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Rapid death of duck cells infected with influenza:
a potential mechanism for host resistance to H5N1

Suresh V Kuchipudi1,2,4, Stephen P Dunham2,4, Rahul Nelli2, Gavin A White2, Vivien J Coward3,
Marek J Slomka3, Ian H Brown3 and Kin Chow Chang2

Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause

human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show

few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease

with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to

influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we

observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1

and ‘classical’ highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA

fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied

by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus,

in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian

lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to

influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies

provide novel insights that should help resolve the long-standing enigma of host–pathogen relationships for highly pathogenic

and zoonotic avian influenza.
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Influenza A viruses are important pathogens in a wide range of, both
mammalian and avian, hosts. The virus is responsible for seasonal
epidemics in humans, which cause significant morbidity and mortality
each year, most notably in young children and the elderly.1 Emergence
of influenza strains, to which the human population has little or no
pre-existing immunity, can be associated with widespread and poten-
tially severe disease pandemics. Aquatic birds are the natural reservoir
for most subtypes of the virus and a source of novel viruses that can
infect mammals or terrestrial poultry.2 Such emergent viruses have the
potential to cause pandemic infection in humans or cause sporadic
cases of potentially severe zoonotic disease.3 Ducks have had a major
role in the generation and maintenance of H5N1 in eastern Asia,4

which has caused over 250 confirmed human deaths since its
re-emergence in 2003.5 Influenza A is also responsible for econo-
mically important disease outbreaks that have lead to the culling
of millions of farmed chickens.3,6

Influenza A viruses are found throughout bird populations
worldwide, including Anseriformes (ducks, geese and swans),
Charadriiformes (shorebirds), domestic poultry and passerines.

Typically, aquatic birds, such as ducks, exhibit few clinical signs
following infection with influenza viruses, yet shed virus, which
serves as a source of infection for other hosts. In contrast, terrestrial
poultry, such as chickens or turkeys, show clinical signs varying
from mild, following infection with low pathogenic avian influenza
(LPAI), to severe with rapid death in 1–2 days, following infection
with highly pathogenic avian influenza (HPAI) viruses. Such a
marked difference in the typical host response to infection within
such a short time period post infection suggests that there are
underlying differences in the innate host response to influenza A
infection, between resistant hosts, exemplified by waterfowl, especially
ducks, and susceptible hosts such as chickens. This is supported
by experimental studies showing that naı̈ve ducks, with no
pre-existing acquired immunity to influenza A, display few clinical
signs following challenge with ‘classical’ HPAI viruses, whereas
chickens show high levels of mortality.7,8 Rarely, infection with
recently emerged strains of HPAI, such as Eurasian lineage H5N1,
may cause significant disease and mortality in wild bird populations,
including ducks.9,10
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The marked difference in susceptibility to influenza infection,
between ducks and chickens, provides a unique opportunity to dissect
the molecular mechanisms contributing towards disease resistance. To
gain an insight into potential differences in innate immune responses
that could explain the contrasting outcome following influenza infection
in different avian hosts, we infected primary cells, derived from chicken
and duck embryos or lungs, with LPAI, HPAI and classical swine H1N1.
Our data suggest that the rapid death of duck cells following influenza
infection, associated with induction of cellular caspases, may be a
potential mechanism underlying the long held, but hitherto unex-
plained, observation that ducks remain healthy in the face of influenza
infection unlike terrestrial poultry, and is a potential reason why
waterfowl, such as ducks, are such an important reservoir for the virus.

RESULTS

Both human and avian type sialic acid (SA) receptors are expressed
in primary lung and embryo cells from chickens and ducks
Influenza viruses enter susceptible cells following binding of the
viral haemagglutinin to cellular SAs associated with membrane glyco-
proteins and glycolipids. Avian influenza viruses have been shown to
preferentially bind to SA receptors that are linked to galactose by an
a2,3 linkage (SAa2,3-Gal), whereas mammalian viruses show prefer-
ence for receptors with an a2,6 linkage (SAa2,6-Gal).11,12 Studies on
tissues derived from chickens and ducks have shown some differences
in the distribution of SA receptors between species.13 To determine
whether the SA receptor expression of primary cells might account for
species differences following influenza infection in vitro, detection of
SA receptors was performed on cultured cells by histochemistry using
linkage-specific lectins. There was no significant difference in receptor
expression between chicken and duck cells that might account for any
difference in the cellular response to infection; both SAa2,3-Gal and
SAa2,6-Gal receptors were expressed by chicken and duck, lung and
embryo cells (Supplementary Figure S1).

