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Lung cancer is one of the deadliest and most common malignancies in the world, representing one of the greatest challenges in
cancer treatment. Immunotherapy is rapidly changing standard treatment schedule and outcomes for patients with advanced
malignancies. However, several ongoing studies are still attempting to elucidate the biomarkers that could predict treatment
response as well as the new strategies to improve antitumor immune system response ameliorating immunotherapy efficacy.
The complex of bacteria, fungi, and other microorganisms, termed microbiota, that live on the epithelial barriers of the host, are
involved in the initiation, progression, and dissemination of cancer. The functional role of microbiota has attracted an
accumulating attention recently. Indeed, it has been demonstrated that commensal microorganisms are required for the
maturation, education, and function of the immune system regulating the efficacy of immunotherapy in the anticancer response.
In this review, we discuss some of the major findings depicting bacteria as crucial gatekeeper for the immune response against
tumor and their role as driver of immunotherapy efficacy in lung cancer with a special focus on the distinctive role of gut and
lung microbiota in the efficacy of immunotherapy treatment.

1. Introduction

The small (SCLC) and non-small-cell lung cancer (NSCLC)
(referred as lung cancer “LC” hereafter) is one of the deadliest
malignancies in the world. For 2019, the American Cancer
Society estimates 116,440 and 111,710 new LC cases with
24% and 23% of new deaths per year for men and women,
respectively [1]. Over the past few decades, the research on
genetics of LC improved the opportunity to select patients
that could benefit from the most recent immune-based ther-
apeutic strategies [2–8].

Several clinical trials established the efficacy of immuno-
therapy on different tumors bringing to the approval of this

new therapeutic regimen. The clinical trials CheckMate
017, CheckMate 057, and Keynote 010 demonstrated that
the monoclonal antibodies (mAbs) against programmed cell
death-1 (PD-1) nivolumab [9] and pembrolizumab [10] sig-
nificantly improved the overall survival (OS) over docetaxel
in NSCLC patients after the failure of prior platinum-based
chemotherapy. Similarly, the OAK trial showed that atezoli-
zumab [11], an anti-PD-ligand 1 (PD-L1) mAb, produced a
survival benefit compared with docetaxel in the same NSCLC
population. In details, the anti PD-(L)1 therapy blocks the
binding of PD-1 to its ligand (PDL-1) restoring the functions
of “exhausted” T cells and resulting in tumor shrinkage [12].
The immunoblocking between PD-1 and activated cytotoxic
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T lymphocytes (CTLs), and between PD-L1 and tumor cells,
has exhibited significant clinical efficacy in different types of
cancer and was currently approved for treating tumors,
including advanced stage of NSCLC [13]. Consistently, nivo-
lumab and pembrolizumab showed impressive efficacy also
in SCLC [14].

Actually, five monoclonal antibodies targeting immune
checkpoints have been approved by the U.S. Food and Drug
Administration (FDA) for cancer treatment alone or in com-
bination with platinum-based chemotherapy [9], although
ongoing study attempts to discover new predictive biomarker
of treatment response as well as new strategies to improve
immunotherapy efficacy, including the combination of anti-
PD-(L)1 and anti-Cytotoxic T Lymphocyte Antigen 4 (CTLA-
4) agents [15, 16].

Several studies demonstrated that the gut microbiome
regulates the power by which immunotherapy may stimulate
the anticancer immune response (reviewed in [17]).

Commensal microorganisms are required for the matura-
tion, education, and function of the immune system. A tight
and continuous interaction of immune cells with microorgan-
isms allows learning the difference between commensal and
pathogenic bacteria. Indeed, the haematopoietic and nonhae-
matopoietic cells of the innate immune system are strategically
located at the host-microbiome interface and are rich of pat-
tern recognition receptors (PRRs) that sense microorganism
presence [18]. This relationship leads to the concept of humans
as mammalian holobionts resulting from parallel coevolution
of host-eukaryotic and microbe-prokaryotic elements.

The gastrointestinal tract hosts are the most abundant
and diversified microbial population. The gut microbiota is
composed of 1013 to 1014 microorganisms whose genome is
collectively at least 100 times the human genome [19]. More-
over, behind gut epithelia, bacteria colonize other specialized
epidermal surfaces like the ductal system of exocrine organs
and respiratory tract.

