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Abstract
Mohs micrographic surgery (MMS) is considered the gold standard for difficult- to- 
treat malignant skin tumors, whose incidence is on the rise. Currently, there are no 
agreed upon classifiers to predict complex MMS procedures. Such classifiers could 
enable better patient scheduling, reduce staff burnout and improve patient education. 
Our goal was to create an accessible and interpretable classifier(s) that would predict 
complex MMS procedures. A retrospective study applying machine learning models 
to a dataset of 8644 MMS procedures to predict complex wound reconstruction and 
number of MMS procedure stages. Each procedure record contained preoperative 
data on patient demographics, estimated clinical tumor size prior to surgery (mean 
diameter), tumor characteristics and tumor location, and postoperative procedure 
outcomes included the wound reconstruction technique and the number of MMS 
stages performed in order to achieve tumor- free margins. For the number of stages 
complexity classification model, the area under the receiver operating characteristic 
curve (AUROC) was 0.79 (good performance), with model accuracy of 77%, sensitiv-
ity of 71%, specificity of 77%, positive prediction value (PPV) of 14% and negative 
prediction value (NPV) of 98%. The results for the wound reconstruction complexity 
classification model were 0.84 for the AUROC (excellent performance), with model 
accuracy of 75%, sensitivity of 72%, specificity of 76%, PPV of 39% and NPV of 93%. 
The ML models we created predict the complexity of the components that comprise 
the MMS procedure. Using the accessible and interpretable tool we provide online, 
clinicians can improve the management and well- being of their patients. Study limita-
tion is that models are based on data generated from a single surgeon.
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1  |  INTRODUC TION

Non- melanoma skin cancer (NMSC) has the highest and an increas-
ingly rising incidence of all cancers in Caucasians.1,2 Despite this high 
incidence, NMSC mortality rate is relatively low3 due to effective 
treatment and other medical factors.

Considered the gold standard, Mohs micrographic surgery 
(MMS), first described by Frederic Mohs in 1937,4 offers precise sur-
gical margin control, along with high cure rates for difficult- to- treat 
malignant skin tumors, while simultaneously providing maximum 
tissue preservation.5 Unfortunately, due to the time and expense 
involved with this procedure, it is indicated only in patients with 
aggressive tumors or for those who are at risk of disfigurement or 
functional impairment.6

While the benefits and indications for MMS are well established, 
the factors that can predict complicated and prolonged procedures 
have not been well studied. Sahai and Walling7 studied the factors 
that influence the number of stages performed, defining procedures 
with more than three stages as complex, based on 77 complex cases 
and 154 control cases. These findings support previous studies, and 
while each study differs slightly in the definition of a complex pro-
cedure, all emphasize the influence of tumor recurrence, tumor lo-
cation and tumor type on complexity.8– 11 Boyle et al.12 studied the 
correlation of clinic– demographic features with the need for exten-
sive reconstruction (tissue transfer— skin graft or flap). Their findings 
proposed that the patient's age, tumor location and history of previ-
ous reconstruction are the most important features that predict the 
need for advanced reconstruction. One might infer that the need for 
advanced reconstruction correlates with higher complexity of tumor 
excision; however, the two are not necessarily directly related.

The increase in demand for MMS requires the surgeon to better 
distinguish complex from simple procedures in order to maximize 
the utilization of time, trained MMS surgeons and operating room 
resources. In order to optimize efficiency, technical performance 
and resource allocations, Webb and Rivera published the first score 
for MMS complexity in 2012 (WAR score) based on 211 reported 
cases including preoperative assessment, complexity and the time 
each procedure required.13 Based on classical statistics, the study's 
outcome included a form in which surgeons could calculate the WAR 
score and apply the authors' recommendations for patient schedul-
ing and improved patient management.