Influenza A infection causes rapid death of duck but not chicken
primary cells
To assess the effect of influenza infection on chicken and duck cells, we
infected cultured cells, derived from Pekin duck and White Leghorn

chicken embryos, with LPAI H2N3 (A/mallard duck/England/7277/
06), classical swine H1N1 (A/sw/Iowa/15/30) or with HPAI H5N1
(A/turkey/England/50-92/91; hereafter referred to as H5N1 50-92)
viruses. Paradoxically, infection of these primary cells revealed that cell
death was induced more rapidly, and to a greater degree, in duck than
in chicken cells. This was evident as an increase in the number of
cells becoming detached, rounding up and floating in the media
(Figures 1a and b). Uninfected cells from both species showed little
evidence of such changes (Figures 1c and e). To summarise, duck
embryo cells consistently showed more rapid and higher levels of cell
death than chicken cells between 24–48 h following infection with
LPAI H2N3, classical swine H1N1 or HPAI H5N1 50-92 viruses. To
confirm that this response was not cell-type specific, we repeated these
experiments using primary cells derived from chicken and duck lungs
and again observed the phenomenon of more rapid and extensive cell
death in duck cells, 24–48 h post infection, with each of these viruses
(Supplementary Figure S2). Experimental infection of ducks with
HPAI 50-92,14 LPAI H2N3 or classical swine H1N1, closely related to
viruses used in this study,15 does not cause disease in Pekin ducks;
however, experimental infection of chickens with H5N1 50-92 results
in rapid and high levels of mortality.14 Thus, there is an inverse
correlation between the outcome of cell infection in vitro and the effect
of virus infection in vivo.

To quantify the observed difference in cell death between duck and
chicken cells, we measured cell viability using a 3-(4, 5-dimethyl-
thiazol-2-yl)-2, 5-diphenyltetrazolium bromide reduction (MTT)
assay, 24 h following virus infection. Duck lung cells consistently
showed significantly lower metabolic activity than chicken lung cells
over a range of multiplicities of infection (MOI) with either LPAI
H2N3 (Figure 2a) or classical swine H1N1 (Figure 2b) viruses
(Po0.01). As was expected, the effect was dose dependent, with
increasing levels of infection inducing greater reductions in cell
viability.

To exclude the possibility that the difference in the kinetics of cell
death between duck and chicken cells was caused by a difference in the
extent of virus infection, we performed immunostaining of infected
embryo cells for influenza nucleoprotein, 6–8 h following virus expo-
sure. This showed similar levels of nucleoprotein in cells from each

Figure 1 Cell death in avian embryo fibroblasts following influenza A infection. (a) Duck and (b) chicken embryo fibroblasts infected with classical

swine H1N1 virus for 48 h. (c) Uninfected duck and (e) chicken cells are shown for comparison. Immunostaining for viral nucleoprotein antigen in (d) duck

and (f) chicken cells 6 h following viral infection at an MOI of 1.0. Similar results were obtained following infection with LPAI H2N3 or with HPAI H5N1

50-92 viruses.
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species confirming that the more rapid cell death in duck cells was
not due to higher levels of virus entry or early replication (Figures 1d
and f). Again, there was no underlying difference in the extent of
influenza nucleoprotein expression, between species, following
infection of duck and chicken primary lung cells (Supplementary
Figure S3). Similar results were found for all viruses used in this
study, confirming that both duck and chicken cells supported virus
entry, as intimated by the distribution of appropriate SA receptors on
the cell surface.

Duck cells show morphological features of apoptosis following
influenza A infection
Owing to the rapid induction of cell death following influenza
infection in duck cells, we investigated the potential role of apoptosis

as a cause of this phenomenon. Examination of dying cells stained by
4¢,6-diamino-2-phenylindole dihydrochloride (DAPI) showed charac-
teristic nuclear condensation and fragmentation, supportive of apop-
tosis as a mechanism of cell death (Supplementary Figure S4).