The human respiratory tract is the main portal of entry
for numerous microorganisms. Interestingly, gut and lung
microbiota are connected by a complex bidirectional axis
via lymphatic [20] and blood circulation, and modification
of one mucosal compartment can directly impact distant
mucosal site [21].

Recent high-depth metagenomic sequencing techniques
have changed our understanding of the complex microbiome
ecosystem enabling the identification and quantification of
individual bacterial strains and the correlation between
specific microbiome asset and disease status. More interest-
ing, wide efforts are now focused on how variations in these
populations may influence response to immunotherapy.

In this review, we discuss some of the major findings
depicting bacteria as crucial gatekeeper for the immune
response against tumor and their role as driver of immuno-
therapy efficacy in lung cancer.

2. Role of Commensal Bacteria in Cancer
Response to Immunotherapy

During early life, the immune system is broadly stimulated
with the first contact to microorganisms at gastrointestinal

and lung barriers [22]. This primary wave of microbial
exposure exerts a long-lasting effect on immune cell func-
tion [23].

Increasing evidence supports the idea of a dynamic inter-
action between immune cells, microbiota, and tumor micro-
environment. Gene expression analysis of tumors from
antibiotic-treated mice showed a downregulation of genes
related to inflammation, phagocytosis, antigen presentation,
and adaptive immune response. Moreover, microbiota dis-
ruption impairs the efficacy of CpG-oligonucleotide immu-
notherapy affecting myeloid-derived cell functions in the
tumor microenvironment [24].

Furthermore, it has been demonstrated that oral admin-
istration of Bifidobacterium improves response to anti-PD-
L1 antibody in mouse models of cancer by inducing dendritic
cell function and increasing CD8+ T cell accumulation in the
tumor microenvironment [25]. Microbiota composition has
also a key role in the immunostimulatory effects of Cytotoxic
T-Lymphocyte Antigen 4 (CTLA-4) blockade. In details,
Bacteroides species affect interleukin- (IL-) 12-dependent
Th1 immune response facilitating tumor control in mice
and patients [26].

A recent study analyzed baseline stool samples from
42 metastatic melanoma patients before immunotherapy
treatment demonstrating an abundance of Bifidobacterium
longum, Collinsella aerofaciens, and Enterococcus faecium
in responding patients. Fecal transplantation of germ-free
mice with stool from responding patients improved efficacy
of anti-PD-L1 therapy increasing immune-mediated tumor
control through the induction of T cell response [27].

The different microbiota composition between cancer
patients and healthy individuals not only demonstrated
diagnostic and prognostic potentials of special microbial
pathogens in cancer but also suggested the idea that the
manipulation of the microbiota could be a valid approach
for a better therapeutic response, acting on drug efficacy or
enhancing the immune system (discussed below).

The fecal microbiota transplantation (FMT) (i.e., the
transfer of fecal bacteria from a donor into a recipient) that
has been applied to clinical practice for the treatment of Clos-
tridium difficile infection [28], ulcerative colitis [29–31], and
irritable bowel syndrome [32] demonstrated an effect also on
the systemic immune response and particularly on the mech-
anisms of immune surveillance against LC (Routy et al.).
Routy and colleagues demonstrated that a specific host gut
microbiota might contribute to patient immunotherapy
response. Antibiotic-induced alterations of gut microbiota
during immunotherapy treatment dampens patient response
to the therapy. Interestingly, the FMT from patients sensitive
to immunotherapy is able to revert the immunotherapy
response in treatment-resistant patients. These findings lead
to intriguing hypothesis that the modification of gut microbi-
ota through FMT could enhance the response also in tumors
resistant to immunotherapy.

The overall results of these studies open the avenue to
propose a multiparameter prediction model integrating con-
ventional parameters, such as tumor genetic alterations, with
microbiota assessment to select patients most likely to
respond to immunotherapies.
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3. Effects of Gut Microbiota on LC

The role of the human gut microbiome is being increas-
ingly accepted. From 2015 to present, more than 158
papers on high-impact journals were published and several
research groups indicated the role of the gut microbiome
in different diseases with a particular emphasis on cancers
(https://www.ncbi.nlm.nih.gov/pubmed?term=(LUNG%20
CANCER%20MICROBIOME)%20AND%20(%222015%2F0
1%2F01%22%5BDate%20-%20Publication%5D%20%3A%
20%223000%22%5BDate%20-%20Publication%5D).

