/saliva delivery

and trial-by-trial values of reward prediction error, d(t), simulated

by the two reinforcement learning models (the WITH model and

the WIHTOUT model). For both WITH and WITHOUT

models, brain regions showing significant correlations with the

reward prediction error did not differ greatly across results

obtained using different values of the learning rate we tested (8

values from 0.001 to 0.4). In common to both models, the highest

correlation between the fMRI signal and reward prediction error

was observed in the midbrain region, independently of the

learning rate used. These results showing the robust correlation

between the fMRI signals in the midbrain region and reward

prediction error values were consistent with previous findings that

the midbrain encodes the reward prediction error signal in the

brain [2,35].

Significance for the correlation between the midbrain fMRI

signals and the reward prediction error was the highest for the

WITH model, a = 0.05 (Figure 7, showing the midbrain region

correlated with the prediction error at P,.05 corrected for the

false discovery rate (FDR) [31]; peak MNI coordinate was x = 0,

y = 29, z = 212, and peak Z-value = 5.03; WITH model,

a = 0.05). At the threshold of the FDR-corrected P,.05, the

midbrain correlation was significant only in the result for the

Figure 5. Model simulation of predicted reward values for Gabor patch stimuli. (a) Changes of Vr(t) and (b) changes in percentage of trials
in which Vr(t) was higher than Vn(t). Results obtained using three representative values of a (0.01, 0.05, and 0.1) are depicted. Vr(t) decreased faster in
the WITHOUT model than WITH model. Error bars represent 61 s.e.m.
doi:10.1371/journal.pone.0028337.g005
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WITH model of this learning rate (0.05). Moreover, no region

other than the midbrain showed significant correlation at this

threshold, even in the result obtained from the WITH model,

a = 0.05. When we lowered the threshold at P,.001, uncorrected

for multiple comparison, the correlation in the midbrain was

significant also in the results for the WITH model of other learning

rates, as well as those for the WITHOUT model of all learning

rates. For the results obtained using the learning rate a = 0.05

which showed the greatest numbers of regions whose significance

was the highest across the eight learning rates, we summarized

regions showing significant correlation (both FDR-corrected

P,.05 and uncorrected P,.001) in Table 1, separately for the

WITH model and the WITHOUT model. Aside from the

midbrain region, we also found a correlation with the reward

prediction error in the inferior frontal gyrus, the medial frontal

gyrus, the precentral gyrus, the fusiform gyrus, the inferior

temporal gyrus, the parahippocampal gyrus, the cuneus, and the

thalamus reached a significant level which is uncorrected for

multiple comparison (uncorrected P,.001).

We compared the midbrain correlation with the reward

prediction error further across models and with different learning

rates (a). Figure 8 depicts the effect sizes for the regressor

component of each model’s reward prediction error at the peak

midbrain voxel in the eight learning rate (fMRI data up to session

3 were used for the analysis, see the Materials and Methods

section). The effect size was significantly higher in the WITH

model than in the WITHOUT model in most learning rates

(a = 0.001, 0.005, 0.01, 0.025, 0.05 and 0.1) except for the higher

learning rates (a = 0.2 and 0.4). Such higher learning rates were

not plausible for the present experimental data according to the

fact that model simulation results obtained using such learning

rates will not account for behavioral results showing maintenance

of the reward effects up to session 3 (Figure 3).

For the midbrain voxel, the difference of the effect size between

the models was the highest when a = 0.05 (two-tailed paired t-test:

t(22) = 2.91; P = .008). Table 1 also shows statistically significant

difference in effect sizes between two models (the rightmost

column) for each brain regions showing significant correlations

with the reward prediction error at this learning rate. Aside from

the midbrain region, only the right precentral gyrus (peak

coordinate; 66, 23, 24) showed the significantly higher effect size

in the WITH model than that in the WITHOUT model (two-

tailed paired t-test: t(22) = 2.44; P = .023). However, no area

showed significantly higher effect size in the WITHOUT model

than in the WITH model.