We initially quantified the degree of apoptosis by measuring nuclear
fragmentation, using propidium iodide (PI) staining of ethanol-fixed
cells, followed by flow cytometry to detect hypodiploid cells.16 This
showed that in duck lung cells, 20–48 h following infection, there was
a significantly greater proportion (Po0.01) of hypodiploid cells,
evident as a greater sub-G1 peak, than observed in chicken lung
cells, after infection with LPAI H2N3 (Figure 3a), classical swine H1N1
(Figure 3b) or HPAI H5N1 50-92 (Figure 3c). The level of apoptosis
following influenza A infection was consistently higher in duck
compared with chicken cells, at different time points following
infection and at MOIs of 1.0 or 0.1. This assay may not be absolutely
specific for apoptosis, as a sub-G1 peak indicative of hypodiploid
nuclei may sometimes be observed in necrotic cells or due to
chromosomal clumping or diminished staining in differentiating
cells.16,17 However, taken together, the data suggest that more rapid
cell death, with features of apoptosis, occurs in duck but not chicken
cells, following infection with a range of influenza viruses to which
ducks would show minimal or no disease following infection in vivo.

Contemporary Eurasian H5N1 lineage influenza A does not cause
rapid death in duck cells
We next examined the relative effects of infection on chicken and duck
cells with a HPAI H5N1 subtype, A/turkey/Turkey/1/2005 (hereafter
referred to as H5N1 tyTy05), known to cause severe clinical signs in
ducks.18 Significantly, only low levels of hypodiploid cells were
detected after infection of duck lung cells at an MOI of 1.0 or 0.1
(less than 5% compared with 12–17% following infection with H5N1
50-92), and there was no significant difference between the levels of
hypodiploid cells observed between chicken and duck lung cells
following infection at a MOI of 1.0 (Figure 3d). In addition, the
characteristic cytopathic effects associated with rapid cell death were
not observed in cultures of duck lung cells infected with H5N1 tyTy05,
which appeared largely indistinguishable from uninfected cells, 20 h
post infection (Supplementary Figure S5). The inverse correlation
between the cell response following infection in vitro and the outcome
of in vivo infection is quite striking, suggesting that viral factors
associated with emergent H5N1 viruses that are pathogenic to ducks
are able to subvert the ability of the host cell to initiate cell death.

Caspase activation is associated with rapid cell death in duck cells
Caspase activation is a key process in both the intrinsic and the
extrinsic pathways of apoptosis.19,20 We measured activation of the
effector caspases 3 and 7 in embryo fibroblast cells following infection
with H1N1 or H2N3 viruses, using a luminescence assay (Figure 4).
Influenza A infection at a MOI of 0.1 or 1.0 led to higher levels of
caspase 3/7 activation in duck cells compared with chicken cells
(Po0.001). This differential induction of caspase activity in duck
cells was greater at 40 h than at 18 h post infection (Po0.001). In both
duck and chicken cells, the levels of caspase induction were not
significantly increased following infection at an MOI of 1.0 compared
with 0.1, with either avian H2N3 or swine H1N1 (P¼0.618). Treat-
ment of cells with staurosporin, which induces apoptosis by both
caspase-dependent and -independent mechanisms, produced similar
levels of caspase 3/7 activation in chicken and duck embryo cells
(P¼0.074) and rapid cell death in both species. This implies that
the differential induction of caspase 3 and 7 in duck compared
with chicken cells was an influenza A virus-specific phenomenon.

Figure 2 Duck lung cells show lower metabolic activity compared with

chicken lung cells following influenza A infection. Measurement of cell

viability in duck and chicken lung cells, using an MTT assay, 24 h post

infection, with a range of MOI, using (a) LPAI H2N3 or (b) classical swine

H1N1 virus. Data points are the mean of quadruplicate wells with error bars

showing s.d. There is a significant difference between species (Po0.01;

two-way analysis of variance).
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These results suggest that these caspases may be important mediators
of the rapid cell death observed in duck cells following influenza A
infection.

Rapid cell death in duck cells is accompanied by a reduced output
of infectious virus but not viral RNA
To determine whether the more rapid cell death observed in duck cells
was associated with a decreased viral output from infected cells, we
measured matrix (M) gene copy number using quantitative real-time
PCR 21,22 on culture supernatants collected following influenza infec-
tion. Virus output from infected cell cultures, between 20–48 h
following infection, was comparable between chicken and duck lung
cells (Figures 5a and b). Although differences in viral RNA production
were occasionally observed, in the course of repeated experiments
with lung and embryo cells, using different viruses, these were not
consistently higher for either species, and it seems unlikely that the
relatively small differences seen were biologically significant. For
HPAI infection of cells, levels of viral H5 RNA were also measured
by real-time PCR,23 with gene expression levels correlating with those
for M gene expression (data not shown).