More than 100 trillion bacteria colonize the human intes-
tines [33]. The crosstalk between the gut microbiota and the
immune system contributes to the health status of the host.
The application of this concept in oncology field is particu-
larly important, and several recent papers highlighted the
role of gut microbiota as one of the regulatory factors affect-
ing both the tumor proliferation and the immunological
environment of cancer, determining thus the efficacy of the
treatment with the immune checkpoint inhibitors. The spe-
cific role of gut microbiota in supporting cancer development
and growth is yet unclear. However, there are compelling evi-
dences of the gut microbiota role in modulating both innate
and adaptive immune response and how this influences
tumor growth and immune escape [34]. Moreover, the gut
microbiota is able to regulate host immunity both locally
and at distal sites [35] modulating the expansion and dif-
ferentiation of T cell populations. Briefly, the pathogen-
associated molecular patterns (PAMPs) of the microorgan-
isms in the intestines are recognized by the Toll-like-
receptors (TLRs) on the membrane of intestinal epithelial
cells. The activation of TLRs leads to the activation of signal
cascade that finally results into the stimulation of immuno-
logical cells in the lamina propria. Dendritic cells and mac-
rophages, activated in mesenteric lymph nodes (MLN),
prime the naïve B and T cells to mature and differentiate,
producing, thus, IgA. Differentiated T cells assume both
profile of Th1 and/or Th17 proinflammatory cells activating
additional effector cells as neutrophils or anti-inflammatory
cells to control immune response [36–43]. Moreover, high
diversity of gut microbiome supports M1 macrophage and
Th1 lymphocyte differentiation, activation of helper/cyto-
toxic T cell, and upregulation of PD-1 expression on lym-
phocytes [44].

All these studies highlighted the potential of gut microbi-
ota manipulation in cancer treatment, especially in tumors
where the immunotherapy is currently adopted in clinical
practice such as the LC and melanoma.

In melanoma, PD-1 inhibitors produce long-lasting
responses in 30-40 percent of patients. However, these drugs
do not work in the other 60-70 percent of melanoma patients
for a multitude of reasons, including not having the right
microbes in the gut—a condition termed “intestinal dysbio-
sis.” Likewise, several phase III LC clinical trials revealed that
immunoblockade treatment leads to only approximately 20%
of patients’ overall objective response (OOR) and that
median duration of response is significantly heterogeneous
[45–47]. Recent studies demonstrated that gut microbiota
could modulate immunotherapy response. Indeed, gut com-

mensals such as B. thetaiotaomicron or B. fragilis are predic-
tive factors for anti-CTLA-4 treatment in a mouse melanoma
model [26].

It is therefore desirable to identify patients who would
benefit more from immunotherapy and to understand what
drives resistance in the patients who do not respond.

A study by Routy et al. proved that the gut microbiota
plays a critical role in the response to PD-1 blockade and
may have a prognostic value in LC. Moreover, the gut micro-
biota of patients who respond to immunotherapy with check-
point inhibitors was different from those who do not. In
particular, the authors identified an increased level of Akker-
mansia muciniphila (A. muciniphila) in patients who experi-
enced longer survival. They demonstrated that gutmicrobiota
not only was a predictor of response but also regulated the
efficacy of anti-PD1 in murine models. In fact, the fecal
microbiota transplantation from responder mice restored
PD-1 blockade sensibility in the same models. Interestingly,
the authors demonstrated that gutmicrobiome, and in partic-
ular A. muciniphila, influences efficacy of PD-1-based immu-
notherapy against epithelial tumors increasing the presence
of tumor-infiltrated CCR9+CXCR3+CD4+ T cells through a
IL-12-dependent signaling pathway [48].

