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Abstract: Rice (Oryza sativa L.) is an important food crop providing energy and nutrients for more
than half of the world population. It produces vast amounts of secondary metabolites. At least
276 secondary metabolites from rice have been identified in the past 50 years. They mainly include
phenolic acids, flavonoids, terpenoids, steroids, alkaloids, and their derivatives. These metabolites
exhibit many physiological functions, such as regulatory effects on rice growth and development,
disease-resistance promotion, anti-insect activity, and allelopathic effects, as well as various
kinds of biological activities such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory
properties. This review focuses on our knowledge of the structures, biological functions and activities,
biosynthesis, and metabolic regulation of rice secondary metabolites. Some considerations about
cheminformatics, metabolomics, genetic transformation, production, and applications related to the
secondary metabolites from rice are also discussed.
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1. Introduction

Rice (Oryza sativa L.), which belongs to the Gramineae family, has been consumed by humans
for almost 5000 years. Rice is a widely diffuse staple food, providing energy and nutrients for more
than half of the world population, especially in Asia [1]. The most common rice consumed by humans
is white rice (about 85%), and the rest is pigmented rice [2]. Furthermore, rice is a model plant for
molecular studies of monocotyledonous species [3]. There are diverse secondary metabolites produced
in rice. These metabolites are organ- and tissue-specific. For example, diterpenoid phytoalexins are
mainly present in the leaves, whereas phenolic acids, flavonoids, sterols, and triterpenoids are mainly
present in the bran [4]. Rice secondary metabolites play roles either as defense agents, by providing
disease resistance and exerting anti-nematodal, anti-insect, and allelopathic ativities against biotic
and abiotic stresses, or as plant growth regulators. They also show various kinds of biological
activities, such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory properties, which
are implicated in various health-promoting and disease-preventive effects. Rice metabolites mainly
include phenolic acids, flavonoids, terpenoids, steroids, alkaloids. Some metabolites such as phenolic
acids and flavonoids are also distributed in other plant species [5,6]. To our knowledge, many reviews
have discussed a specific topic of rice secondary metabolites [7–14], but no review has focused on
describing the whole variety of secondary metabolites of rice so far. Furthermore, significant advances
on rice secondary metabolism have been made recently based on genomic, biosynthesis regulation,
and metabolomic approaches [15–18]. In this review, we summarize and discuss the developments
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from studies on the structural diversity, biological functions, biosynthesis, and metabolic regulations
of rice secondary metabolites.

2. Structural Diversity and Roles of Rice Secondary Metabolites

Rice can accumulate a large number of secondary metabolites, such as phenolic acids, flavonoids,
terpenoids, steroids, and alkaloids. These molecules play various physiological and ecological roles
(i.e., antimicrobial, insecticidal, growth regulatory, and allelopathic activities). They also exhibit
features beneficial to humans, including cytotoxic, anti-tumor, anti-inflammatory, antioxidant, and
neuroprotective properties. For example, many phenolic acids, flavonoids, tocopherols, tocotrienols,
γ-oryzanol, and phytic acid from rice exhibit antioxidant activities [10].

2.1. Phenolic Acids and Their Biological Functions

Rice phenolic acids can be classified as soluble-free, soluble-conjugated, and insoluble-bound
forms. The insoluble-bound phenolic acids covalently boind to structural components of cells like
cellulose, hemicellulose, lignin, pectin, rod-shaped structural proteins, etc. [19]. The distribution of rice
phenolic acids exhibits varietal differences, and rice bran has the highest total phenolic acid content
among four different fractions of whole rice grain [20,21]. Overall, p-hydroxybenzoic acid (2), caffeic
acid (7), protocatechuic acid (10), ferulic acid (17/19), sinapic acid (27), syringic acid (30), and vanillic
acid (32) are present in the whole rice grain, and ferulic acid (17/19) is the most abundant phenolic
acid in the insoluble-bound fraction [22]. Normally, the pigmented rice contains phenolic acids with a
larger structural diversity and in higher content than the non-pigmented rice [2,13]. About 32 phenolic
acid analogues have be identified in rice. Rice phenolic acids and their biological activities are listed
in Table 1. The structures of rice phenolic acids are shown in Figure 1. Most rice phenolic acids have
antioxidant activities, though some of them have not been evaluated individually but only mixed with
other rice phenolic acids [20].

Zaupa et al. revealed that the main rice phenolic acids are protecatechuic acid (10), p-coumaric
acid (15), ferulic acid (17/19), sinapic acid (27), and vanillic acid (32) [23]. Ding et al. investigated
eight rice varieties of O. sativa sp. japonica and O. sativa sp. indica planted in different areas of China for
their phenolic acids distribution by using UPLC-MS method. A total of 12 phenolic compounds were
identified in all rice varieties. Protocatechuic acid (10), ferulic acid (17/19), gallic acid (24), and syringic
acid (30) were the dominant phenolic compounds in rice bran, while p-hydroxybenzaldehyde (1) was
the main phenolic acid in rice husk. Bran and husk fractions provide more than 90% of phenolic acids
and antioxidant activity of the whole rice plant. In addition, the rice subspecies japonica has significant
higher phenolic acids content and antioxidant activity than the indica subspecies [24]. Ferulic acid
(17/19) has also been found as the major phenolic compound in black rice bran, indicating the potential
use of black rice bran as a natural source of antioxidants [25].

Phenolic acids are considered to be natural antioxidants, being able to scavenge free radicals
that may increase oxidative stress and potentially damage large biological molecules such as lipids,
proteins, and nucleic acids [26]. Therefore, the phenolic acid content was positively correlated with
rice antioxidant capacity [27]. The development and utilization of phenolic acid analogues from rice
husk and bran are important for improving the functionality of rice by-products.

Some phenolic acids are released from rice roots as allelochemicals. The main phenolic acids in
the root exudates were identified as p-hydroxybenzoic (2), caffeic (7), p-coumaric (15), syringic (30),
and vanillic (32) acids [28]. As these phenolic acids are released at relatively low concentrations in the
soil and other plant species have a high level of tolerance against phenolic acids, they are considered
the least important allelochemicals in rice [8,29,30].
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Table 1. Phenolic acids and their biological activities.

Name Rice Part Used for Isolation Biological Activity and
Function Ref.

p-Hydroxybenzaldehyde (1) Husk and bran - [24]
Bran Antioxidant activity [31]

p-Hydroxybenzoic acid (2) Root exudate Allelopathic effect [30]
Husk and bran - [24]

p-Hydroxy methyl benzoate
glucoside (3) Bran Antioxidant activity [31]

p-Hydroxy phenyl acetaldehyde (4) Husk and bran - [24]
p-Hydroxy phenyl acetic acid (5) Husk and bran - [24]

2-Hydroxy 5-[(3S)-3-hydroxybutyl]
phenyl β-D-glucoside (HHPG) (6) Brans of purple rice

Inhibitory activity on
tunicamycin-induced

retinal damage
[32]

Caffeic acid (7) Endosperm and bran/embryo of indica variety Antioxidant activity [20]
Root exudate Allelopathic effect [30]

Husk and bran - [24]
Methyl caffeate (8) Bran Antioxidant activity [31]

Caffeoyl quinic acid methyl ester (9) Grains of brown rice - [33]
Protocatechuic acid (10) Endosperm and bran/embryo of indica variety Antioxidant activity [20]

Chlorogenic acid (11) Endosperm and bran/embryo of indica variety Antioxidant activity [20]
Cinnamic acid (12) Husk and bran - [24]

o-Coumaric acid (13) Endosperm and bran/embryo of indica variety Antioxidant activity [20]
Root exudate Allelopathic effect [30]

m-Coumaric acid (14) Grains - [23]
p-Coumaric acid (15) Grains - [23]

Grains of brown rice - [33]
3-O-p-Coumaroyl quinic acid (16) Grains of brown rice - [33]

Leaves - [34]
trans-Ferulic acid (17) Endosperm and bran/embryo of indica variety Antioxidant activity [20]

Grains - [23]
Black rice bran Antioxidant activity [25]
Husk and bran - [24]

Bran Antioxidant activity [31]
trans-Ferulic acid methyl ester (18) Bran Antioxidant activity [31]

cis-Ferulic acid (19) Bran Antioxidant activity [31]
cis-Ferulic acid methyl ester (20) Bran Antioxidant activity [31]

1,3-O-Diferuloylglycerol (21) Leaves - [34]
1-O-Feruloyl-β-D-glucose (22) Leaves - [34]
3-O-Feruloylquinic acid (23) Leaves - [34]

Gallic acid (24) Endosperm and bran/embryo of indica variety Antioxidant activity [20]
Husk and bran - [24]

m-Salicylic acid (25) Grains of brown rice - [33]
Salicylic acid

2-O-β-D-glucopyranoside (26) Leaves - [34]

Sinapic acid (27) Grains - [23]
1-O-Sinapoyl-β-D-glucose (28) Leaves - [34]

Syringaldehyde (29) Grains of brown rice - [33]
Syringic acid (30) Endosperm and bran/embryo of indica variety Antioxidant activity [20]

Root exudate Allelopathic effect [30]
Husk and bran - [24]

Grains of brown rice - [33]
Vanillic aldehyde (31) Bran Antioxidant activity [31]

Vanillic acid (32) Root exudate Allelopathic effect [30]
Husk and bran - [24]

Grains of brown rice - [33]
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2.2. Flavonoids and Their Biological Functions

According to the structural features, rice flavonoids can be classified as flavones (33~65),
flavonols (66~77), flavanones (or dihydroflavones, 78~83), flavanonols (84~87), flavanols (88, 89),
and anthocyanins (90~101), along with their glycosides. Rice flavonoids mainly have antioxidant
properties, though some of them have not been evaluated for their antioxidant activities [10]. Among
them, anthocyanins are mainly distributed in pigmented rice plants [2]. Rice flavonoids and their
biological activities are listed in Table 2. Their structures are shown in Figure 2.

Two apigenin C-glycosides schaftoside (45) and isoschaftoside (46) were identified in whole
rice leaves [35] and phloem [36]. The contents of both flavones were higher in the phloem of an
insect-resistant rice variety than in a susceptible variety, which suggested that schaftoside (45) and
isoschaftoside (46) in rice act as an antifeedant against brown planthopper (Nilaparvata lugens) [37].

Flavones 56~64 belong to flavonolignans. Both tricin 4′-O-(erythro-β-guaiacylglyceryl) ether (57)
and tricin 4′-O-(threo-β-guaiacylglyceryl) ether (58) from Njavara rice bran had cytotoxic activity and
induced apoptosis in multiple tumor cells by themitochondrial pathway, which indicated their possible
role as potential cytotoxic agents against cancer cells [38].