To determine the level of infectious virus produced following infec-
tion, we titrated the viral supernatants on Madin-Darby canine kidney
cells. Interestingly, there was a significant decrease in the number of
infectious virions produced following infection of duck lung cells
compared with chicken lung cells (Figures 5c–f). When infected with
avian H2N3, chicken cells produced between 10- to 12-fold more
infectious virus, 24–48 h post infection, than duck cells. Following
infection with swine H1N1, chicken cells produced three- to five-fold
more infectious virus than duck cells (Figure 5d). With H5N1 50-92
infection, chicken cells produced about four- to eightfold more infec-
tious virus, 20–40 h post infection, than duck cells (Figure 5e). Follow-
ing H5N1 tyTy05 infection, the interspecies difference in infectious virus
produced was less (approximately two- to fourfold more virus pro-
duced from chicken cells; Figure 5f). This data suggests that the rapid

Figure 3 Duck cells show higher levels of hypodiploid cells than chicken lung cells following influenza A infection. Measurement of cellular levels of DNA

fragmentation following influenza A virus infection by propidium iodide staining of ethanol-fixed cells, followed by flow cytometry. Duck lung cells (black

bars) and chicken lung cells (white bars) were infected for 24 or 48 h with low pathogenic avian (a) H2N3, (b) classical swine H1N1 or for 20 h with

(c) highly pathogenic H5N1 50-92 or (d) H5N1 tyTy05. Analysis of data by three-way analysis of variance for interspecies differences showed a significant

difference between species (Po0.01) in the proportion of hypodiploid cells following infection with low pathogenic avian H2N3 (a), classical swine H1N1

(b) or highly pathogenic H5N1 50-92 (c) but not H5N1 tyTy05 (d; P¼0.086). Data shown are the mean of duplicate wells.

Figure 4 Caspase 3/7 induction is greater in duck cells compared with

chicken cells following influenza A infection. Chicken (white bars) and duck

embryo fibroblasts (black bars) were infected with avian H2N3 or classical

swine H1N1 viruses for 18 or 40 h at an MOI of either 1.0 or 0.1. Chemical

treatment of cells with staurosporin (4mM) was used as a positive control.
Levels of caspase 3/7 induction were quantified using Caspase-Glo 3/7

Assay (Promega). Data points are the mean of triplicate wells with error bars

showing s.d. Analysis of data by three-way analysis of variance showed a

significant difference between species (Po0.001) following influenza

infection with either virus at both MOI; no significant difference was

observed between species following staurosporin treatment (P¼0.074). RLU/s,

relative light units per second.
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induction of cell death in duck cells following influenza A infection may
lead to containment of viral replication, although replication of viral
RNA is unaffected. To investigate whether caspase blockade would lead
to enhanced production of infectious virus from duck cells, we pre-
treated cells with Q-VD-OPh, a pan-caspase inhibitor, which we
determined effectively blocked caspases in avian cells (confirmed by
assaying cells for caspase 3/7 after treatment with Q-VD-OPh). How-
ever, virus levels in the supernatants of infected cells pre-treated with
Q-VD-OPh were not significantly different from untreated cells (Figures
5e and f). However, although pre-treatment of duck cells with a caspase
inhibitor did reduce cell death following influenza infection, it did not
reduce levels to that of uninfected cells; for example, 24 h after H5N1
50-92 infection, a reduction in hypodiploid cells from 11 to 7% was
observed, compared with 2% for uninfected cells (data not shown).

Cells derived from mallard ducks also exhibit rapid cell death
following influenza A infection
Aquatic birds are the major reservoir for influenza A, with wild ducks
harbouring the majority of virus subtypes and typically showing
very few clinical signs.2,10 We therefore investigated whether cells
derived from mallard embryos showed similar levels of rapid
cell death in vitro in comparison with Pekin duck embryo cells.
In fact, the level of hypodiploid cells, measured using PI staining
of ethanol-fixed cells, was much greater in mallard (34%) than
observed for either duck (10.5%) or chicken (1.3%) embryo cells
following infection with H1N1 at an MOI of 1.0 (Supplementary
Figure S6). This was supported by the morphological appearance of
the cells, with mallard cells showing more severe cytopathic effects
than Pekin duck cells.