Machine learning (ML) has been successfully integrated into 
almost every field of medicine. What differentiates ML from tra-
ditional statistical tools is that an ML model does not need to be 
programmed with a set of rules; the model learns from examples 
provided, broken down into features and their matching labels.14 
Thus, it is an ideal tool for pattern recognition. ML has made a huge 
impact in the field of radiology, mainly due to the ability to evaluate 
a large workload of visual content.15,16 This feature helped ease the 
transition of ML into the field of dermatology, as a diagnostic and 
classification aid for skin lesions.17 In addition, ML has been used 
to review electronic health records (EHR), revealing patterns that 

standard correlations have missed.18 The limitation of ML models is 
their lack of interpretability. Complex models are considered a “black 
box,” discouraging clinicians from incorporating ML models into daily 
practice.19

In this study, we developed models for MMS complexity predic-
tion utilizing the capabilities of ML. Similar work has been done by 
Tan et al., published in 2016; however, their model was used to pre-
dict the surgical complexity of periocular basal cell carcinomas and 
was based on a dataset of 156 procedures,20 while we are basing our 
models on a dataset 50 times larger and aspiring to achieve robust 
models that are not based on prior histopathological knowledge.

2  |  MATERIAL AND METHODS

2.1  |  Patient population and tumor characteristics

The ML models were developed and tested on a dataset of 
8644 MMS procedures, all meeting the appropriate Mohs use cri-
teria,21 performed by a single surgeon in an outpatient setting (from 
July 2010 through August 2021) as a retrospective study in order to 
identify complex MMS procedures.

Prior to each patient's surgery, a clinical lesion evaluation was 
performed and recorded. Each procedure record contained preop-
erative data on patient demographics, tumor size (mean diameter), 
tumor characteristics and tumor location; however, unlike previ-
ous studies, we intentionally did not include the tumor's histolog-
ical subtype. The postoperative procedure outcomes measured 
included the wound reconstruction technique (primary closure, 
local flap or skin graft) and the number of MMS stages performed 
in order to achieve tumor- free margins. The data went through a 
preprocessing pipeline; the features extracted for the models in-
cluded age and estimated clinical tumor size prior to surgery –  all 
expressed as numerical features. Tumor location, encoded with 
an anatomy map, and tumor topography (flat, elevated or mixed) 
were encoded from categorical features to numeric array features. 
Patient gender and the tumor features of pigmented, ulcerated, 
keratinized, scarred and regular borders were designated as cat-
egorical features.

Our goal was to predict complex MMS surgery; however, we 
could not find an accepted definition of what is considered com-
plex. In terms of surgical difficulty, surgery duration and overall pro-
cedure time, we decided to divide procedure complexity into two 
ML prediction models. The first model predicted the complexity of 
tumor excision, which was translated into the number of stages the 
surgeon performs in order to achieve tumor- free margins. The av-
erage number of stages reported typically varies between 1.5 and 
2 stages per case.22,23 We decided to categorize tumor excisions that 
required more than two stages as complex, which was how we re-
corded them. The second model predicted the complexity of surgical 
wound reconstruction. We labelled all non- primary wound recon-
struction procedures as complicated.
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2.2  |  Machine learning model

In order to understand how the features contributed to the mod-
els’ output, we developed an algorithm. The algorithm was a modi-
fication of the marginal contribution feature importance (MCI) 
algorithm, a robust addition of the correlated features method 
that identifies important features.24 (The MCI algorithm is de-
scribed in the Supporting Information.) After receiving the modi-
fied MCI output, we excluded features with low contribution to 
model performance. Feature exclusion based on the modified MCI 
results would reduce noise, reduce the risk of overfitting and im-
prove model prediction.

The dataset was shuffled and divided to train and test data-
sets, 90% of the data were allocated to training and 10% were 
allocated to testing. The models were created using the training 
dataset for a 10- fold cross- validation. We used a gradient boost-
ing decision tree (GBDT) for classification models, constructed 
using XGBoost (version 1.2).25 XGBoost is an optimized distrib-
uted gradient boosting library (open source) and the most com-
mon method for structured problems in Kaggle competitions. 
XGBoost shares qualities with other decision tree ensemble al-
gorithms, such as the ability to handle a mixture of numerical and 
categorical data features. Moreover, XGBoost is a highly suitable 
tool for these models because it learns trees in a sequential order 
such that each additional tree is a gradient step with respect to a 
loss function, and has an extra randomization parameter used to 
decorrelate the individual trees.26 (Additional information regard-
ing model design can be found in the Supporting Information.) 
We selected the area under the receiver operating characteristic 
curve (AUROC) for the models' evaluation metric. ROC graphs are 
an extremely useful tool for evaluating classifiers; the AUROC is 