The flavonoids in rice include aglycones (i.e., quercetin, kaempferol and tricin) and their
glycosides. Eight flavonoids, i.e., brassicin (66), isorhamnetin-4′-O-β-D-glucopyranoside (67), brassicin-
4′-O-β-D-glucopyranoside (68), isorhamnetin-7-O-β-D-cellobioside (69), 3′-O-methyltaxifolin (84),
3′-O-methyltaxifolin-7-O-β-D-glucopyranoside (85), 3′-O-methyltaxifolin-4′-O-β-D-glucopyranoside
(86), and 3′-O-methyltaxifolin-5-O-β-D-glucopyranoside (87), were isolated from Oryza sativa sp.
japonica c.v. Hwa-Young. This cultivar has a high flavonoid content in the seeds and, particularly,
in the endosperm tissue [39].

Two flavones, i.e., O-glycosides 5,4′-dihydroxy-3′,5′-dimethoxy-7-O-β-glucopyranosylflavone (37)
and 7,4′-dihydroxy-3′,5′-dimethoxy-5-O-β-glucopyranosylflavone (38), were identified in allelopathic
rice seedlings. Only their aglycone, 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone (36), was found in the
soil. These two flavone O-glycosides were exuded from the rice roots to the rhizosphere and were then
transformed into their aglycone forms, which showed an allelopathic effect on associated weeds and
microbes [40,41].

Sakuranetin (81) is a flavanone-type phytoalexin in rice active against plant pathogens. Naringenin
(79) is considered the biosynthetic precursor of sakuranetin (81) in rice. The bioconversion of
naringenin (79) into sakuranetin (81) is catalyzed by naringenin 7-O-methyltransferase (OsNOMT)



Molecules 2018, 23, 3098 6 of 50

in rice leaves [42]. The antifungal activity of sakuranetin (81) was found to be higher than that of
naringenin (79) [43,44]. Very interestingly, sakuranetin (81) can be detoxificated into naringenin (79)
and sternbin (83) by the rice blast pathogen Magnaporthe oryzae [44] and can also be detoxificated into
naringenin (79), naringenin 7-O-β-D-xylopyranoside (80), and sakuranetin 4′-O-β-D-xylopyranoside
(82) by the rice sheath blight pathogen Rhizoctonia solani [45].

Sakuranetin (81) is not only a plant antibiotic but also a potential pharmaceutical agent that
induces adipogenesis in 3T3-L1 cells through enhanced expression of peroxisome proliferator-activated
receptor γ2, contributing to the maintenance of glucose homeostasis in animals [46] and exhibits
anti-inflammatory activity by inhibiting 5-lipoxygenase, which is involved in arachidonic acid
metabolism in animal cells [47], anti-mutagenic activity [48], anti-Helicobacter pylori activity
by inhibiting β-hydroxyacylacyl carrier protein dehydration [49], and antileishmanial and
antitrypanosomal activities [50]. Sakuranetin (81) strongly stimulated melanogenesis in B16BL6
melanoma cells via the ERK1/2 and PI3K–AKT signaling pathways, which led to the upregulation of
Tyr family genes, TRP1 and TRP2 [51].

Anthocyanins are widely distributed in black rice. Eight anthocyanins, i.e., cyanidin (90),
cyanidin 3-O-gentiobioside (91), cyanidin 3-O-glucoside (92), cyanidin 3-O-rutinoside (93), cyanidin
3-O-sambubioside (94), cyanidin 3,5-O-diglucoside (95), peonidin (100), and peonidin 3-O-glucoside
(101) were identified from the kernels of black rice by UPLC-Q-TOF-MS [52]. They showed obviously
antioxidant activities. The protective effects were mainly due to their free radical scavenging
capacity [52].

Table 2. Flavonoids and their biological activities.

Name Rice Part Used for
Isolation

Biological Activity and
Function Ref.

Flavones
Apigenin 6-C-α-L-arabinosyl-8-C-β-L-arabinoside (33) Leaves - [53]

Chrysoeriol 7-O-rutinoside (34) Grains of brown rice - [33]
Chrysoeriol 6-C-α-L-arabinosyl-8-C-β-L-arabinoside (35) Leaves - [53]

5,7,4′-Trihydroxy-3′,5′-dimethoxyflavone (36) Leaves Allelopathic activity;
antifungal activity [54,55]

Seedlings Allelopathic activity [41]
5,4′-Dihydroxy-3′,5′-dimethoxy-7-O-β-glucopyranosylflavone (37) Seedlings - [41]
7,4′-Dihydroxy-3′,5′-dimethoxy-5-O-β-glucopyranosylflavone (38) Seedlings - [41]

Isoscoparin 2-O-(6-(E)-feruloyl)-glucopyranoside (39) Leaves - [53]
Isoscoparin 2′′-O-(6′′′-(E)-p-coumaroyl)-glucopyranoside (40) Leaves - [53]

Isovitexin 2′′-O-(6′′′-(E)-feruloyl)-glucopyranoside (41) Leaves - [53]
Isovitexin 2′′-O-(6′′′-(E)-p-coumaroyl)-glucopyranoside (42) Leaves - [53]

Isoorientin 7,3′-dimethyl ether (43) Leaves - [53]
luteolin 6-C-(2′′-O-β-D-glucopyranosyl)-α-L-arabinoside (44) Leaves - [53]

Schaftoside (45) Leaves Antifeedant activity [35]
Isoschaftoside (46) Leaves Antifeedant activity [35]

Swertisin (47) Leaves - [53]

Tricin (48) Bran DPPH radical
scavenging activity [56]

Tricin 7-O-β-D-glucopyranoside (49) Leaves - [53]
Tricin 5-O-β-D-glucopyranoside (50) Leaves - [53]

Tricin 7-O-rutinoside (51) Leaves - [53]
Tricin 7-O-neohesperidoside (52) Leaves - [53]

Tricin 7-O-(2′′-O-β-D-glucopyranosyl)-β-D-glucuronopyranoside (53) Leaves - [53]
Tricin 7-O-(6′′-O-malonyl)-β-D-glucopyranoside (54) Leaves - [53]

Tricin 7-O-(6′′-(E)-sinapoyl)-β-D-glucopyranoside (55) Leaves - [53]
Tricin 4′-O-(threo-β-syringylglyceryl) ether

7′′-O-β-D-glucopyranoside (56) Leaves - [53]

Tricin 4′-O-(erythro-β-guaiacylglyceryl) ether (57) Bran DPPH radical
scavenging activity [56]

Bran
Cytotoxicity and

apoptosis induction in
multiple tumor cells

[38]

Tricin 4′-O-(threo-β-guaiacylglyceryl) ether (58) Bran DPPH radical
scavenging activity [56]
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Table 2. Cont.

Name Rice Part Used for Isolation Biological Activity and
Function Ref.

Bran
Cytotoxicity and apoptosis

induction in multiple tumor
cells

[38]

Tricin 4′-O-(erythro-β-guaiacylglyceryl) ether
7-O-β-D-glucopyranoside (59) Leaves - [53]

Tricin 4′-O-(threo-β-guaiacylglyceryl) ether
7-O-β-D-glucopyranoside (60) Leaves - [53]

Tricin 4′-O-(erythro-β-guaiacylglyceryl) ether
7′′-O-β-D-glucopyranoside (61) Leaves - [53]

Tricin 4′-O-(threo-β-guaiacylglyceryl) ether
7′′-O-β-D-glucopyranoside (62) Leaves - [53]

Tricin 4′-O-(erythro-β-guaiacylglyceryl) ether
9′′-O-β-D-glucopyranoside (63) Leaves - [53]

Tricin 4′-O-(threo-β-4-hydroxyphenylglyceryl) ether (64) Leaves - [53]
Tricin 7-O-rutinoside (65) Grains of brown rice - [33]

Flavonols
Brassicin (66) Grains of transgenic japonica Radical scavenging activity [39]

Brassicin-4′-O-β-D-glucopyranoside (67) Grains of transgenic japonica Radical scavenging activity [39]
Isorhamnetin-4′-O-β-D-glucopyranoside (68) Grains of transgenic japonica Radical scavenging activity [39]

Isorhamnetin-7-O-β-D-cellobioside (69) Grains of transgenic japonica Radical scavenging activity [39]
Kaempferol (70) Husk and bran - [24]
Myricetin (71) Rice flour - [57]
Quercetin (72) Rice flour - [57]

Quercetin 3-O-glucoside (73) Rice flour - [57]
Quercetin 3-O-galactoside = Hyperoside (74) Rice flour - [57]

Qucertin 3-O-rutinoside = Rutin (75) Rice flour - [57]
Syringetin 3-O-β-D-glucopyranoside (76) Leaves - [53]

Syringetin 3-O-rutinoside (77) Leaves - [53]

Flavanones
Hesperidin (78) Rice flour - [57]
Naringenin (79) Leaves - [42]

- Antifungal activity [43,44]
Rice flour - [57]

Rice fungal pathogen - [44,45]
Naringenin 7-O-β-D-xylopyranoside (80) Rice fungal pathogen - [45]

Sakuranetin (81) Leaves Antifungal activity [43,44]

Leaves Antibacterial and antifungal
activities [58]

Leaves Anti-Helicobacter pylori activity [49]

- Antileishmanial and
antitrypanosomal activities [50]

- Antioxidant activity [42]
- Anti-inflammatory activity [47]
- Anti-mutagenic activity [48]

- Induction of adipogenesis in
3T3-L1 cells [46]

- Induction of melanogenesis in
B16BL6 melanoma cells [51]

Sakuranetin 4′-O-β-D-xylopyranoside (82) Rice fungal pathogen - [45]
Sternbin (83) Rice fungal pathogen - [44]

Flavanonols
3′-O-Methyltaxifolin (84) Grains of transgenic japonica Radical scavenging activity [39]

3′-O-Methyltaxifolin-7-O-β-D-glucopyranoside (85) Grains of transgenic japonica Radical scavenging activity [39]
3′-O-Methyltaxifolin-4′-O-β-D-glucopyranoside (86) Grains of transgenic japonica Radical scavenging activity [39]
3′-O-Methyltaxifolin-5-O-β-D-glucopyranoside (87) Grains of transgenic japonica Radical scavenging activity [39]

Flavanols
Catechin (88) Rice flour - [57]

Epicatechin (89) Rice flour - [57]

Anthocyanins
Cyanidin (90) Bran - [59]

Black rice kernels Antioxidant activity [52]
Cyanidin 3-O-gentiobioside (91) Bran - [60]

-
Inhibitory activity on

tunicamycin-induced retinal
damage

[32]

Cyanidin 3-O-glucoside (92) Bran - [60]
Inhibitory activity on

tunicamycin-induced retinal
damage

[32]
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Table 2. Cont.

Name Rice Part Used for Isolation Biological Activity and
Function Ref.