A recent paper using data from 37 advanced NSCLC
patients receiving nivolumab enrolled in the study from the
clinical trials CheckMate 078 (NCT02613507) and Check-
Mate 870 (NCT03195491) demonstrated a strong correlation
between the level of gut microbiome diversity and anti-PD-1
efficacy in advanced NSCLC Chinese patients. The patients
with high gut microbiome diversity (reported as favorable
gut microbiome) exhibited an increase of memory T and
NK cell signatures in the peripheral blood samples. These
findings provide important implications for the prediction
of anti-PD-1 immunotherapy response in Chinese popula-
tion with NSCLC [49].

To date, a single study examined the association among
antibiotics and efficacy of immune checkpoint inhibitors.
In this retrospective analysis of the data from 90 NSCLC
patients treated (13 patients) or untreated (77 patients) with
antibiotics prior to nivolumab therapy as second or later line
of therapy, the authors demonstrated that antibiotic treat-
ment reduced significantly both Progression-Free Survival
(PFS) and OS. Although, in multivariate analysis, no statisti-
cally significant association was found between survival and
prior antibiotic use, a trend concerning the negative influ-
ence of antibiotic use was conveyed. These data, although
need further validations, confirmed that gut microbiota
could have an important role in shaping systemic immune
responses [50].

Botticelli and colleagues demonstrated that a specific gut
microbiome may influence the response to immunotherapy.
In particular, by using the NGS technique, the authors
showed that there are higher levels of Rikenellaceae, Prevo-
tella, Streptococcus, Lactobacillus, Bacteroides plebeius,
Oscillospira, and Enterobacteriaceae in the stool of NSCLC
patients than in healthy controls. Moreover, patients who
respond to nivolumab treatment had less abundance of
Ruminococcus bromii, Dialister, and Sutterella spp. than not
responders [51].
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The concept of immunomodulatory ability is also appli-
cable to the chemotherapy regimen able to regulate the
immune system. Cyclophosphamide is well known for its
antineoplastic and immunomodulating ability and was regis-
tered for early and advanced breast cancer. In a transgenic
tumor mouse model of autochthonous lung carcinogenesis,
this alkylating agent alters the composition of microbiota in
the small intestine inducing translocation of specific Gram-
positive bacteria, including Lactobacillus johnsonii (growing
in >40% cases), Lactobacillus murinus, and Enterococcus
hirae, into secondary lymphoid organs [52]. Here, the
Gram-positive bacteria stimulate the generation of a specific
subset of “pathogenic” T helper 17 (pTh17) cells and mem-
ory Th1 immune response. In germ-free or antibiotic-
treated animal models, the absence of these bacteria leads
to a reduction in pTh17 response and cyclophosphamide
tumor resistance. Adoptive transfer of pTh17 cells partially
restored the antitumor efficacy of cyclophosphamide. These
results suggest that the gut microbiota helps shape the anti-
cancer immune response in LC patients [53].

4. Effects of Lung Microbiota on LC

The lung is constantly exposed to microorganisms from the
air and the upper respiratory tract; therefore, it is not a “ster-
ile place” as previously believed. Acquisition of lung micro-
biome is a crucial event in newborn to protect the lung
from injuries [54]. Lung tissue hosts a unique microbiome
asset with less diversity, compared to the intestinal one, but
equally affected by drugs, disease, and eating habits, which
can create a selective pressure on reproducing communities.
The specific composition of the lung microbiome results
from the balance of three phenomena: microbial immigra-
tion, microbial elimination, and the relative reproduction
rates of its members [55].

Dysbiosis of lung microbiome ecosystem and the epi-
thelial integrity loss in heavy smokers could be the initial
cause of inflammation in chronic obstructive pulmonary
disease and LC [56]. A comparative analysis of 142 LC
patients and 33 healthy controls reveals a distinct lung
microbiome profile associated with tumor tissue [57].
Moreover, epidemiological evidence indicates a significant
association between prolonged antibiotic exposure and inci-
dence of LC [58].

Exacerbations of chronic lung disease have shown corre-
lation with microbiota disorder of the respiratory tract.
Respiratory dysbiosis is closely linked to a dysregulated host
immune system, which in turn further affects lung microen-
vironment promoting inflammation [59].