equivalent to the probability that the classifier will rank a ran-
domly chosen positive instance higher than a randomly chosen 
negative instance.27 To meet the reporting standard of ML pre-
dictive models in biomedical research, we reported accuracy, 
sensitivity, specificity, positive predictive value (PPV) and neg-
ative predictive value (NPV).28 All machine learning models were 
implemented using Python (The Python Software Foundation, 
Fredericksburg, VA, USA) (version 3.7).

2.3  |  Interpretability

We want clinicians to use our models, while at the same time, we 
want them to understand how the models arrive at their predictions.

For each model prediction, we provide a SHapley Additive ex-
Planations (SHAP) waterfall plot. SHAP builds model explanations 
by asking the same question for every prediction and feature: 
“How does prediction i change when feature j is removed from 
the model?”.29,30 The so- called SHAP values are the answers. They 
quantify the magnitude and direction (positive or negative) of a fea-
ture's effect on a prediction. Waterfall plots are designed to display 
explanations for individual predictions. The bottom of a waterfall 
plot displays the expected value of the model output. Each subse-
quent row up the vertical axis shows how the positive (red) or neg-
ative (blue) contribution of each feature moves the value from the 
expected model output over the background dataset to the model 
output for this prediction.31 The models' output is presented in log-
arithm of odds (log- odds) units, and with a simple conversion, the 
models can represent the probability of a complicated MMS proce-
dure. (Additional information regarding SHAP can be found in the 
Supporting Information.)

F I G U R E  1  Top 20 tumor locations and 
procedure outcome labelling
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3  |  RESULTS

The study cohort included 8644 procedures, the average patient age 
was 69 ± 13 years and 55% of patients were males. The vast majority 
of tumor excisions were conducted in up to two stages and under-
went primary wound reconstruction (94% and 84% respectively). The 
most prevalent tumor locations were on the nose (22%) (which was 
divided into the sub- locations of the columella, dorsum, nostril and 
tip), cheek (18%), forehead (12%), scalp (9%), neck (8%) and ears (8%) 
(Figure 1). The average estimated clinical tumor size prior to surgery 
was 12 ± 6 mm. Other tumor characteristics varied among patients; 
however, 67% of tumors had regular borders that were sharply de-
marcated during preoperative clinical or dermoscopic evaluation. The 
complete list of feature descriptions and values is available in Table 1.

The modified MCI results for the MMS stages model emphasized 
tumor characteristics as the most important feature, followed by 
tumor location and tumor topography. However, relative to these fea-
tures, the contributions of gender and tumor size features were one 
order of magnitude smaller. Moreover, the age feature was two orders 
of magnitude smaller (Table 2). For the wound reconstruction model, 
the order of features by importance of contribution was tumor loca-
tion, tumor characteristics, tumor topography and tumor size, while 
age and gender features were one order of magnitude smaller.

For the stages complexity classification model, the average 10- 
fold cross- validation AUROC was 0.75 ± 0.03 (Figure 2A). The test 
set AUROC was 0.79 (Figure 3). We created a confusion matrix, and 
the model's accuracy was 77%, with a sensitivity of 71%, specificity 
of 77%, PPV of 14% and NPV of 98%. The results for the wound 
reconstruction complexity classification model were 0.86 ± 0.02 

(Figure 2B) for the average 10- fold AUROC, with a test set AUROC 
of 0.84 (Figure 3), model accuracy of 75%, sensitivity of 72%, speci-
ficity of 76%, PPV of 39% and NPV of 93%.

In our pursuit of model accessibility, we created a web appli-
cation (www.MMS- Predi ction.com)32, in which clinicians can enter 
tumor features and receive the complexity prediction, prediction 
probability and SHAP waterfall plot.