Cyanidin 3-O-rutinoside (93) Kernels - [61]
Cyanidin 3-O-sambubioside (94) Black rice kernels Antioxidant activity [52]
Cyanidin 3,5-O-diglucoside (95) Kernels - [61]

Delphinidin (96) Bran - [59]
Malvidin (97) Bran - [59]

Pelargonidin (98) Bran - [59]
Pelargonidin 3,5-O-diglucoside (99) Pigmented rice Antioxidant activity [2]

Peonidin (100) Black rice kernels Antioxidant activity [52]
Peonidin 3-O-glucoside (101) Bran - [60]

-
Inhibitory activity on

tunicamycin-induced retinal
damage

[32]

Black rice kernels Antioxidant activity [52]
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2.3. Terpenoids and Their Biological Functions

Rice terpenoids include monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids.
Some monoterpenoids and sesquiterpenoids are volatile components and are often distributed in
rice leaves. Rice diterpenoids play roles as phytohormones and phytoalexins. The triterpenoids are
usually distributed in rice bran. The monoterpenoids, sesquiterpenoids, and triterpenoids usually play
functions as allelochemicals.
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2.3.1. Monoterpenoids and Their Biological Functions

Monoterpenoids are mainly volatile compounds which confer rice its good aroma character.
They can be extracted from the headspace of some rice bran samples by solid-phase microextraction
(SPME). At least 18 monoterpenoids have been identified in rice. Their names and biological activities
are listed in Table 3. Their structures are shown in Figure 3.

Rice monoterpenoids are synthesized by various types of terpene synthases (TPSs), such as
OsTPS20 and OsTPS24. These TPSs contain a transit peptide for localization in the chloroplasts
where monoterpenes are biosynthesized from geranyl diphosphate (GPP) by TPSs via the
2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. TPSs can be induced by jasmonic acid (JA).
The amount of γ-terpinene (117) increased after JA treatment. γ-Terpinene (117) had significant
antibacterial activity against Xoo. However, it did not show significant antifungal activity against the
rice blast pathogen. The antibacterial mechanism of γ-terpinene (117) against Xoo involved damage to
bacterial cell membranes [62].

Monoterpenes (S)-limonene (107), myrcene (111), α-pinene (113), sabinene (115), α-terpinene
(116), and α-thujene (119) were detected from one-week-old Xoo-infected rice seedlings by the method
of solid-phase microextraction-GC-MS. However, only (S)-limonene (107) severely inhibited Xoo
growth, which suggests that (S)-limonene (107) plays a significant role in suppressing Xoo growth in
rice seedlings [63].

Many volatile monoterpenoids including linalool (108) were accumulated in response to the
exogenous application of JA. The xpression of linalool synthase gene was upregulated by JA. Vapour
treatment with linalool (108) induced resistance to Xoo. The transgenic rice plants overexpressing
linalool synthase gene were more resistant to Xoo, which suggests that linalool (108) plays an important
role in JA-induced resistance to Xoo [64].

Table 3. Monoterpenoids and their biological activities.

Name Rice Part Used for Isolation Biological Activity and Function Ref.

Camphene (102) Bran - [65]
Camphor (103) Bran - [65]
Carveol (104) Bran - [65]

1,4-Cineol (105) Bran - [65]
Fenchyl acetate (106) Bran - [65]
(S)-Limonene (107) Leaves - [66]

Bran - [65]
Seedlings Antibacterial activity on Xoo [63]

Linalool (108) Leaves - [66]
Leaves Resistance induction to Xoo [64]

cis-Linalool oxide (109) Bran - [65]
trans-Linalool oxide (110) Bran - [65]

Myrcene (111) Seedlings - [63]
Bran - [65]

trans-β-Ocimene (112) Bran - [65]
α-Pinene (113) Seedlings - [63]
β-Pinene (114) Bran - [65]
Sabinene (115) Seedlings - [63]

Bran - [65]
α-Terpinene (116) Seedlings - [63]
γ-Terpinene (117) Leaves Antibacterial activity on Xoo [62]

Terpinen-4-ol (118) Bran - [65]
α-Thujene (119) Seedlings - [63]
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2.3.2. Sesquiterpenoids and Their Biological Functions

Sesquiterpenoids are also volatile components which contribute to the aroma quality of rice.
They can be analyzed and identified by GC and GC-MS. The relative content of sesquiterpenoids was
much lower, on average, than that of monoterpenoids in rice. Sesquiterpenoids are usually produced
and released from wounds or microbe-infected sites. They act as signaling molecules that induce
defense against tissue damage caused by herbivores or plant pathogens [67]. Rice sesquiterpenoids
and their biological activities are listed in Table 4. Their structures are shown in Figure 4.

Sesquiterpenes are biosynthesized from farnesyl diphosphate (FPP) by TPSs via the mevalonate
(MVA) pathway in the cytoplasm. Rice terpene synthase 18 was found to localize in the cytoplasm and
synthesized the sesquiterpenes (E)-nerolidol (139) and (E)-β-farnesene (132), whose amounts increased
after JA treatment. (E)-Nerolidol (139) had significant antibacterial activity against Xoo [68]. Rice
sesquiterpenoids and their biological activities are listed in Table 4.
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Table 4. Sesquiterpenoids and their biological activities and functions.

Name Rice Part Used for Isolation Biological Activity and Function Ref.

Abscisic acid (120) Whole rice plant Regulation of growth and
development [69]

(Z)-α-Bergamotene (121) Leaves - [66]
β-Bisabolene (122) Bran - [65]

(E)-γ-Bisabolene (123) Leaves - [66]
α-Cadinene (124) Leaves - [66]

β-Caryophyllene (125) Leaves - [66]
Bran - [65]

α-Copaene (126) Leaves - [66]
Bran - [65]

Seedlings - [63]
α-Curcumene (127) Leaves [66]
γ-Curcumene (128) Leaves [66]
Cyclosativene (129) Seedlings - [63]
α-Elemene (130) Bran - [65]
β-Elemene (131) Seedlings - [63]

(E)-β-Farnesene (132) Leaves - [68]
Germacrene D (133) Leaves [66]
α-Gurjunene (134) Bran - [65]
β-Gurjunene (135) Leaves [66]
α-Humulene (136) Leaves [66]

Italicene (137) Leaves [66]
γ-Muurolene (138) Leaves [66]
(E)-Nerolidol (139) Leaves Antibacterial activity against Xoo [68]

7-epi-α-Selinene (140) Bran - [65]
Valencene (141) Leaves - [66]

Viridiflorene (142) Leaves - [66]
α-Ylangene (143) Bran - [65]

α-Zingiberene (144) Leaves - [66]
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2.3.3. Diterpenoids and Their Biological Functions

Almost all rice diterpenoids are members of the labdane-related superfamily, which includes
not only phytohormone gibberellins (GAs) but also phytoalexins (i.e., phytocassanes, oryzalides,
and oryzalexins), participate in the defense against pathogens, and are allelochemicals (i.e.,
momilactone B) inhibiting the growth of other plant species. Rice diterpenoids and their biological
activities are listed in Table 5. Their structures are shown in Figure 5.

The major endogenous GA in rice was identified as GA19 (147). Other GA analogs are GA1 (145)
and GA4 (146). The level of active Gas, such as GA1 (145), may be regulated by the rate of biosynthesis
of GA19 (147) or its metabolic conversion [70].

Up to now, 37 diterpenoid-type phytoalexin analogues have been identified from rice plants.
They have been further classified into five subtypes according to their biosynthetic pathways and
structural characters [17]. The first one (148~153) is the pimaradiene type which mainly includes
momilactones A (148) and B (149) [71] and 9β-pimara-7,15-diene-3β,6β,19-triol (153) [72]. The second
subtype (154~173) is the ent-sandaracopimaradiene type which mainly includes oryzalexins A~F
(163~168) [73–79]. The third one is the stemarene type that contains oryzalexin S (174) [44] and
stemar-13-en-2α-ol (175) [72]. The fourth one is the ent-cassadiene type, containing phytocassanes A~F
(176~181) [72,80–82]. The fifth one is the casbene type, including 5-deoxo-ent-10-oxodeprssin (182) [83],
5-dihydro-ent-10-oxodepressin (183) [83], and ent-10-oxodepressin (184) [84].
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A few oryzalide-related compounds were isolated from the leaves of a cultivar resistant
to the Xoo. They were identified as ent-15,16-epoxy-2,3-dihydroxy-kaurane (154) [85], ent-2,3,15-
trihydroxy-kaurane (155) [85], ent-15,16-epoxy-kauran-3-one (156) [85], oryzadione (157) [86],
ent-15,16-epoxy-3β-hydroxy-kauran-2-one (158) [86], ent-15,16-epoxy-3-oxa-kauran-2-one (159) [86],
ent-15,16-epoxy-3β-myristoyloxy-kauran-2-one (160) [86], ent-15,16-epoxy-3α-palmitoyloxy-kauran-2-one
(161) [86], ent-15,16-epoxy-3β-palmitoyloxy-kauran-2-one (162) [86], oryzalide A (163) [87,88], oryzalide
B (164) [88], oryzalic acid A (169) [88], and oryzalic acid B (170) [85]. In contrast to typical diterpene
phytoalexins, the accumulation of oryzalide-related comounds is only moderately induced by Xoo
infection [89].

Three compounds, i.e., 9β-pimara-7,15-diene-3β,6β,19-triol (153), stemar-13-en-2α-ol (175), and
phytocassane F (181) were accumulated following an infection by the rice blast pathogen M. oryzae.
9β-pimara-7,15-diene-3β,6β,19-triol (153) and stemar-13-en-2α-ol (175) exhibited weak antifungal
activity and may be the biosynthetic intermediates of rice phytoalexins momilactones and oryzalexin
S (174), respectively. Phytocassane F (181) exhibited relatively high inhibitory activity against the
mycelial growth of M. oryzae, to the same extent as the known phytoalexin phytocassane A (176) [72].

Some diterpenoids such as momilactones A (148) and B (149) have their obvious allelopathic
effects. Momilactones A (148) and B (149) mainly distribute in rice husks, leaves, seedlings, and straw.
They function as either rice defense systems against pathogens and insects or growth inhibitors in
seed dormancy [90]. Both momilacontes A (148) and B (149) inhibited the growth of barnyard grass
(Echinochloa crus-galli) and Echinochloa colonum, the most noxious weeds in rice field, at concentrations
greater than 1 and 10 µM, respectively. Momilactone B (149) exhibited greater growth inhibitory
activity than momilactone A (148) [91]. Momilactone B (149) was preferentially secreted from the rice
roots into the neighboring environment over the entire life cycle at phytotoxic levels. Momilaconte B
(149) seems to account for the majority of rice allelopathy, while momilactone A (148) accumulates
to higher levels in the plant upon infection. Interestingly, both momilactones A (148) and B (149)
inhibited root and shoot growth of rice seedlings only at concentrations greater than 100 µM and 300
µM, respectively. Therefore, the ability of momilactones A (148) and B (149) to suppress the growth
of rice seedlings was much lower than their effect on E. crus-galli and E. colonum, with no visible
damage to rice seedlings exerted by momilactones A (148) and B (149) at levels that were cytotoxic
to other plant species [91]. Selective removal of the momilactones from the complex mixture of rice
root exudates significantly reduced allelopathy, which demonstrated that momilactones served as
allelochemicals [8,92].