On the other hand, a recent study claims that depletion of
local commensal microbiota or blockade of the downstream
cellular/molecular immune mediators suppresses the devel-
opment of lung adenocarcinoma. By using the conditionally
genetically engineered mouse model (GEMM) of lung adeno-
carcinoma, the authors demonstrated that commensal bacte-
ria stimulate production of IL-1β and IL-23 from myeloid
cells via a Myd88-dependent pathway. This event leads to
proliferation and activation of tissue resident γδ T cells with
a consequent increased production of effector molecules,

such as IL-17, to promote inflammation and tumor cell pro-
liferation [60]. However, this study does not deep investigate
the specific strain composition of the lung microbiota
responsible for lung tumor development.

Many efforts have been focused on the discovery of bac-
terial diagnostic biomarkers for LC [61, 62].

These biomarker discovery studies often used saliva, spu-
tum, bronchoscopic samples, or bronchoalveolar lavage fluid
instead of direct lung biopsy, which is not performed on
healthy subjects. However, lung tissue remains the most
accurate sample to study lung microbiome alternations
[63]. A study evaluating saliva microbiota revealed that
bacterial profiles are significantly altered in LC patients
compared to those from control subjects. In particular,
Capnocytophaga, Selenomonas, and Veillonella were found
to be more abundant in both lung squamous cell carci-
noma and adenocarcinoma patients whereas Neisseria
was less abundant than in the controls [64].

Another study compared bronchial brushing samples
from cancerous site and contralateral noncancerous site of
24 LC patients and 18 healthy controls. The authors demon-
strated that LC-associated microbiota profile is extremely
divergent from that found in healthy subjects with a signifi-
cant decrease in microbial diversity. More interestingly, the
alterations of microbiota composition in unilateral lobe LC
patients are extended to the contralateral noncancerous site
suggesting a deep change of the whole lung microenviron-
ment, which is linked to the development of LC [65].

Although increasing evidence has highlighted the key
role of commensal microbiota in tumor-immune system
interaction and treatment response, the main efforts have
been focused on gut microbiota. Less is known on how lung
microbiota could affect antitumor immunity and immuno-
therapy response.

Evidence suggests that manipulation of the composition
of local flora may influence the ability of the host to generate
an immune response that could mount both local and distal
antitumor protective responses ameliorating the efficacy of
immunotherapy treatment.

To date, several interesting clinical trials are attempted
to study the role of lung microbiota on the efficacy of
immunotherapy-based treatment in LC (Table 1).

An ongoing observational clinical trial (NCT03688347)
at Iowa Institute of Human Genetics (Iowa, US) is currently
recruiting patients with advanced or recurrent LC (and other
solid tumors) that initiate a new line of immunotherapy,
either alone or in combination with chemotherapy, targeted
therapy, or other immunotherapy agents.

Recently, Stevenson et al. isolated and identified Entero-
coccus gallinarum MRx0518, a commensal Gram-positive
species, demonstrating the antitumor efficacy of this bacteria
strain in mouse models of different solid tumors, including
LC. MRx0518, and more specifically its flagellin, acts on both
the innate and the adaptive immune system showing strong
immunostimulating properties. Its inactivation resulted in
complete abrogation of the TLR5-mediated activation of
NF-κB [66, 67].

Based on these exciting results, the NCT03934827, a sin-
gle center, open label clinical trial, is aimed at studying
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MRx0518 in combination with pembrolizumab in patients
with LC and other solid tumors (at MD Anderson Cancer
Center Houston, Texas, US). This study will assess the
safety and tolerability and clinical benefit of MRx0518 in
combination with pembrolizumab through the collection
of adverse events.

Moreover, the NCT03168464 Interventional Clinical
Trial at Weill Medical College of Cornell University (New
York, US) is aimed at evaluating the association of ORR with
changes in the microbiome in NSCLC patients with metasta-
tic disease who have failed at least one prior treatment.

Although these studies are still in their infancy, they will
provide a valid contribution in the exact determination of the
role of the local microbiota in the response to immunothera-
peutic agents and, on the other hand, will provide both new

prognostic biomarkers and a powerful alternative tool to
modulate the patient outcome.