Figure 5 Replication of influenza A in duck and chicken cell cultures. Chicken cells (white bars) and duck cells (black bars) were infected with a range of

viruses for 20–48h and virus production measured by real-time PCR and titration of virus in culture supernatants. (a) Duck and chicken lung cells infected

with LPAI H2N3 at an MOI of 1.0 for 24h and virus output measured by detection of viral M gene RNA in supernatant by quantitative reverse transcription

PCR. (b) Duck and chicken embryo cells infected with HPAI H5N1 50-92 or H5N1 tyTy05 for 20 h at an MOI of 1.0 and virus production quantified by viral

M gene RNA PCR. Significant difference in M gene copy number between species following H5N1 50-92 (Po0.05) but not H2N3 infection or H5N1 tyTy05

infection. (c, d) Infectious virus in supernatants from duck and chicken lung cells following infection for 24 or 48 h, with (c) LPAI avian H2N3 and (d)

classical swine H1N1 measured by titration on Madin-Darby canine kidney cells. (e, f) Levels of infectious virus in supernatants following infection of

chicken embryo cells and duck embryo cells at an MOI of 1.0 for 20 or 40h with (e) HPAI H5N1 50-92 or (f) H5N1 tyTy05. Pretreatment with a pan-

caspase inhibitor Q-VD-OPh (10mM) before HPAI H5N1 infections (Block). Analysis of data by three-way analysis of variance, for interspecies differences in

the production of infectious virus, showed significant differences (Po0.001) following influenza infection with H5N1 50-92 or tyTy05. No significant

difference on the level of infectious virus production was observed following treatment with Q-VD-OPh (P40.05). Data show the mean of triplicate wells with

error bars showing s.d. FFU, focus-forming units.
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DISCUSSION

In conclusion, contrary to our previous expectations, we found
that influenza infection elicited more rapid and greater levels of cell
death in primary cells derived from inherently resistant Pekin or
mallard ducks than cells from susceptible White Leghorn chickens.
This cell death was mediated, at least in part, by apoptosis, as evident
by clearly elevated levels of nuclear condensation and fragmentation,
and caspase activation in duck cells. We further demonstrated that this
accelerated cell death in infected duck cells was accompanied by
reduced output of infectious virus relative to chicken cells. Signifi-
cantly, in the exceptional situation where a HPAI subtype causes lethal
infection in juvenile ducks, as in the case of H5N1 tyTy05,18 duck cells
infected by this subtype did not display accelerated cell death but
appeared deceptively healthy, much like infected chicken cells. It could
be relevant to note that ducks infected with virulent subtypes of
H5N1 viruses often display neurological signs before death and, at
postmortem, together with other vital organs, pathological lesions and
virus infiltrates are found in the brain and heart,18,24 two organs in
which apoptosis and subsequent regeneration may occur less readily,
without detriment to the host. The potential for apoptosis to cause
such tissue damage has been recognised for other viral infections of
the heart and nervous system, where the degree of apoptosis and
cellular destruction are correlated with disease severity.25

There are a number of potential benefits to the avian host in
containing virus replication by rapid induction of cell death following
infection of target cells. We have demonstrated that this phenomenon
is associated with reduced production of infectious virus in vitro in
resistant duck cells, but no alteration in viral RNA released from
infected cells, suggesting that virus assembly or processing is affected
rather than replication of the viral genome. Should this phenomenon
occur in vivo, it could lead to early containment of infection with
reduced spread of virus to secondary sites of infection, such as the
heart or brain. Indeed, following non-lethal H5N1 infection, virus
dissemination is less widespread, and lower viral antigen levels are
present in duck organs in comparison with chickens.24

It is well established that infection with many types of virus,
including influenza A, can cause apoptosis of infected cells, both
in vitro26,27 and in vivo.28 However, the role of apoptosis in influenza A
infection is complex. Apoptosis appears to be necessary for efficient
virus replication; for example, blocking caspase 3 activation29 or
reducing Bax, directly via gene knockout30 or via overexpression of
Bcl-2,31 causes diminished virus production. Activation of apoptosis is
specifically required for the release of viral ribonucleoprotein from the
nucleus29 and for correct processing of the viral haemagglutinin.31