Figure 6. Model simulation of reward prediction error. Changes in d(t) for trials in which the unpredicted reward was delivered (positive
prediction error trials: subjects judged orientation conditioned with tasteless saliva but juice was delivered). The vertical axis represents the average
of d(t) for each condition in each session. Results for a = 0.01, 0.05 and 0.1 are depicted. Solid black lines represent the WITH model whereas dotted
gray lines represent the WITHOUT model. Black squares represent high-contrast (90% correctness) trials whereas open circles represent low-contrast
trials (60% correctness). d(t) for high and low-contrast stimuli were almost identical in the WITHOUT model, but differed in the WITH model for all
learning rates.
doi:10.1371/journal.pone.0028337.g006

Figure 7. Brain regions showing significant correlation be-
tween fMRI signals and reward prediction error values at the
time of reward delivery (n = 23). A white arrow indicates the
midbrain region showing a significant correlation (yellow— P,.05,
corrected for false discovery rate: red— P,.001, uncorrected for
multiple comparison) with the variation of prediction error d(t) at the
time of reward delivery calculated using the WITH model using a = 0.05.
doi:10.1371/journal.pone.0028337.g007

Figure 8. Effect size at the peak midbrain voxel in each
learning rate. The effect sizes at the peak midbrain voxel across the
eight learning rates are shown for each model (filled squares and thick
lines for the WITH model, open circles and dotted lines for the
WITHOUT model). Vertical axis represents the effect size (parameter
estimates for the regressor of the reward prediction error d(t)) at the
peak voxel averaged for 23 subjects based on the data up to session 3.
The effect size was significantly greater for the WITH model than for the
WITHOUT model in most learning rates (two-tailed paired t-test:
*, p,.05; **, p,.01). Error bars represent 61 s.e.m.
doi:10.1371/journal.pone.0028337.g008
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To summarize the discussion presented above, these fMRI

results consistently suggest that the prediction error signal in the

midbrain is explained significantly better by considering the factor

of discriminability of the reward-predictive stimuli (WITH model).

Because the difference of the effect size was observed across most

learning rates, the higher correlation in WITH model was

independent of the choice of a learning rate (a): the results

suggested that activities in the midbrain encode prediction-error

signals relative to discounted reward-prediction values according

to discriminability of the reward-predictive stimuli.

Next, we examined session-by-session changes of the correla-

tion between reward prediction error and the midbrain activity

to elucidate whether this correlation arises from additional

learning between perceptually degraded stimuli and reward/

non-reward during the experiment. Figure 9 shows the difference

of the significance between the WITH model and the

WITHOUT model at the peak midbrain voxel when a = 0.05.

As shown in this figure, the difference between the models was

greatest in the first session (t(22) = 2.36, P = .03 by two-tailed

paired t-test of the effect size between the two models). This

result suggests that the higher effect size for the correlation with

the WITH model is not derived from the new learning, which

is expected to result in a smaller correlation in the first

experimental sessions. Rather, the data indicate that the activity

correlation is instead related to stimulus-dependent modulation

of the reward values by the stimulus discriminability from the

early phase in the experiment. Consequently, these results

indicate that once conditioning between discriminative stimuli

and the reward is established, the human reward system can

modulate the prediction-error computation adaptively for stimuli

of various visibilities before the learning of each stimulus and

reward. The difference of the effect size between two models

decreased greatly in the final experimental session. This result is

also consistent with both behavioral and model simulation data:

the reward effect in the behavioral results was diminished in the

final session (Figure 3), and model parameter became similar

across models in the final session (Figure 6). In addition, reward

prediction error values became smaller in the later session in

both models (Figure 5), which showed almost equivalent values

(0.5) across models in the last session for the learning rates of

0.05 and 0.1.

Correlation with the predicted reward value at the
time of Gabor patch presentation: We also calculated the

correlation between the fMRI signal and predicted reward values

(V(t)) in two models at the time of stimulus (Gabor patch)

presentation. We only report typical results for the models using a

learning rate of 0.05, which revealed the correlation regions that

included most regions revealed in the results for other learning

rates. At the higher threshold of FDR-corrected P,.05, the left

anterior cingulate cortex (ACC) was significantly correlated with

V(t) only in the WITH model (Figure 10; peak coordinate, 212,

39, 6; peak Z-value = 5.03). However, when we lowered the

threshold, we found that the activity of the left putamen/lateral

globus pallidus, the cerebellum, and many other cortical areas

(Table 2) was correlated significantly with V(t) in the WITH and

the WITHOUT models. As shown in the rightmost column of

Table 2, several areas including the left middle frontal gyrus, the

right precentral gyrus, and the left putamen/globus pallidus

showed significantly higher effect size in the WITH model than in

the WITHOUT model for the learning rate 0.05. However, the

right ACC and the left inferior parietal lobule showed the opposite

pattern (higher effect size in the WITHOUT model than in the

WITH model, see Table 2). No other area showed significant

difference of the effect size between models.