Table 5. Diterpenoids and their biological activities.

Name Rice Part Used for Isolation Biological Activity and Function Ref.

Phytohormone gibberellins
Gibberellin A1 (145) Whole plant Growth-promoting activity [70]
Gibberellin A4 (146) Whole plant Growth-promoting activity [70]
Gibberellin A19 (147) Whole plant Growth-promoting activity [70]

Pimaradiene-type diterpenoids
Momilactone A (148) Coleoptiles Antifungal activity [71]

Bran Growth inhibitory activity on rice roots [90]

Bran Inhibitory activities on seed germination
and growth of barnyard grass [93]

Root exudates Allelopathy effect [91]
Momilactone B (149) Coleoptiles Antifungal activity [71]

Seedlings Growth inhibitory activity on rice roots [90,92]
Seedlings Allelopathic effects [40]

Bran Inhibitory activities on seed germination
and growth of barnyard grass [93]

Root exudates Allelopathy effect [91]
Momilactone C (150) Bran Weak growth inhibitory activity [94]
Momilactone D (151) Roots - [95]
Momilactone E (152) Roots - [95]

9β-Pimara-7,15-diene-3β,6β,19-triol (153) Leaves Weak antifungal activity [72]
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Table 5. Cont.

Name Rice Part Used for Isolation Biological Activity and Function Ref.

ent-Sandaracopimaradiene-type diterpenoids

ent-15,16-Epoxy-2,3-dihydroxy- kaurane (154) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [85]

ent-2,3,15-Trihydroxy- kaurane (155) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [85]

ent-15,16-Epoxy-kauran-3-one (156) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [85]

ent-15,16-Epoxy-kauran-2,3-dione = Oryzadione
(157)

Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [86]

ent-15,16-Epoxy-3β-hydroxy-kauran-2-one (158) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [86]

ent-15,16-Epoxy-3-oxa-kauran-2-one (159) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [86]

ent-15,16-Epoxy-3β-myristoyloxy-kauran-2-one
(160)

Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [86]

ent-15,16-Epoxy-3α-palmitoyloxy-kauran-2-one
(161)

Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [86]

ent-15,16-Epoxy-3β-palmitoyloxy-kauran-2-one
(162)

Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [86]

Oryzalexin A (163) Leaves
Inhibitory activity on spore

germination and germ tube growth of
Ochrobactrum oryzae

[73,76]

Roots - [95]

Oryzalexin B (164) Leaves
Inhibitory activity on spore

germination and germ tube growth of
O. oryzae

[75,76]

Oryzalexin C (165) Leaves
Inhibitory activity on spore

germination and germ tube growth of
O. oryzae

[75,76]

Oryzalexin D(166) Leaves Inhibitory activity on spore
germination of Magnaporthe Oryzae [77]

Oryzalexin E (167) Leaves Inhibitory activity on spore
germination of M. Oryzae [78]

Oyzalexin F (168) Leaves Antimicrobial activity [79]

Oryzalic acid A (169) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [88]

Oryzalic acid B = ent-15-Hydroxy-2,3-secokauren-
2,3-dioic acid (170)

Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [85]

Oryzalide A =
ent-15,16-Epoxy-1α-hydroxy-2-oxa-kauran-3-one

(171)

Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [87,88]

Oryzalide B (172) Leaves of a bacterial leaf
blight-resistant cultivar Antibacterial activity [88]

Sandaracopimaradien-3-one (173) Roots - [95]

Stemarene-type diterpenoids
Oryzalexin S (174) Leaves Antifungal activity [96,97]

Stemar-13-en-2α-ol (175) Leaves Weak antifungal activity [72]

ent-Cassadiene-type diterpenoids

Phytocassane A (176)
Leaves infected with M. oryzae;
stems infected with Rhizoctonia

Solani
Antifungal activity [80]

Phytocassane B (177) Leaves infected with M. oryzae;
stems infected with R. Solani Antifungal activity [80]

Phytocassane C (178) Leaves infected with M. oryzae;
stems infected with R. Solani Antifungal activity [80]

Phytocassane D (179) Leaves infected with M. oryzae;
stems infected with R. Solani Antifungal activity [80]

Phytocassane E (180) Cultured rice cells
Inhibition activity on spore

germination and germ tube growth of
M. oryzae

[81]

Phytocassane F (181) Leaves Antifungal activity [72]

Casbene-type diterpenoids
5-Deoxo-ent-10-oxodepressin (182) Leaves Antifungal activity [83]

5-Dihydro-ent-10-oxodepressin (183) Leaves Antifungal activity [83]
ent-10-Oxodepressin (184) Leaves Antifungal activity [84]
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Figure 5. Structures of the diterpenoids isolated from rice.

2.3.4. Triterpenoids and Their Biological Functions

Triterpenoids are usually distributed in rice bran. Eight hydroxylated triterpene alcohol
ferulates (188~190, 193, 194, 196, 197, 200) were isolated from rice bran. They showed moderate
cytotoxic activity [98,99]. The seed coats (or bran) usually contain large amounts of bioactive
metabolites. This was also observed for the seed coats of quinoa (Chenopodium quinoa), where
there were various triterpenoids distributed. Quinoa triterpenoids showed antimicrobial and
molluscicidal activities [100]. There are few reports about the physiological and ecological functions
of rice triterpenoids. The aglycones of rice triterpenoids are citrostadienol (185), cycloartenol (191),
cycloeucalenol (198), gramisterol (201), and lupeol (205). On the basis of the biosynthetic pathway,
citrostadienol (185), cycloeucalenol (198), gramisterol (201), and their derivatives are considered
nortriterpenoids. Rice triterpenoids and their biological activities are listed in Table 6. Their structures
are shown in Figure 6.

γ-Oryzanol is a mixture of triterpene and sterol ferulates extracted from rice bran [101]. In addition
to its antioxidant activity, γ-oryzanol is often associated with cholesterol-lowering, anti-inflammatory,
anti-cancer, and anti-diabetic properties [102]. The mixture of triterpene alcohols and sterols, with its
components such as cycloartenol (191) and 24-methylene cycloartanol (195) from rice bran, can lower
postpradial hyperglyceimia in mice and humans [103].

The main triterpene ferulates are cycloartenol ferulate (193/194) and 24-methylenecycloartanol
ferulate (196/197). Both cycloeucalenol trans-ferulate (194) and 24-methylenecycloartanol
cis-ferulate (196) showed anti-inflammatory activity in mice with inflammation induced by
12-O-tetradecanoylphorbol-13-acetate [104].
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Table 6. Triterpenoids and their biological activities.

Name Rice Part Used for Isolation Biological Activity and
Function Ref.

Citrostadienol (185) Bran - [105]
Bran Anti-inflammatory activity [104]

Citrostadienol cis-ferulate (186) Bran Anti-inflammatory activity [104]
Citrostadienol trans-ferulate (187) Bran Anti-inflammatory activity [104]

(24S)-Cycloart-25-ene-3β,24-diol-3β-trans-ferulate (188) Bran Moderate cytotoxic activity [99]
(24R)-Cycloart-25-ene-3β,24-diol-3β-trans-ferulate (189) Bran Moderate cytotoxic activity [99]

Cycloart-23Z-ene-3β,25-diol-3β-trans-ferulate (190) Bran Moderate cytotoxic activity [99]
Cycloartenol (191) Bran - [105]

Bran Lowering postpradial
hyperglyceimia [103]

Cycloartenol trans-caffeate (192) Seeds - [106]
Cycloartenol cis-ferulate (193) Bran - [98]

Cycloartanol trans-ferulate (194) Bran - [98]
Bran Moderate cytotoxic activity [99]

24-Methylene cycloartanol (195) Bran of black non-glutinous rice Anti-cancer activity [107]

Bran Lowering postpradial
hyperglyceimia [103]

24-Methylene cycloartanol cis-ferulate (196) Bran - [98]
Bran Anti-inflammatory activity [104]

24-Methylene cycloartanol trans-ferulate (197) Bran - [98]
Bran Moderate cytotoxic activity [99]

Cycloeucalenol (198) Bran of black non-glutinous rice Anti-cancer activity [107]
Cycloeucalenol cis-ferulate (199) Bran Antioxidant activity [31]

Cycloeucalenol trans-ferulate (200) Bran - [98]
Bran Anti-inflammatory activity [104]
Bran Antioxidant activity [31]

Gramisterol (201) Bran of black non-glutinous rice Anti-cancer activity [107]
Gramisterol cis-ferulate (202) Bran Anti-inflammatory activity [104]

Gramisterol trans-ferulate (203) Bran Anti-inflammatory activity [104]
Lanast-7,9(11)-dien-3α,15α-diol-3α-D-glucofuranoside

(204) Hulls Herbicidal activity [108]

Lupeol (205) Bran of black non-glutinous rice Anti-cancer activity [107]
Lupenone (206) Bran of black non-glutinous rice Anti-cancer activity [107]

2.4. Steroids and Their Biological Functions

Plant steroids, generally termed phytosterols, are integral components of the membrane lipid
bilayer in plants. They regulate membrane fluidity, influencing membrane’s properties, functions, and
structure. An increase in the accumulation of sterols, namely, campesterol (209), β-sitosterol (225), and



Molecules 2018, 23, 3098 21 of 50

stigmasterol (241) was observed in rice as seedlings matured. These molecules are considered to have
a role in drought stress tolerance in rice [109]. Steroids are usually distributed in the rice bran [107,110].
To date, 37 steroids have been identified from rice plants. Their names and biological activities are
listed in Table 7. Their structures are shown in Figure 7.Molecules 2018, 23, 98 26 of 53 
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Figure 7. Structures of the steroids isolated from rice.

Sterol ferulates are the main components of γ-oryzanol, which is isolated from rice bran. The main
sterol ferulates are campesterol trans-ferulate (215) and sitosterol trans-ferulate (229) [102].

Some sterylglycosides (231~235), such as mono-, di-, tri-, tetra-, and pentaglycosylsterols, have
been isolated from rice bran. The sugar component is glucose, and the glucose units are linked by
β1,4-bonds [111,112].

Stigmastanol-3β-p-butanoxy dihydrocoumaroate (238) and stigmastanol-3β-p-glyceroxy
dihydrocoumaroate (239) were isolated from rice hulls. Of them, stigmastanol-3β-p-butanoxy
dihydrocoumaroate (238) showed weak growth inhibitory activity toward duckweed (Lemna
pausicostata) [108].
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Table 7. Steroids and their biological activities.

Name Rice Part Used for Isolation Biological Activity and Function Ref.