4  |  LIMITATIONS

ML models create algorithms that are designed based on examples 
rather than a set of rules; thus, the study's limitations are derived 
from and driven by the example dataset. Our dataset was based on 
the practice of a single centre and a single surgeon (over a period 
of a decade), which limits the diversity of examples. The absence 
of histological subtypes, which might seem like a limitation, was in-
tentionally omitted from the algorithm developed. This is because 
the models in this study are intended to be used as decision- making 
tools during the preoperative clinic visit and for planning before the 
histological subtype is known.

5  |  DISCUSSION

The increasing rise in NMSC translates to an increasing demand for 
MMS, and although healthcare systems perform differently in each 
country, optimizing treatment management is a necessity world-
wide, as is reducing physician burnout rate.33

As a community of researchers, we should always strive towards 
excellence, and even a slight improvement could serve as a stepping 
stone for future progress. The WAR score was the first to classify 
complicated MMS procedures by measuring procedure duration. 
Tan et al. demonstrated the opportunities that lie in utilizing ML al-
gorithms,20 providing us with a proof of concept. In our research, 
we aim to upscale, learning from the successes and limitations of 
previous studies and creating a more meaningful and accessible tool.

The question of what is complex MMS was a significant part of 
the study design. Unlike the WAR score, which was constructed 
based on data from an outpatient setting, we wished to create 
more robust models that would fit the complexities of inpatient set-
tings as well, ones that would extend beyond predicting procedure 
duration— and be applicable to different surgeon expertise levels, 
not only post- fellowship MMS surgeon levels. Since we decided to 
divide the complexity model into two separate models, prediction of 
wound reconstruction complexity and the prediction of tumor exci-
sion complexity, according to the number of stages needed, these 
predictions enable each physician to schedule and manage their 
patients based on his or her own skill and operating environment, 
which dictates procedure duration.

Both prediction models did not underperform compared to Tan 
et al.20 models, even though when performing tasks with much more 
difficult classifications, both models were able to identify more than 

TA B L E  1  Participant demographics, preoperative tumor 
evaluation characteristics and surgical outcomes

Feature Total

Demographics (n = 8644)

Age, years, mean ± SD 69 ± 13

Gender, male, n (%) 4725 (55)

Tumor size, mm, mean ± SD 12 ± 6

Tumor characteristics

Pigmented, n (%) 739 (8.5)

Ulcerated, n (%) 1478 (17)

Keratinized, n (%) 1477 (17.1)

Scarred, n (%) 712 (8.2)

Regular borders, n (%) 5776 (66.8)

Tumor topography

Flat, n (%) 1207 (14)

Elevated, n (%) 4241 (49)

Mixed, n (%) 3196 (37)

Procedure outcome

MMS stages > 2, n (%) 479 (5.5)

Skin graft/flap wound reconstruction, n (%) 1379 (16)

Abbreviation: MMS, Mohs micrographic surgery.

http://www.MMS-Prediction.com
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75% of the complicated procedures and predict uncomplicated pro-
cedures with high certainty, almost guaranteed in the stages model, 
with an NPV of 98%. Regarding the relatively low PPV values, as a 

tool, the models' predictions are not intended to replace the sur-
geon's clinical evaluation, and as with other AI tools in medicine, 
serve as recommendations to be considered. Moreover, our models' 
predictions are accompanied by a prediction probability and SHAP 
plot that display how each feature contributed to the prediction. 
This additional information will enable the surgeon to understand 
the model prediction and decide what actions to take.

Another interesting finding is the lack of contribution of demo-
graphic data to the models' performance, which means no identify-
ing details could compromise patient privacy, which simplifies ethics 
committee approvals.

Although our dataset is based on the experience of a single sur-
geon, the vast number of procedures (covering a 10- year period) 
and their supporting data partially compensate for such a limitation. 
By shuffling the dataset, we trained the model using examples that 
reflected various experience levels, expressed in example labels, to 
adapt the model to novice and experienced MMS surgeons, which 
contributed to model robustness. Moreover, the features used for 
model prediction included features such as tumor location and size, 
which require no special expertise. Other features reflect accepted 
clinical evaluation standards taught in dermatology textbooks.