Discussion

These results demonstrated that the neural activity in the

midbrain is correlated significantly with the reward prediction

error in the reinforcement learning model including the factor of

stimulus discriminability level (WITH model). This correlation was

significantly higher than that obtained with a model without the

factor of stimulus discriminability (WITHOUT model). Higher

correlation with the WITH model was observed consistently for

wide range of learning rates we tested, and no area showed higher

correlation with the reward prediction error in the WITHOUT

model than that with the WITH model. Furthermore, such a

difference of correlation between models appeared from the first

session of the experiment. Taken together, these results support

the view that the human reward system can incorporate a level of

discriminability of perceptually degraded stimuli for calculating

the reward prediction error, by adaptively modulating already-

Figure 9. Differences in effect size between the WITH model
and WITHOUT model. Positive values represent a greater effect size
for the WITH model (a = 0.05). An asterisk denotes significant difference
between the two models (two-tailed t-test: *, p,.05). Error bars
represent 61 s.e.m.
doi:10.1371/journal.pone.0028337.g009

Figure 10. Brain regions showing significant correlation
between fMRI signals and predicted reward values at the time
of Gabor patch presentation (n = 23). White arrows indicate
significant correlation with the trial-by-trial variation of the predicted
reward values V(t) calculated using the WITH model, a = 0.05 in the left
anterior cingulate cortex (ACC; yellow areas — P,.05, corrected for
false discovery rate) and the left putamen/globus pallidus (Put/GPi, red
areas — P,.001, uncorrected for multiple comparison). Significant
correlations (uncorrected P,.001) in several other cortical areas and in
the cerebellum were also depicted.
doi:10.1371/journal.pone.0028337.g010
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acquired reward values for distinctive stimuli according to the

stimulus discriminability information related to a stimulus-by-

stimulus basis.

Previously, Fiorillo and colleagues [36] have described that the

activity in the midbrain dopamine neurons reflects the probability

with which stimulus was associated with reward delivery. Their

results showed that the reward-related activities (reward prediction

and reward prediction error) of the dopamine neurons were

modulated according to the reward probability of each stimulus.

These results suggest that dopamine neurons can modulate the

activity depending on the level of predictability of expected

rewards based on the reward probability of each stimulus.

Considering this probabilistic coding of reward information in

the midbrain dopamine neurons reported previously, it is

particularly important to discuss theoretical relation between the

probabilistic predictability (or uncertainty) of rewards examined in

the Fiorillo’s study and the modulation effect by stimulus

discriminability revealed in this study. We suggest that major

difference between the two studies lies in the mode of acquisition

of the uncertainty information for predicting reward. In Fiorillo’s

study, monkeys learned uncertainty in the association between

distinctive stimuli and probabilistic reward delivery (e.g. 60%

reward probability) through experiencing multiple trials of

stimulus-reward associations. Before such repeated experiences,

monkeys have no idea about how much probability of reward is

attached to a presented stimulus. In other words, reward

probability in the Fiorillo’s study represented an uncertainty based

on statistical properties across large quantities of trial experiences.