∆5-Avenasterol (207) Germinating seeds - [106]
∆7-Avenasterol (208) Germinating seeds - [106]
Campestanol (209) Germinating seeds - [106]

Campestanol trans-ferulate (210) Bran - [98]
∆7-Campestenol (211) Germinating seeds - [106]

Campesterol (212) Bran - [107]
Seedlings Drought stress tolerance [109]

Campesterol trans-caffeate (213) Bran - [98]
∆7-Campesterol trans-ferulate (214) Bran - [99]

Campesterol trans-ferulate (215) Bran - [99]
Cholesterol (216) Germinating seeds - [106]

24-Methyl cholesterol cis-ferulate (217) Bran Anti-inflammatory activity [105]
24-Methylene cholesterol cis-ferulate (218) Bran Anti-inflammatory activity [104]

24-Methylene cholesterol trans-ferulate (219) Bran - [98]
Bran Anti-inflammatory activity [104]

24-Methylene ergosta-5-en-3β-ol (220) Bran - [107]
24-Methylene ergosta-7-en-3β-ol (221) Bran - [107]

Fucosterol (222) Bran - [107]
Schleicheol 2 (223) Bran - [110]

Sitostanol (224) Germinating seeds - [106]
Sitosterol = β-Sitosterol (225) Bran - [105,107]

Seedlings Drought stress tolerance [109]
7α-Hydroxy sitosterol (226) Bran - [110]
7β-Hydroxy sitosterol (227) Bran - [110]
Sitosterol cis-ferulate (228) Bran - [98]

Bran Anti-inflammatory activity [104]
Sitosterol trans-ferulate (229) Bran - [98]

∆7-Sitosterol trans-ferulate (230) Bran - [98]
D-Glucopyranosyl-(β1→4)-D-glucopyranosyl-(β1→3′)-β-sitosterol (231) Bran (Hulls) - [111]
D-Glucopyranosyl-(β1→3)-D-glucopyranosyl-(β1→3′)-β-sitosterol (232) Bran (Hulls) - [111]

D-Glucopyranosyl-(β1→4)-D-glucopyranosyl-(β1→4)-D-glucopyranosyl-(β1→3′)-β-sitosterol (233) Bran (Hulls) - [111]
Cellotetraosylsitosterol (234) Bran - [112]
Cellopentaosylsitosterol (235) Bran - [112]
Stigmastanol cis-ferulate (236) Bran Anti-inflammatory activity [104]

Stigmastanol trans-ferulate (237) Bran [98]
Bran Anti-inflammatory activity [104]

Stigmastanol-3β-p-butanoxy dihydrocoumaroate (238) Hulls Weak herbicidal activity [108]
Stigmastanol-3β-p-glyceroxy dihydrocoumaroate (239) Hulls - [108]

∆7-Stigmastenol (240) Germinating seeds - [106]
Stigmasterol (241) Bran - [105,107]

Seedlings Drought stress tolerance [109]
Stigmasterol cis-ferulate (242) Bran Anti-inflammatory activity [104]

Stigmasterol trans-ferulate (243) Bran - [98]
Bran Anti-inflammatory activity [104]
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2.5. Alkaloids and Their Biological Functions

2-Acetyl-1-pyrroline (2AP, 248) is an important nitrogen-containing aroma compound that gives
aromatic rice its characteristic flavor [113]. The concentration of 2AP (248) in uncooked Khao Dawk
Mali 105 brown rice was quantitatively analyzed by capillary GC and found to be 0.34 µg/g [114].
This compound also occurs naturally in some other plants such as Pandanus amaryllifolius leaves and
Vallaris glabra flowers [14]. Proline was proved to be the precursor for the biosynthesis of 2AP (248) in
aromatic rice [115].

The main alkaloids in rice are phenylamides containing an indole ring. Rice plants
accumulate phenylamides in response to a pathogen attack. If rice leaves are infected with the
pathogens Cochliobolus miyabeanus and Xanthomonas oryzae, phenylamides are induced. They include
N-feruloylagmatine (FerAgm, 244), N-feruloylputrescine (FerPut, 245), N-benzoylserotonin (BenSer,
249), N-benzoytryptamine (BenTry, 250), N-benzoyltyramine (BenTyr, 251), N-trans-cinnamoylserotonin
(CinSer, 252), N-trans-cinnamoyltryptamine (253), N-trans-cinnamoyltyramine (CinTyr, 254),
N-p-coumaroylserotonin (CouSer, 255), and N-feruloylserotonin (FerSer, 256). Some of these
phenylamides displayed antimicrobial activity against C. miyabeaunus and X. oryzae, indicating that they
are phytoalexins [116]. Rice alkaloids and their biological activities are listed in Table 8. Their structures
are shown in Figure 8.

Table 8. Alkaloids and their biological activities.

Name Rice Part Used for
Isolation

Biological Activity and
function Ref.

N-Feruloylagmatine (244) Leaves Antimicrobial activity [116]
N-Feruloylputrescine (245) Leaves Antimicrobial activity [116]

Kynurenic acid (246) Leaves - [34]
Lycoperodine-1 (247) Leaves - [34]

2-Acetyl-1-pyrroline (248) Grains - [113]
N-Benzoylserotonin (249) Leaves Antimicrobial activity [116]

N-Benzoyltryptamine (250) Leaves Antimicrobial activity [116]
Leaves Antibacterial activity [58]

N-Benzoyltyramine (251) Leaves Antimicrobial activity [116]
N-trans-Cinnamoylserotonin (252) Leaves Antimicrobial activity [116]

N-trans-Cinnamoyltryptamine (253) Leaves Antimicrobial activity [116]
Leaves Antibacterial activity [58]

N-trans-Cinnamoyltyramine (254) Whole rice plant Allelopathic activity;
antifungal activity [117]

Leaves Antibacterial activity [58]
N-p-Coumaroylserotonin (255) Leaves Antimicrobial activity [116]

Leaves Antibacterial activity [58]
N-Feruloylserotonin (256) Leaves Antimicrobial activity [116]

N-Feruloyltryptamine (257) Leaves - [118]

Indole 3-acetic acid (258) Whole rice plant Regulation on growth
and development [119]

Serotonin = 5-Hydroxytryptamine (259) Leaves - [118]
Tryptamine (260) Leaves - [118]
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2.6. Other Metabolites

Other secondary metabolites in rice include anthracenes (263~265), tocopherols (269~272),
and tocotrienols (273~276). Their names and biological activities are listed in Table 9. Their structures
are shown in Figure 9.

(E,E)-2,4-Heptadienal (261) is a JA-responsive volatile component in rice plants. (E,E)-2,4-
Heptadienal (261) has both antibacterial and antifungal activities against Xoo and M. oryzae. In addition,
it is also toxic to rice plants. (E,E)-2,4-Heptadienal (261) is essential for rice survival against pathogen
attacks [120].

Three anthracene derivatives, i.e., orizaanthracenol (1-methoxyanthracen-2-ol, 263),
1-hydroxy-7-((2S,3R,4R,5S)-2′′,3′′,4′′-trihydroxy-5′′-(hydroxymethyl)tetrahydro-2H-pyran-1-yloxy)
anthracen-2-yl 3′,7′-dimethyloctanoate (264), and 1-hydroxy-7-((2S,3R,4R,5S)-2′′,3′′,4′′-trihydroxy-5′′

-(hydroxymethyl)tetrahydro-2H-pyran-1-yloxy)anthracen-2-yl 3′,7′,11′,15′,19′-pentamethyltricosanoate
(265), have been isolated from the rice hulls of O. sativa. Among the three compounds, orizaanthracenol
(263) exhibited the highest inhibitory activity with respect to the germination of radish (Raphanus
sativus) seeds, at 40 µg/mL [121].
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(Z)-3-Hexen-1-ol (262) and other volatiles are released from elicitors (CuCl2, JA, UV, Met, and
chitosan oligosaccharide)-treated and rice blast fungus-infested rice leaves [66].

(5S)-5-(Acetyloxy)-3-(1-methylenthyl)-2-cyclohexen-1-one (also named 3-isopropyl-5-
acetoxycyclohexene-2-one-1 (266) is released from rice seedlings. It inhibited the growth of
weeds E. crus-galli and Cyperus difformis [55].

cis-12-oxo-Phytodienoic acid (267) stimulated rice defense response to the brown planthopper
(Nilaparvata lungens), a piercing-sucking insect pest of rice. This compound also stimulated the
resistance of radish (R. sativus) seedlings to green peach aphid Myzus persicai which indicates the
potential application of cis-12-oxo-phytodienoic acid (267) to stimulate plant defense responses to
piercing-sucking insect pests in agriculture [122].

Molecules 2018, 23, 98 31 of 53 

 

anticancer, neuroprotective 

activities 

β-Tocopherol (270) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

γ-Tocopherol (271) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

δ-Tocopherol (272) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

α-Tocotrienol (273) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

β-Tocotrienol (274) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

γ-Tocotrienol (275) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

δ-Tocotrienol (276) Bran 

Antioxidative, 

antihypercholesterolemic, 

anticancer, neuroprotective 

activities 

[123] 

 

 
Molecules 2018, 23, 98 32 of 53 

 

 

 

 

Figure 9. Structures of the other compounds isolated from rice. 

3. Biosynthetic pathways of Rice Secondary Metabolites 

In the 1980s, knowledge about the structures of rice secondary metabolites (i.e., phytoalexins) 

and their biosynthetic pathways accumulated, but no rice secondary metabolite biosynthetic enzyme 

genes was identified. In 2002, the draft sequences of rice genomes were published for japonica 

subspecies [15] and indica subspecies [16]. The annotation database platform for the rice genome was 

also developed and became publicly available (http://www.dna.affrc.go.jp/genome/#ricegenome) [9]. 

The biosynthetic genes for rice secondary metabolites are usually clustered in the genomes. The 

elucidation of their biosynthetic pathways is benefitting from the sequence of the rice genome, and 

many progresses have been achieved. 

3.1. Biosynthesis of Flavonoids 

A rice flavonoid biosynthesis pathway has been suggested by several studies, and the identified 

genes and enzymes involved in the pathway are shown in Figure 10 [124]. 

Figure 9. Structures of the other compounds isolated from rice.



Molecules 2018, 23, 3098 28 of 50

Table 9. Other metabolites and their biological activities.

Name Rice Part Used for Isolation Biological Activity and Function Ref.