However, influenza viruses appear to prevent early apoptotic cell death
by upregulation of PI3K-Akt signalling, mediated, at least in part, by
the viral NS1 protein.32,33 Although some studies have shown that p53
is essential for the induction of cell death in influenza infected cells,34

others have shown that it may not be required.32 Intriguingly, Shen
et al.35 demonstrated that p53 accumulates in a biphasic pattern
following influenza infection. It seems plausible that early apoptosis,
associated with accumulation of p53, may be a protective response
favoured by host cells, but is blocked by interaction of influenza A with
the cell, whereas later accumulation, leading to cell death, favours
virus replication. This argument is strengthened by the observation
that early induction of cell death by p53 appears to limit viral titres
produced by infected cells.34 The sum of this evidence suggests that
the rapid induction of apoptosis may be beneficial to the host, whereas
delayed apoptosis may be advantageous to the virus. As a conse-
quence, influenza A has evolved a number of mechanisms to delay
apoptosis in infected cells.

We have shown that caspase activation and nuclear fragmentation
are increased during rapid death of infected duck cells. However,
although caspase blockade did reduce cell death in duck cells infected
with influenza A, it did not lead to increased production of infectious
virus from duck cells infected with H5N1, suggesting that other
pathways, for example, mitochondrial outer membrane permeabilisa-
tion, may also be responsible for cell death observed and the associated
decrease in virus production from infected duck cells.36 Alternatively,
it is possible that increased cell death in influenza-infected duck cells,
although correlated to reductions in viral titres, may not be mecha-
nistically responsible. Further work is therefore required to dissect
the molecular pathways in avian cells following influenza infection and
to determine the mechanism for induction of apoptosis, and the
relative roles of intrinsic or extrinsic pathways. Alternative pathways
of ‘programmed cell death’ are autophagy, oncosis and pyroptosis.37 It
is possible that some of the cell death observed in this study may
have been caused by such alternate pathways; however, although
DNA cleavage may be observed with both apoptosis and pyroptosis,
nuclear fragmentation and caspase 3 induction are hallmarks of
apoptosis but not pyroptosis. In contrast to apoptosis, pyroptosis is
associated with cleavage of caspase 1, cell swelling and lysis.37 It is
conceivable that in addition to the different kinetics of cell death
between avian hosts, the mechanism of influenza virus-induced cell
death may also differ and, as a consequence, directly influence host
immune and inflammatory responses, and the degree of tissue damage
observed in vivo. Apoptosis is associated with a minimal inflammatory
responses, whereas pyroptosis is inherently inflammatory.37 Human
studies and animal models have implicated the induction of an
aberrant pro-inflammatory cytokine response, or so called cytokine
storm, as a potential cause of severe disease in mammals.38,39

Although the pathophysiology of influenza infection in avian species
is less well understood, it has recently been shown that pro-inflam-
matory cytokine expression is upregulated in the lungs of chickens
infected with HPAI H5N1, accompanied by high levels of virus
replication.40 Studies in mice support the role of apoptosis followed
by removal of apoptotic bodies by phagocytosis as a crucial mechan-
ism for host survival following influenza A infection; inhibition of
phagocytosis leads to increased host mortality.41 We propose that the
rapid induction of cell death in ducks mediated, at least in part, by
apoptosis accounts for the natural resistance of such hosts to influenza
A infection. In contrast, the lack of such a response in highly
susceptible chickens is associated with the development a pro-inflam-
matory cytokine response and more fulminant disease. Similarly, the
loss of a rapid host cell-death response in duck cells, following
infection with emergent strains of HPAI H5N1 such as Eurasian
lineage H5N1 clade 2.2 (tyTy05), is also associated with a more severe
clinical outcome. Recent work by Ueda et al.36 supports our observa-
tion of rapid apoptosis in duck cells following influenza A infection,
with an H5N1 non-lethal to ducks, Cw/Kyoto causing increased cell
death compared with LPAI viruses, essentially as we have observed
for H5N1 50-92. There is some difference in their findings with a clade
2.2 H5N1, where they observed increased cell death in duck cells
post infection, in contrast to the reduced cell death in cells infected
with clade 2.2 H5N1 tyTy05. This difference may have been due
to differences in the MOI used, origin of cells, virus-specific charac-
teristics or other differences in methodology; however, there is a clear
need to further characterise the mechanisms leading to rapid death in
duck cells and the virus factors that are responsible. The recent
observation of differences in the RIG-I signalling pathway between
ducks and chickens42 suggests that this may also have a role in the
resistance of ducks to influenza; the relative importance and degree
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of complementarity or interaction between these mechanisms should
be determined.