In contrast, in the present study, the uncertainty for reward

information was derived through perceptual decision of the

reward-predictive stimuli on a stimulus-by-stimulus basis, which

might not have resulted from averaging over multiple quantities of

stimulus-reward experiences. In our experiment, subjects learned

stimulus–reward contingency using only a perceptually salient

stimulus (with maximum luminance contrast). They have never

been presented with low-contrast Gabor patches (equivalent to

60% and 90% orientation discrimination performance) before the

start of experimental sessions. Nevertheless, the midbrain activity

showed the modulation of activity related to reward prediction

error, based on the factor of stimulus discriminability from the first

session of the experiment. These results suggest that the reward

computation in the brain can be modulated adaptively not only by

probabilistic reward computation based on multiple stimulus–

reward experiences [36] but also by discrimination probability of

incoming sensory stimuli [20]: our results show that human reward

system can estimate discounted reward values using information

obtained through stimulus processes without requiring additional

association between degraded stimulus and reward. This type of

‘‘level of stimulus discriminability’’ is another source of uncertainty

that is inherent to stimulus processes of each incoming stimulus,

not calculated via statistical properties across numerous experi-

ences. This extension to the mechanism for uncertainty-based

reward computation is important to understand the adaptive

behaviors of humans and animals in natural environments. For

instance, we are often confronted with circumstances where

visibility of cues for reward is diminished (e.g. a dark night). We

must learn the contingency between the perceptually degraded

stimuli and reward again if the reward system can not modulate

already-acquired reward values for a particular stimulus according

to discriminability of the stimulus. Flexible modulation of reward

prediction and reward prediction error according to sensory

properties of stimuli is optimal for adapting to changing

environments. This study is the first human fMRI study showing

the flexible modulation of the reward computation in the

dopaminergic system based on the level of stimulus discriminabil-

ity.

Results of this study revealed that the reward prediction error

signal in the midbrain can be modulated flexibly by stimulus

discriminability. Then, how was the predicted reward value, which

is modulated by stimulus discriminability, represented in the

brain? Such a discounted reward value for perceptually ambiguous

stimulus is necessary information for the computation of

modulated reward prediction error signal in the midbrain. Results

show that left ACC correlated significantly with predicted reward

value at presentation of Gabor patch stimuli in the WITH model

(Figure 10). However, lowering of the threshold revealed that the

activity in the basal ganglia (Figure 10; putamen/globus pallidus),

the cerebellum, and many other cortical areas was correlated

significantly with the predicted reward values (Table 2). Several

areas including the left putamen/globus pallidus showed signifi-

cantly higher effect size in the WITH model, although some other

areas including the right ACC showed the opposite pattern.

Moreover, most areas showed no significant difference of effect

size between the two models. From these data, it is difficult to

conclude which areas critically represent discounted reward values

for perceptually degraded stimuli. Why were the correlated areas

with predicted reward values so widely distributed and why were

the differences of correlation between models so variable at the

time of the stimulus presentation?

A possible reason is that the experimental paradigm was not

necessarily optimized for examining the predicted reward value. In

this study, we maximized the proportion of prediction error trials

(50%) to examine the reward prediction error signal specifically at

the time of juice/saliva delivery. This paradigm is expected to be

optimal for examining representation of reward prediction error:

the difference of reward prediction error between models was

clarified because of the large proportion of prediction error trials.

In contrast, the predicted reward value, V(t), decreased faster

because of the presence of prediction error trials (Figure 5). It is

difficult to find a distinct area that is specifically related to

discounted reward value in the WITH model because the

predicted reward value became smaller in most trials. A possible

extension of this study is the use of an optimal experimental

paradigm for examining predicted reward value at stimulus

presentation (e.g. smaller proportion of prediction error trials) to

examine the representation of discounted reward prediction

specifically, based on stimulus discriminability.

Another possible reason is that the correlation with predicted

reward value in distributed areas reflects the mixture of several

different functions represented in the brain. Some areas might

represent the discounted reward value based on the stimulus

discriminability of reward-predicting stimulus. Some other areas

might represent the function of monitoring one’s own perceptual

performance [37]. It was possible that such metacognitive

information is useful for reward computation. At the time of

stimulus onset, subjects would have to use functions of many types

to solve perceptually demanding tasks. Dissociating several

different functions at the stimulus presentation (reward prediction

based on stimulus discriminability, metacognition, and visual

attention) requires examination in future investigations.

Finally, the ‘‘stimulus discriminability’’ in this study might not

only correspond to purely objective orientation discrimination

sensitivity of subjects. In this study, we did not measure subjective

confidence on perceptual decision-making, separately from the

objective sensitivity of discrimination performance. It is possible

that subjective confidence also provides useful information for the

modulation of reward prediction error computation in the

midbrain. Dissociation between the objective discriminability
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and subjective confidence [38,39] is an important extension of this

study for additional understanding of the relation between reward

computation and perceptual decision-making.

In conclusion, this study demonstrated that the discrimination

level of the reward-predictive stimuli can be incorporated

adaptively in the reward prediction error computations in the

midbrain. These results suggest that the reward system in the

human brain can modulate its computation flexibly by receiving

information from stimulus processes to adapt efficiently to the

changing environment.
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