(E,E)-2,4-Heptadienal (261) Whole phants Antibacterial and antifungal activities,
toxic to rice plants [120]

(Z)-3-Hexen-1-ol (262) Leaves - [66]

Orizaanthracenol = 1-Methoxyanthracen-2-ol (263) Hulls Strong inhibitory activity in seed
germination of radish [121]

1-Hydroxy-7-((2S,3R,4R,5S)-2′′,3′′,4′′-trihydroxy-5′′-(hydroxymethyl)tetrahydro-
2H-pyran-1-yloxy)anthracen-2-yl 3′,7′-dimethyloctanoate (264) Hulls Weak inhibitory activity in seed

germination of radish [121]

1-Hydroxy-7-((2S,3R,4R,5S)-2′′,3′′,4′′-trihydroxy-5′′-(hydroxymethyl)tetrahydro-
2H-pyran-1-yloxy)anthracen-2-yl 3′,7′,11′,15′,19′-pentamethyltricosanoate (265) Hulls Weak inhibitory activity in seed

germination of radish [121]

(5S)-5-(Acetyloxy)-3-(1-methylenthyl)-2-cyclohexen-1-one =
3-Isopropyl-5-acetoxycyclohexene-2-one-1 (266) Leaves Allelopathic activity [55]

Seedlings Allelopathic effects [40]
cis-12-oxo-Phytodienoic acid (267) Whole plants Inducible anti-insect activity [122]

1-Phenyl-2-hydroxy-3,7-dimethyl-11-aldehydic-tetradecane-2β-D-glucopyranoside (268) Hulls Herbicidal activity [108]

α-Tocopherol (269) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

β-Tocopherol (270) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

γ-Tocopherol (271) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

δ-Tocopherol (272) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

α-Tocotrienol (273) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

β-Tocotrienol (274) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

γ-Tocotrienol (275) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]

δ-Tocotrienol (276) Bran Antioxidative, antihypercholesterolemic,
anticancer, neuroprotective activities [123]
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3. Biosynthetic Pathways of Rice Secondary Metabolites

In the 1980s, knowledge about the structures of rice secondary metabolites (i.e., phytoalexins)
and their biosynthetic pathways accumulated, but no rice secondary metabolite biosynthetic enzyme
genes was identified. In 2002, the draft sequences of rice genomes were published for japonica
subspecies [15] and indica subspecies [16]. The annotation database platform for the rice genome was
also developed and became publicly available (http://www.dna.affrc.go.jp/genome/#ricegenome) [9].
The biosynthetic genes for rice secondary metabolites are usually clustered in the genomes.
The elucidation of their biosynthetic pathways is benefitting from the sequence of the rice genome,
and many progresses have been achieved.

3.1. Biosynthesis of Flavonoids

A rice flavonoid biosynthesis pathway has been suggested by several studies, and the identified
genes and enzymes involved in the pathway are shown in Figure 10 [124].Molecules 2018, 23, 98 33 of 53 
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Figure 11. Biosynthesis pathway of sakuranetin in rice [9]. Abbreviations: SAM, S-adenosyl-L-

methionine; SAH, S-adenosyl-L-homocysteine. 

3.2. Biosynthesis of Terpenoids 

Figure 10. Proposed biosynthesis pathway of rice flavonoids [124]. Abbreviations: CHS, chalcone
synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; F3′H,
flavonoid 3′-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; UGT,
UDP-glucosyl transferase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase; FNSII,
flavone synthase II; OMT, O-methyltransferase; F2H, flavanone 2-hydroxylase; CGT, C-glucosyl
transferase; and DH, dehydratase; OsNOMT, rice naringenin 7-O-methyltransferase.

The biosynthesis of sakuranetin (81) has been given particular attention as this metabolite is
an important phytoalexin in rice. In addition to the phytopathogenic infection induction [125],
sakuranetin (81) can be induced by ultraviolet (UV) irradiation [43], treatment with CuCl2 [126],
JA [127], methionine [128], the herbicides pretilachlor and butachlor [129], the bacterial phytotoxin
coronatine [130], the phytopathogenic stem nematode Ditylenchus angustus [131], and the insect pest
white-backed planthopper (Sogatella furcifera) [132].

Sakuranetin (81) has been revealed to be biosynthesized from naringenin by S-adenosyl-
L-methionine-dependent naringenin 7-O-methyltransferase (NOMT), which is a key enzyme for
sakuranetin production. NOMT was successfully purified and identified [42]. As naringenin (79)
is a biosynthetic intermediate for a variety of flavonoids, NOMT plays a key role in sakuranetin
biosynthesis at a branch point in the common flavonoid biosynthetic pathway (Figure 11). OsMYC2,
which is an essential factor for JA-induced sakuranetin production in rice, interacts with MYC2-like

http://www.dna.affrc.go.jp/genome/#ricegenome
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proteins that enhance its transactivation ability [133]. The biosynthetic pathway of sakuranetin (81) is
shown in Figure 11 [9].
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3.2. Biosynthesis of Terpenoids

The biosynthesis of rice diterpenoid phytoalexins has been relatively detailed studied.
The biosynthesis of the other terpenoids such as abscisic acid (ABA) and GAs in plants was discussed
in reviews published elsewhere [134,135]. The production of rice diterpenoid phytoalexins can be
induced by a series of stresses. For examples, phytocassanes can be induced by ultraviolet (UV)
irradiation [72], and momilactone A (148) can be induced by the bacterial phytotoxins coronatine [130]
and methionine [128].

The biosynthetic genes of diterpenoids are organized on the chromosome in functional gene
clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes.
Most of them in the rice genome are present in two gene clusters on chromosomes 2 and 4 (termed
the Os02g cluster and the Os04g cluster, respectively) [136–138]. Their functions have been studied
extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7, CYP76M5,
M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl
diphosphate-related diterpene hydrocarbons. Rice diterpenoids mainly contain phytohormones
(i.e., gibberellins), phytoallexins (i.e., oryzalexins and phytocassanes), and allelochemicals (i.e.,
momilactones). They are biosynthesized via the MEP pathway in rice plants and have been well
reviewed [139–142]. Gibberellins are considered phytohormones and are a large family of diterpenoids
that possess the tetracyclic ent-gibberellane carbon skeletal structure arranged in either four or five
ring systems, where the variable fifth ring is a lactone. Gibberellin biosynthesis and metabolism were
well reviewed [143].

Rice diterpenoids are labdane-related. Their biosynthetic pathways in cultivated rice O. sativa are
shown in Figure 12 [140,141].
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Bioactive rice diterpenoids are commonly elaborated by the addition of at least two spatially
separated hydroxyl groups. For example, orzyalexin D (166) is simply 3α,7β-dihydroxylated
ent-sandaracopimaradiene, while orzyalexin E (167) is the 3α,9β-dihydroxy derivative. Notably,
the production of these phytoalexins appears to proceed via the initial C3α hydroxylation of
ent-sandaracopimaradiene catalyzed by OsCYP701A8, while OsCYP76M6 and OsCYP76M8 catalyze
the subsequent hydroxylation at C9β or C7β, leading to the production of oryzalexins D (166) and E
(167), respectively (Figure 13). These final biosynthetic steps represent the first complete pathways in
the production of rice diterpenoid phytoalexins [144].
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3.3. Biosynthesis of Tocotrienol and Tocopherol

Tocotrienol (T3), an unsaturated form of vitamin E with three double bonds in its isoprenoid side
chain, is present in high concentration especially in rice grain [145].

Both tocotrienol and tocopherol (TOC) are biosynthesized through the pathways of mevalonate
and shikimate [146]. Their biosynthetic pathways are shown in Figure 14.
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Figure 14. General biosynthetic pathway for vitamin E in plants [146]. Abbreviations: T3, tocotrienol;
Toc, tocopherol; FOH, farnesol; GGOH, geranylgeraniol; FPP, farnesyl pyrophosphate; GGPP,
geranylgeranyl pyrophosphate; PPP, phytyl pyrophosphate; HGA, homogentisic acid; MGGBQ,
2-methyl-6-geranylgeranylbenzoquinol; DMGGBQ, 2,3-dimethyl-6-geranylgeranylbenzoquinol; MPBQ,
2-methyl-6-phytylbenzoquinol; DMPBQ, 2,3-dimethyl-6-phytylbenzoquinol. The enzymes HGGT,
GGR, VTE2-1,2, T3/Toc methyltransferase (VTE3 and VTE4), T3/Toc cyclase (VTE1), pheophytinase,
and phytol kinase (VTE5) are believed to be involved in vitamin E biosynthesis.

3.4. Biosynthesis of Alkaloids

Both 2AP (248) and tryptophan biosynthesis pathways have been studied in detail, as 2AP is an
important rice aromatic compound [147], and the tryptophan pathway is involved in rice defense
responses against pathogenic infection via serotonin (259) production [148].

The biosynthesis pathway of 2AP production in rice starts with proline being catabolized via
putrescine into γ-guanidinobutyraldehyde (GABald), a substrate of betaine aldehyde dehydrogenase
(BAD2). If BAD2 is present and functional, it is able to convert the majority of GABald to
γ-aminobutyric acid (GABA), but if BAD2 is absent or non-functional, the majority of GABald is
acetylated to form 2AP [149]. The biosynthesis pathway of rice 2AP is shown in Figure 15.
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Figure 15. 2-Acetyl-1-pyrroline (2AP) biosynthesis pathways in rice [149]. Abbreviations: GABald,
γ-aminobutyraldehyde; BAD2, betaine aldehyde dehydrogenase; GABA, γ-aminobutyric acid.

Tryptophan decarboxylase (TDC) transforms typtophan (Trp) into tryptamine (260), consequently
increasing the metabolic flow of tryptophan derivatives into the production of indole-containing
metabolites. If the expression cassette containing OsTDC is inserted into an expression plasmid
vector containing OASA1D, the overexpression of OASA1D significantly increases Trp levels in rice.
The co-expression of OsTDC and OASA1D in rice cells led to almost complete depletion of the Trp pool
and the consequent increase in the tryptamine pool. In recent years, the production of indole alkaloids
has achieved great success through the metabolic engineering of the tryptophan pathway in rice [150].
The biosynthesis pathways of rice alkaloids are shown in Figure 16.Molecules 2018, 23, 98 37 of 53 
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4. Metabolic Regulation of Secondary Meatobolites

The biosynthesis of plant secondary metabolites can be induced and regulated by various biotic
and abiotic stresses, including organisms, jasmonic acid, oligosaccharides, and metal ions [9,151].
Among the secondary metabolites, phytoalexins are a kind of inducible antimicrobial metabolites
whose biosynthesis is triggered not only by the invasion of pathogens including fungi, bacteria,
and viruses, but also by a variety of abiotic elicitors, including phytohormones, oligosaccharides,
UV irradiation, heavy metals (i.e., copper chloride), and mechanical stresses [152]. The main
achievements regard the regulation of the biosynthesis of rice phytoalexins. The mechanisms of their
biosynthetic regulation include signal recognition, signal transduction, gene expression, transcriptional
and post-transcriptional pathways, and activation of the key enzymes.

4.1. Metabolic Regulation by Abiotic Stresses

4.1.1. Metabolic Regulation by Phytohormones

Secondary metabolite biosynthesis can be mediated by phytohormones such as ABA), JA,
cytokinins (CKs), salicylic acid (SA), ethylene (ET), and their conjugates [17,153].

JA, which is in the form of jasmonates, is a plant hormone which induces the biosynthesis
of many secondary metabolites which play roles in plant-environment interactions [154]. JA can
induce rice defense responses and plays an important role as a signal transducer for phytoalexin
production in stress (e.g., CuCl2, oligosaccharides, phytotoxins)-stimulated rice leaves through gene
activation. For example, the endogenous level of JA increased rapidly in CuCl2-stimulated rice leaves,
and exogenously applied JA caused a large amount of phytoalexin production in rice leaves [126].
As far as we know, JA can induced the biosynthesis of momilactones A (148) and B (149) as well as of
γ-terpinene (117) [62].