Feature
Stage complexity classification 
model's modified MCI (AUROC)

Wound reconstruction 
complexity classification model's 
modified MCI (AUROC)

Tumor location 0.2073 0.3592

Gender 0.0125 0.0214

Age 0.0086 0.0510

Tumor size 0.0274 0.1212

Tumor topography 0.1897 0.1244

Tumor characteristics 0.2611 0.1614

Abbreviations: AUROC, Area under the receiver operating characteristic curve; MCI, Marginal 
contribution feature importance.

TA B L E  2  Complexity classification 
models: the marginal contribution of each 
feature in the model

F I G U R E  2  Receiver operating characteristic curves. (A) ROC for MMS stages complexity model prediction. (B) ROC for wound 
reconstruction complexity model prediction

F I G U R E  3  Test dataset receiver operating characteristic curves
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In some cases, following clinical evaluation, surgeons have no 
doubt regarding the nature of the lesion.34 Thus, performing a biopsy 
will not only further burden the patient but also delay treatment. 
Moreover, currently, non- invasive tools for lesion classification are 
starting to deliver a high level of certainty and may perhaps replace 
lesion biopsy in the future.17,35

When we decided to intentionally exclude lesion histopathology 
as a feature, we knew this decision would not be accepted easily. 
We wanted to create both a robust tool that could be applied when 
the histopathology is not available, and a flexible tool that would 
integrate into future machine learning pipelines, which would not 
necessarily include lesion histopathology reports. For these import-
ant reasons, we decided to exclude histopathology from the model.

The purpose of this study was not only to report our findings 
but also to create and share an accessible and interpretable tool that 
would aid our fellow clinicians in making better decisions. The use of 
the modified MCI will assist in understanding how the models were 
constructed, while the SHAP plot will simplify the prediction for phy-
sicians and patients, showing the prediction visually, shedding some 
light on what the “black box” is. By creating an open web application, 
we have accomplished the desired leap from bench to bedside.

We are aware of the general opinion that senior surgeons have 
plenty of experience in identifying complicated procedures and do 
not need support tools; nonetheless, as clinicians, we are taught to 
appreciate the benefit of a second opinion, especially in difficult 
cases. Moreover, these tools could be aids for junior surgeons, giving 
them access to knowledge and experience. We believe another ben-
efit of such a model is that patients would also appreciate knowing 
that a sophisticated model helped support and confirm the physi-
cian's experience— even for senior surgeons. For example, this tool 
would help the surgeon explain to the patient, “Based on procedures 
just like yours, we know with x% certainty that the procedure will 
not require complicated wound reconstruction.”

The fact that the large majority of MMS procedures conclude 
with patients being tumor free gives us the opportunity to test and 
integrate into practice new cutting- edge ML models. We believe 
that this research, to our knowledge, is the first of its kind, which 
uses ML to classify complicated MMS procedures based on a vast 
dataset, will inspire fellow researchers to further integrate ML mod-
els into surgical dermatology clinical practice, leading to improve-
ment in all aspects of treatment and resulting in better quality of life 
for patients and clinicians.

The next evolution of this study is to integrate our prediction 
models with deep learning models, such as those that were devel-
oped in the past for tumor classification.17 This will create a tool 
that will be able to predict MMS complexity from a tumor's image. 
Nonetheless, machine learning models should constantly improve by 
including more diverse data and performing retraining, by more data 
analysis and by exploring new models.

A subsequent study could compare the accuracy of the tool 
across numerous surgeons with various years of experience.

The insights from this research serve as a tool that will:

1. Enable better planning of patient and staff scheduling by pre-
dicting long and complex procedures

2. Reduce surgeon overload and burnout by creating balanced work 
plans, spreading out complex procedures and adjusting them to 
surgeon ability in training environments, thus improving surgery 
outcomes

3. Perhaps most important, improve our understanding of planned 
procedures, so we can better express them to patients, assisting 
in patient education, managing expectations and reducing preop-
erative anxiety levels.36

6  |  CONCLUSION

The ML models we created predict the complexity of the compo-
nents that comprise the MMS procedure. Using the accessible and 
interpretable tool we provide online, clinicians can improve the man-
agement and well- being of their patients.
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