To conclude, the data from our in vitro studies correlates entirely
with the observed pathogenesis in relevant hosts arising from natural
infection with the same viruses. This offers an insight into a potential
mechanism that might account for the long-held observation that
aquatic birds are inherently more resistant to influenza A infection
than terrestrial poultry. Further experiments using resistant and
susceptible avian hosts should help to determine the relative impor-
tance of this mechanism in vivo.

METHODS

Viruses
A LPAI H2N3 (A/mallard duck/England/7277/06), a classical swine H1N1

(A/sw/Iowa/15/30), and two highly pathogenic avian H5N1 viruses (A/turkey/

England/50-92/91 and A/turkey/Turkey/1/05) were used in this study. The

former derives from the ‘classical’ Eurasian lineage of H5 viruses and causes

non-lethal infection in ducks. In contrast, the latter strain is a contemporary

Eurasian H5N1 virus (clade 2.2) associated with the global panzootic since

2003. Some of these viruses can cause severe disease with mortality in ducks.

All viruses were grown by allantoic inoculation of 10-day-old embryonated

chicken eggs.

Virus titration
Serial 10-fold dilutions of a known volume of virus or culture supernatant were

used to infect Madin-Darby canine kidney cells in 24-well cell culture plates

(Corning Life Sciences, Amsterdam, Netherlands). Cells were washed after a 2-

h incubation with virus, followed by a further 4-h incubation and then fixed

with 1:1 acetone:methanol. Cells were subjected to viral nucleoprotein detec-

tion by a primary mouse monoclonal antibody (Abcam, Cambridge, UK)

followed by visualization with Envision+system-HRP (DAB; Dako, Ely, UK).

Cells expressing viral nucleoprotein were counted and the mean number of

positive cells in five fields used to calculate focus-forming units of virus per

microlitre of inoculum.

Cell cultures
Primary cell cultures were obtained from lungs of 4-week-old broiler chickens

and 6-week-old Pekin ducks. The lungs from euthanased birds were aseptically

collected into Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen Ltd.,

Paisley, UK) with antibiotics and washed three times in phosphate-buffered

saline (PBS) to remove red blood cells. The lungs were then sliced into fine

pieces with a scalpel blade and digested at 4 1C overnight in dissociation

medium containing equal volumes of DMEM and Ham’s F12 (Invitrogen Ltd.)

supplemented with pronase (1.4 mg ml�1; Sigma-Aldrich Ltd., Poole, UK) and

antibiotics. Large undigested tissue pieces were removed using a cell strainer

and the cells were plated onto collagen-coated cell culture flasks (Corning Life

Sciences) in DMEM and Ham’s F12 (1:1) supplemented with 2% chicken

embryo extract (Biosera, Ringer, UK), 5% fetal calf serum, 1% insulin-

transferrin selenium (Invitrogen) and antibiotics.

Fibroblasts were extracted from White Leghorn chicken and Pekin

(or mallard) duck embryos after 8- or 10.5-day incubation, respectively.

Embryos were digested in 0.25% trypsin in dissociation medium at 37 1C for

1 h. Cells were plated into cell culture flasks (Corning Life Sciences) and

maintained in DMEM with 10% fetal calf serum and antibiotics.

Madin-Darby canine kidney cells were grown in DMEM supplemented with

10% fetal calf serum and antibiotics.