The basic leucine zipper transcription factor OsTGAP1 acts as a regulator of the coordinated
production of diterpenoid phytoalexins in cultured rice cells. The inductive expression of OstGAP1
under JA treatment was only observed in a root-specific manner, consistent with the JA-inducible
expressions of the biosynthetic genes of diterpenoid phytoalexins in roots [155].

In addition, the amino acid conjugates of jasmonic acid N-[(−)-jasmonoyl]-S-isoleucine (JA-Ile)
and N-[(−)-jasmonoyl]-S-phenylalanine were found to elicit the production of sakuranetin (81) in rice
leaves. The elicitation was considered to arise from the induction of naringenin 7-O-methyltransferase,
a key enzyme in sakuranetin biosynthesis [156]. Very interestingly, JA-Ile was not required for
diterpenoid production in blast pathogen-infected or CuCl2-treated rice leaves [157].

The treatment with natural and synthetic CKs induced the production of diterpenoid phytoalexins
in rice leaves and suspension-cultured cells [158]. However, CK treatment inhibited JA-inducible
sakuranetin (81) production in rice leaves [127]. On the other hand, exogenous root applications of SA
promoted the accumulation of oryzalexins and momilactone A (148) in the leaves [159]. A synergistic
crosstalk of CK and SA signaling was also reported, showing that 0.1 mM CKs with benzothiadiazole
(BTH), a plant activator that enhances SA signaling pathway, induced a several-fold enhancement of
momilactone and phytocassane biosynthetic genes [160]. In addition, it was reported that the treatment
of wounded rice leaves with methionine, the precursor of ET, induced the accumulation of sakuranetin
(81) and momilactone A (148). Tiron, a free radical scavenger, counteracted the induction of both
sakuranetin (81) and momilactone A (148) production in methionine-treated leaves, indicating that
active oxygen species might be important in methionine-induced production of phytoalexins. However,
ET treatment of wounded leaves induced the production of sakuranetin but not of momilactone A (148),
suggesting that the induction of diterpenoid phytoalexin production by methionine was not regulated
by ET alone [128]. In the susceptible rice cultivar Dorella, the bakanae pathogen (Fusarium fujikuroi)
induced the production of gibberellin and abscisic acid and inhibited jasmonic acid production,
and phytoalexin content in rice was very low [153].
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In addition, ethylene-inducing xylanase from Thichoderma viride was a potent elicitor of immune
responses in a variety of plant species, such as tobacco (Nicotiana tabacum), tomato (Solanum
lycopersicum), and rice. This enzyme induced the expression of defense-related genes involved in the
biosynthesis of phytoalexins (i.e., momilactones and phytocassanes) by a cation channel OsTPC1 in
suspension-cultured rice cells [161].

4.1.2. Metabolic Regulation by Oligosaccharides

Oligosaccharides derived from fungal and plant cell wall polysaccharides are a class of well
characterized elicitors that can induce not only accumulation of secondary metabolites but also
MAPK activation, ROS generation, and defense-related enzyme activities at a very low concentration,
triggering plant innate immunity [162–168]. Studies were performed on the structure–activity
relationships of the oligosaccharides, the characterization of the corresponding receptors, and the
analysis of signal transduction cascades and elicitor-responsive genes. Early studies focused on the
inducible effects of oligosaccharides on rice phytoalexin production. Their elicitation mechanisms
have been partially revealed in recent years.

A mixture of chitin fragments obtained from the cell walls of the rice pathogen Fusarium
moniliforme through either the action of constitutive rice chitinases or partial acid hydrolysis was
active to induce diterpenoid phytoalexin biosynthesis in rice cell cultures in suspension [169].
N-Acetylchitooligosaccharides larger than hexaose induced the formation of momilactones A (148)
and B (149) as well as oryzalexins A (163), B (164), and D (166) at concentrations of 10−9~10−6 M [170].

β-glucan fragments (oligosaccharides) from the cell walls of the rice blast fungus M. oryzae had
the ability to elicit phytoalexin (i.e., momilactone A) biosynthesis in suspension-cultured rice cells.
The potent elicitor glucopentaose, namely, tetraglucosyl glucitol, was purified from the digestion of the
glucan by an endo-β-(1→3)-glucanase. Interestingly, the obtained tetraglucosyl glucitol from M. oryzae
did not induce phytoalexin biosynthesis in the soybean cotyledon cells, indicating differences in the
recognition of gluco-oligosaccharide elicitor signals in these two plants [171]. In addition, two purified
oligosaccharide elicitors, N-acetylchitohepatose and tetraglucosyl glucitol, derived from M. oryzae
cell walls, synergistically activated the biosynthesis of phytoalexin in suspension-cultured rice cells.
Inhibition experiments for the binding of the radio labeled N-acetylchitooligosaccharide elicitor to
the plasma membrane from rice cells indicated that the two elicitors are recognized by different
receptors [172]. Rice cells recognize oligosaccharides for defense singnaling mainly through plasma
membrane receptors [173,174].

Diterpenoid phytoalexins are synthesized through the plastidic MEP pathway in rice. OsTGAP1,
a basic leucine zipper transcription factor, which is induced by the fungal chitin oligosaccharide elicitor,
was identified as a key regulator of the coordinated expression of the clustered biosynthetic genes
for diterpenoid phytoalexin production in rice [138]. The overexpression of the bZIP transcription
factor OsbZIP79 resulted in the suppression of the chitin oligosaccharide-inducible expression of
diterpenoid phytoalexin biosynthetic genes, and thus caused a decrease in the accumulation of
diterpenoid phytoalexin in rice cells. OsbZIP79 is considered a negative regulator of rice diterpenoid
phytoalexin production [175].

4.1.3. Metabolic Regulation by Cerebrosides

Cerebrosides are categorized as glycosphingolipids. They are important components of a
wide variety of tissues and organs in biological systems [176]. Cerebrosides were also found
to occur in various fungi, such as Cercospora solani-melogenae, Cochiliobolus miyabeansus, Fusarium
oxysporum, Mycosperella pinodes, Rhizoctonia sp., and Trichoderma viride, as the elicitors that can activate
plant defense systems. They showed no antifungal activity against pathogens in vitro, showed
phytoalexin-inducing activity when applied to plants by spray treatment, and also induced the
expression of pathogenesis-related (PR) proteins in rice leaves [177].
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Both cerebrosides A and C from the rice blast pathogen M. oryzae elicited hypersensitive cell
death and phytoalexin (such as momilactone A and phytocassanes A and B) accumulation in rice
plants [178].

The ceramides prepared from the cerebrosides by removal of glucose also showed elicitor activity
even at lower concentations compared to the cerebrosides. In field experiments, the cerebroside elicitors
effectively protected rice plants against the rice blast fungus. Cerebroside elicitors protected rice plants
from other diseases as well and functioned as general elicitors in a wide variety of rice-pathogen
interactions [179]. Further studies showed that cerebrosides are non-race-specific elicitors. Treatment
of lettuce (Lactuca sativa), tomato (Lycopersicon esculentum), melon (Cucumis melo), and sweet potato
(Ipomoea batatas) with cerebroside B resulted in resistance to infection of the fungal pathogens [180].

4.1.4. Metabolic Regulation by Cholic Acid

Cholic acid (CA), a steroid elicitor of rice defense responses, was isolated from human feces.
When rice leaves were treated with CA, defense responses were induced, with the accumulation of
antimicrobial compounds, hypersensitive cell death, and pathogenesis-related (PR) protein synthesis.
The induced antimicrobial compounds were identified as phytocassanes. The structure–activity
relationship analysis showed that the hydroxyl groups at C-7 and C-12 and the carboxyl group at C-24
of cholic acid contributed to the elicitor activity [181]. In contrast to the other elicitors (i.e., fungal
chitin oligosaccharide elicitor), cholic acid specifically triggered the accumulation of phytocassanes but
not of momilactones, suggesting specificity in pathway regulation [180]. Further investigation of the
effects of CA on the expression of diterpene cyclase genes showed that CA induced the transcription
of the genes OsCPS2 (OsCyc2) and OsKSL7 (OsDTC1) involved in phytocassane biosynthesis. OsCPS2
was particularly strongly induced, suggesting that it is one of the main mechanisms by which CA
induces high levels of phytocassanes [182].

4.1.5. Metabolic Regulation by Heavy Metal Ions

The role of heavy metal ions as antifungal agents may consists in part in inducing defense-response
genes and in part in inhibiting the pathogens. Among the metal ions, copper ions (Cu2+) were the most
effective to induce defense-related genes involved in phytoalexin biosynthesis [183]. Heavy metal ions
are abiotic elicitors. Some metal ions can affect the production of plant secondary metabolites including
phytoalexins [184]. Typical examples included tanshinone accumulation stimulated by metal ions Co2+,
Ag+, and Cd2+ in Salvia miltiorrhiza cell cultures [185], andrographolide production elicitated by Cd2+,
Ag+, Cu2+, and Hg2+ in Andrographis paniculata cell cultures [186], resveratrol production enhanced
by Co2+, Ag+ and Cd2+ in Vitis vinifera cell cultures [187], and phaseollin production enhanced in
Colombian bean (Phaseolus vulgaris) seedlings treated with CuCl2 [188].

The induction of phytoalexins by heavy metal ions in rice leaves was studied by punching
detached leaves with a glass capillary tube and applying droplets of a heavy metal salt solution into
the holes. Application of 1 mM copper chloride (CuCl2) induced the accumulation of oryzalexins A
(163), B (164), C (165), and D (166) and of momilactones A (148) and B (149) in the tissues around the
holes and in the droplets. Among the momilactones, momilactone A (148) showed a marked induction.
Among the oryzalexins, oryzalexin B (164) was induced to the greatest extent. The accumulation of
momilactone A (148) was first noted 12 hr after the application of copper ions, reaching a maximum
after 72 h. As these phytoalexins accumulated, brown spots appeared in areas surrounding the
punctured holes. Iron and mercury ions made up approximately 37% and 20% of the elicitor activity
of copper ion (Cu2+), respectively. Manganese (Mn2+) and cobalt (Co2+) ions hardly showed any
elicitor activity [189]. Further study showed that the endogenous level of JA increased rapidly in
CuCl2-treated rice leaves. If rice leaves were treated with JA biosynthesis inhibitors, the production of
phytoalexin elicited by CuCl2 decreased. JA is thus suggested to play an important role as a signaling
molecule in CuCl2-elicited rice phytoalexin biosynthesis [126].
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4.1.6. Metabolic Regulation by Ultraviolet Irradiation

UV irraditon is very convenient for inducing the production of rice phytoalexins, because it is
easy to irradiate many rice leaves with ultraviolet light [9].