5. Gut-Lung Microbiota Axis

The interaction between gut microbiota and host cells in the
intestinal mucosa occurs in several ways. The pathogen-
associated molecular patterns (PAMPs), provided by gut
microbiota, serve as ligands for different Toll-like receptors
(TLRs) on the surface of the intestinal epithelial cells (IECs).
PAMPs from different microbiomal origin, such as lipopoly-
saccharide (LPS) or CpG ODN from bacteria, or viral
double-stranded RNA, or toxin from parasites and fungi
could activate TLR innate-adaptive immunity [68, 69]
(Figure 1). In a similar way, also lipoteichoic acid (LTA),
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Figure 1: Increasing evidence supports the idea of a dynamic influence between host and microbiota. The fine line between human health and
disease can be driven by friend (green) or foe (red) microbiota.We reported the main bacteria that could be responsible for the transition from
a health to a pathological status. Commensal microorganisms are required for the maturation, education, and function of the immune system.
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the main component of the Gram-positive cellular wall seems
to function as potent immune activator with a signaling sim-
ilar to the LPS activation pathway.

Indeed, the immune system through plasma cells and IgA
secretion into the lumen of the gut could regulate in turn
microbiota population [70]. Moreover, commensal bacteria
and their metabolites (i.e., short-chain fatty acids (SCFAs)
like butyrate, propionate, and acetate) directly stimulate IECs
regulating immune cells. SCFAs might regulate the immune
system through regulation of G-protein-coupled receptors
(GPRs) and histone deacetylase [71], modulating epithelial
and immune cell functions. Other cell types have also
emerged as targets of SCFAs, including monocytes, dendritic
cells, T cells, and intestinal epithelial cells [72].

In dendritic cells, treatment with SCFA butyrate is asso-
ciated with decreased expression of the proinflammatory
cytokines IL-12 and IFN-γ and increased expression of Th2
cytokines [72]. Some evidence suggests that butyrate may
regulate the ability of dendritic cells to present antigen and
to prime T cells [73].

The gastrointestinal and respiratory tracts, although
physically distant organs, are part of a shared mucosal
immune ecosystem named the gut-lung axis [74]. Gut micro-
biota dysbiosis has been implicated in several lung diseases.
Indeed, restoring microbiota in the gut of mice resulted in
reduced severity of pneumonia [75].

It has been hypothesized a bidirectional crosstalk
between the two microbiota entities which means that alter-
ation of one compartment could impact on the other one.

This concept opens the possibility to indirectly mod-
ify lung bacterial composition, which represents the pop-
ulation physically close to lung tumor microenvironment,
through gut microbiota modification strategies, such as
fecal transplantation.

The dynamic crosstalk between the two compartments
occurs through a direct translocation of bacteria from one
to the other site or through the release into the bloodstream
and the lymphatic system of bacteria-derived immunomodu-
latory molecules, which affect systemic immunity [75–80].

The massive crosstalk between the microbiota of gut-
lung axis and its decisive role in inflammation and against
lung infections could open to new therapeutic and immu-
nization strategies.

6. Conclusions

The straight interaction between microbiota and host epi-
thelial barrier is required for the maturation, education,
and function of the immune system impacting the host’s
health but also the power of immunotherapy to boost anti-
cancer response. The molecular crosstalk between the gut
and lung microbiota and anticancer immune regulation rep-
resents a novel area of research. Potentially, the microbiota
could modulate and eventually potentiate an immune
response by the release of proinflammatory cytokines,
metabolites, or nucleic acids, allowing a microbiota-based
selection of patients who could benefit from specific immu-
notherapy treatment.

However, microbiota composition differs widely accord-
ing to host genetics and racial characteristic as well as diet
and eating habits. These variables are closely related to geo-
graphical location, suggesting therefore the need of more
in-depth clinical research studies, looking at ethnic diversity
as well as eating habits and environment-related factors.

These substantial divergences in the basal microbiome
components of different study populations question the uni-
versality of the microbiome-based findings and recommend
taking into consideration more geographically tailored
approaches [81]. Because this research area is still in its
infancy, new efforts are necessary to determine the role of
the microbiota in the response to immunotherapeutic agents
and also to comprehensively illustrate the gut-lung axis and
its implications.
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