Influenza receptor expression on cultured cells
Influenza receptor expression on primary cells was determined by a method

previously described,13 using Sambucus nigra agglutinin lectin specific for

‘mammalian type’ sialic acid a2,6-galactose (SAa2,6-Gal)-linked receptors,

and Maackia amurensis agglutinin (MAA II) lectin specific for a2,3-galactose

(SAa2,3-Gal)-linked ‘avian type’ receptors. Briefly, cells were grown on cover

slips in 24-well culture plates and fixed with 4% paraformaldehyde. After

blocking endogenous biotin with the use of a streptavidin blocking kit (Vector

Laboratories, Peterborough, UK), the cells were incubated overnight at 4 1C in

the dark with fluorescein isothiocyanate-labelled S. nigra agglutinin lectin, and

biotinylated M. amurensis agglutinin (MAA II) lectin (Vector Laboratories),

each at a concentration of 10mg ml�1. After three washes with Tris-buffered

saline, the cells were incubated with 1:500 dilution of streptavidin-Alexa-

Fluor594 conjugate (Invitrogen Ltd.) in Tris-buffered saline for 2 h at room

temperature. The cells were washed three times with Tris-buffered saline and

then mounted with ProLong Gold antifade reagent with DAPI (Invitrogen

Ltd.). Negative controls were processed without the primary reagents and the

cells were imaged using a fluorescent microscope (Leica Microsystems Ltd.,

Milton Keynes, UK).

Virus infection of cells
Monolayers of primary cells in 12- or 24-well plates were infected with avian or

swine influenza viruses at MOI of 0.1 or 1.0. Cells were rinsed with PBS and

infected with virus in serum-free infection medium comprising 2% Ultroser G

(Pall Biosepra, Portsmouth, UK), 500 ng ml�1 TPCK Trypsin (Sigma-Aldrich

Ltd.) and antibiotics in Ham’s F12. After 2-h incubation, infection medium was

removed, the cells were washed three times with PBS and fresh medium was

added. Cells were further incubated for up to 48 h. Cells for immunostaining

were fixed in 1:1 acetone:methanol for 10–15 min. Cells for PI flow cytometry

assays were trypsinized and washed twice in PBS with glucose (1 mg ml�1)

before fixing in 70% ethanol. To assess the effect of caspase blockade, 10mM of

the pan-caspase inhibitor Q-VD-OPh (Cambridge Bioscience Ltd., Cambridge,

UK) was added to cells 1 h before virus infection, and replenished following

washing at 2 h post infection.

Measurement of cell metabolic activity (MTT Assay)
Measurement of metabolic activity of primary cells following influenza virus

infection was carried out by MTT assay. Primary chicken and duck lung cells

were grown in 96-well culture plates (approximately 5000 cells per well) and

infected with influenza viruses at a range of MOI from 0.15 to 2.5. The cells

were analyzed for metabolic activity at 24 h post infection using CellTiter 96, a

non-radioactive cell proliferation assay (Promega, Madison, WI, USA) accord-

ing to manufacturer’s instructions.

Propidium iodide flow cytometry assay
A PI flow cytometry assay to measure hypodiploid cells was carried using a

previously described method16. Ethanol-fixed cells were vortexed briefly and

centrifuged at high speed (B3000 r.p.m.) for 5 min. The cell pellet was

resuspended before staining in 1 ml of propidium iodide staining solution

containing 50mg of propidium iodide, 100 kunitz units of ribonuclease A

(Sigma) and 1 mg glucose in 1 ml of PBS. Cells were then incubated at room

temperature on a rocking platform for 30–90 min in the dark and analyzed by

flow cytometer using a BD FACS CANTO II (BD Biosciences, Oxford, UK).

Caspase 3/7 assay
Levels of activated caspase 3 and 7 in primary cells following influenza virus

infection were quantified using Caspase-Glo 3/7 Assay (Promega), according to

manufacturer’s instructions. Staurosporin (Sigma-Aldrich Ltd.) was used as a

positive control at a concentration of 4mM.

Quantification of virus production using quantitative real-time
reverse transcription PCR
Viral RNA from culture supernatants was extracted using Hipure viral RNA kit

(Roche Diagnostics Ltd., Burgess Hill, UK) or QIAamp Viral RNA Mini Kit

(Qiagen, Crawley, UK). A one-step reverse transcription PCR assay using

influenza virus matrix gene-specific PCR primers and hydrolysis probe was

performed as previously described.21,22 Threshold cycle (Ct) values were

converted to viral gene copy number by a standard curve generated using

in vitro-transcribed viral RNA.

Statistical analysis
Data derived from PI, caspase and viral quantification assays were analyzed

using SigmaStat software (Version 3.5, Systat Software, Richmond, CA, USA).

Data were compared between groups using a two- or three-way analysis of
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variance, as appropriate, followed by pairwise comparisons using the Holm-

Sidak method.
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