An accumulation of oryzalexins A (163), B (164), C (165), and D (166), and of momilactones A
(148) and B (149) accompanied by the appearance of brown spots on the leaf surface was observed
in ultraviolet-irradiated detached rice leaves. Momilactone A (148) was detected in abundance, and
among the oryzalexins, oryzalexin D (166) was a major substance. The content of these diterpenoid
phytoalexins in rice leaves was dependent on leaf aging, the accumulation of these phytoalexins in
the uppermost leaves being much lower than that in the aged leaves (lower leaves), and brown spots
scarcely ever appeared on the surface of the uppermost leaves [190].

UV irradiation increased not only the concentration of momilactone B (149) in rice seedlings
but also the secretion of momilactone B (149) into rice rhizosphere. As momilactone B (149) acts as
an antimicrobial and allelopathic agent, the secretion of momilactone B into the rhizosphere may
provide a competitive advantage for rice root establishment through the local suppression of soil
microorganisms and the inhibition of the growth of competing plant species [191].

UV irradiation also stimulated flavonoid and phenylamide biosynthetic pathways in rice leaves.
Five phytoalexins, i.e., sakuranetin (81), N-benzoyltryptamine (250), N-trans-cinnamoyltryptamine
(253), N-trans-cinnamoyltyramine (254), and N-p-coumaroylserotonin (255) were isolated from
UV-treated rice leaves [58]. In response to UV treatment, sakuranetin accumulated in rice leaves
may serve as an antioxidant against UV-induced oxidative stress [42].

4.1.7. Metabolic Regulation by Other Abiotic Stresses

Rice plants were treated with the fungicide 2,2-dichloro-3,3-dimethyl cyclopropanecarboxylic acid
(WL28325). The biosynthesis of two phytoalexins, i.e., momilactones A (148) and B (149), was markedly
enhanced. This suggested that the fungicide WL28325 has a systemic ability to activate host resistance
against rice blast pathogens [192].

Pretilachlor and butachlor, two chloroacetamide herbicides that promote cell death, induced
the accumulation of the phytoalexins momilactone A (148) and sakuranetin (81) in rice leaves.
The accumulation of these phytoalexins was related to the herbicide concentration and the period of
exposure and was followed by the appearance of necrotic lesions on the rice leaves [129].

Carbon dioxide (CO2) has the ability to regulate the biosynthesis of rice phenolics. With elevated
CO2 concentrations, the total phenolic content as well as the DPPH radical scavenging capacity
decreased, which indicated that these decreases may be meaningful in the preventive ability of rice
against free radical-mediated degenerative diseases [193].

4.2. Metabolic Regulation by Biotic Stresses

4.2.1. Metabolic Regulation by Bacteria

The biosynthesis of secondary metabolites can be regulated by either pathogenic and
non-pathogenic bacteria or their extracts and components.

If rice leaves were infected with the bacterial pathogen Xanthomonas oryzae, phenylamides were
induced. They were identified as N-feruloylagmatine (244), N-feruloylputrescine (245), N-benzoylserotonin
(249), N-benzoytryptamine (250), N-benzoyltyramine (251), N-trans-cinnamoylserotonin (252),
N-trans-cinnamoyltyramine (254), N-p-coumaroylserotonin (255), and N-feruloylserotonin (256) [116].

The bacterial phytotoxin coronatine was isolated from a Pseudomonas syringae pv. atropurpurea
culture broth as a chlorosis-inducing compound in the leaves of Italian ryegrass (Lolium multiflorum).
The structure of coronatine, an amide of coronafacic acid and coronamic acid, was somewhat related to
that of JA. This phytotoxin could induce the accumulation of sakuranetin (81) and momilactone A (148)
in rice leaves. Coronatine-inducible sakuranetin production is under the control of kinetin and ascorbic
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acid, as observed with JA. The similarity of the structures and elicitation manner of coronatine and JA
suggests that they have a similar action mechanism leading to rice phytoalexin production [129].

4.2.2. Metabolic Regulation by Fungi

The biosynthesis of rice secondary metabolites can be also regulated by fungi or their extracts and
components. Fungal infection often results in the accumulation of phytoalexins in rice plants [194].

In the rice resistant cultivar Selenio, the presence of the pathogen F. fujikuroi induced a high
production of sakuranetin (81), and symptoms of bakanae were not observed. On the contrary, in the
susceptible genotype Dorella, the pathogen induced the production of gibberellin and abscisic acid and
inhibited jasmonic acid production, and sakuranetin (81) content was very low [153]. Infection with
the rice blast pathogen M. oryzae induced the production of momilactones, with greater accumulation
of momilactones A (148) and B (149) [195], and also induced sakuranetin (81) production [125]. Young
rice leaves in a resistant rice line exhibited a hypersensitive reaction (HR) within three days after the
inoculation of a spore suspension of the blast pathogen M. oryzae, and an increase of sakuranetin was
detected three days post-inoculation (dpi), increasing to four-fold at 4 dpi. In the susceptible line,
increased sakuranetin was detected at 4 dpi but not at 3 dpi, by which time a large fungal mycelia had
accumulated without HR. The decrease and detoxification of sakuranetin (81) were detected in both
solid and liquid mycelium cultures of the rice blast pathogen [125].

Rice leaves accumulated serotonin (259) in response to infection by Bipolaris oryzae. If serotonin
(259) was added to the culture media, it was converted into 5-hydroxyindole-3-acetic acid (5HIAA),
which may be a detoxification process in the interaction between B. oryzae and rice [196].

When rice leaves were infected with Cochliobolus miyabeanus, phenylamides were also
induced. They included N-feruloylagmatine (244), N-feruloylputrescine (245), N-benzoylserotonin
(249), N-benzoytryptamine (250), N-benzoyltyramine (251), N-trans-cinnamoylserotonin (252),
N-trans-cinnamoyltyramine (254), N-p-coumaroylserotonin (255), and N-feruloylserotonin (256) [116].

4.2.3. Metabolic Regulation by Insect Pests

The attack by herbivorous insects is one of the major biological stresses that rice plants have to
cope with. The secondary metabolites that are derived from the tryptophan pathway have been shown
to play defensive roles against insects in rice plants. The biosynthesis of four tryptophan-derived
metabolites was induced by the feeding on rice leaves of the rice striped stem-borer (Chilo suppressalis).
The amounts of N-p-coumaroylserotonin (255), N-feruloyltryptamine (257), serotonin (259), and
tryptamine (260) in the larvae-fed leaves were 12-, 3.5-, 33-, and 140-fold larger than in the control
leaves 48 h after the start of feeding [118].

The biosynthesis of serotonin (259) was suppressed by insect infestation in rice, which
demonstrates that the regulation of serotonin biosynthesis plays an important role in the defense from
insects. In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses
the conversion of tryptamine to serotonin. In susceptible wild-type rice, rice brown planthopper (N.
lugens) feeding induces the biosynthesis of serotonin, whereas, in mutants with an inactivated CYP71A1
gene, no serotonin is produced, and the plants are more insect-resistant [197].

When rice leaves were infested by the white-backed planthopper (Sogatella furcifera), accumulation
of salicylic acid, jasmonic acid, and phytoalexins such as momilactone A (148) and sakuranetin (81) was
observed. It is possible that S. furcifera released some elicitor compounds, which might be produced
in its salivary glands, into the rice plants during feeding. Next, the defense signal systems, SA- and
JA-mediated pathways, were activated by the elicitor. Finally, phytoalexins are induced in rice as
antimicrobial compounds mainly through the activation of the JA-mediated pathway [132].

4.2.4. Metabolic Regulation by Nematodes

The elicitation of phytoalexin synthesis was observed in rice in respononse to infection by
nematodes. Both chlorogenic acid (11) and sakuranetin (81) were induced in the incompatible varieties
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of rice after infection by the stem nematode Ditylenchus angustus, and no change occurred in the
susceptible varieties of rice [131]. In addition, the systemic suppression of metabolism in the shoot,
including the isoprenoid and shikimate pathways, was observed upon rice infection by the root
nematode Hirschmanniella oryzae [198].

4.2.5. Metabolic Regulation by Viruses

The rice dwarf virus (RDV) P2 protein interacts with ent-kaurene oxidases, which play a key
role in the biosynthesis of the growth hormones gibberellins in rice plants. This leads to reduced
biosynthesis of gibberellins and to rice dwarf symptoms. In addition, the interaction between P2
protein and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make
plants more competent for virus replication [199].

4.2.6. Metabolic Regulation by Other Plants

Rice allelopathic activity increased in the presence of seedlings and root exudates of barnyard
grass (E. crus-galli). This increase was not due to nutrient competition between the two plant species.
Levels of momilactone B (149), both endogenous concentration in rice seedlings and secretion rate,
were also increased by the presence of the seedlings and root exudates of barnyard grass. Probably,
the active components from the root exudates triggered the production and secretion of momilactone
B (149) [200]. Similarly, the production of the sorghum allelochemical sorgoleone was also induced by
root extracts of the agriculturally relevant weed velvetleaf [201]. Accordingly, allelopathy potentially
acts as an inducible defense mechanism mediated by the recognition of root exudate components
specific to other plant species found in the relevant ecosystem [8]. The elicited compounds from rice
root exudates need to be identified.

5. Conclusions and Future Perspectives

This review focuses on the elucidation of the structures, biological functions, biosynthesis,
and metabolic regulation of rice secondary metabolites carried out during the past 50 years.
Some metabolites (i.e., diterpenoid phytoalexins) and their metabolic pathways are unique to
rice [141]. Some minor or new rice metabolites should be identified by using new techniques, such as
chemoinformatics [202], metabolomics [7,18,34], and compound prediction based on biosynthetic gene
clusters [9]. Furthermore, the biological activities of many isolated metabolites (i.e., phenolic acids,
flavonoids, and terpenoids) need to be systematically evaluated.

The physiological functions of some rice secondary metabolites remain unknown. Commonly,
the development of null mutants and transgenic over-expression lines is enabling the critical
examination of biological functions. Phytoalexin-related gene over-expression generally results in
increased resistance against pathogens in genetically modified plants [203,204].

The biosynthetic regulation of rice secondary metabolites is very complicated. Concentrated
efforts have revealed the relevant factors and signaling pathways that are involved in the regulation
of phytoalexin production in rice. It is still unknown, however, how transcription factors regulate
phytoalexin biosynthetic genes in concert. Further research investigating the molecular mechanisms of
the transcriptional regulation of phytoalexin biosynthetic genes and revealing how upstream signals
activate each transcription factor in the signaling cascade is essential. Rice metabolic regulation is
certain to far exceed the complexity of the biosynthetic pathways [11,17,205].

In addition, exogenous genes such as stilbene synthase (STS) gene were successfully
transferrred from other plant species to rice to improve its resistance against rice blast
disease [206]. The importatance of some secondary metabolites, such as 2-acetyl-1-pyrroline (248) [14],
phytoalexins [204], and momilactones [207], has been emphasized in agriculture and in the medicinal
and food industries. These will be important fields of application for rice secondary metabolites.
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