
METHODOLOGY ARTICLE Open Access

Protein-protein interaction prediction
using a hybrid feature representation
and a stacked generalization scheme
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Abstract

Background: Although various machine learning-based predictors have been developed for estimating protein–
protein interactions, their performances vary with dataset and species, and are affected by two primary aspects:
choice of learning algorithm, and the representation of protein pairs. To improve the performance of predicting
protein–protein interactions, we exploit the synergy of multiple learning algorithms, and utilize the expressiveness
of different protein-pair features.

Results: We developed a stacked generalization scheme that integrates five learning algorithms. We also designed
three types of protein-pair features based on the physicochemical properties of amino acids, gene ontology
annotations, and interaction network topologies. When tested on 19 published datasets collected from eight
species, the proposed approach achieved a significantly higher or comparable overall performance, compared
with seven competitive predictors.

Conclusion: We introduced an ensemble learning approach for PPI prediction that integrated multiple learning
algorithms and different protein-pair representations. The extensive comparisons with other state-of-the-art prediction
tools demonstrated the feasibility and superiority of the proposed method.
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Background
Cells are predominantly composed of proteins, and almost
every primary cellular process is performed by multipro-
tein complexes. By identifying and analyzing the compo-
nents of protein complexes, we can better understand
how protein ensembles are organized into functional units
[1]. As protein–protein interactions (PPIs) are crucial to
most cellular functions, they must be identified for deci-
phering cellular behaviors. In the past few decades, large-
scale PPI analysis has been enabled by techniques such as
yeast two-hybrid (Y2H) systems [2], mass spectrometry
[3], and protein chips [4]. However, these methods are
time-consuming and expensive, and large-scale experi-
ments usually suffer from high false positive rates [5].
Meanwhile, computational techniques can identify poten-
tial PPIs that are not discoverable by high-throughput

methods. The computational predictions can then be veri-
fied by more labor-intensive methods.
Researchers have proposed different types of computa-

tional approaches based on different sources of bio-
logical information. For example, several methods can
predict PPIs from protein sequences. SPRINT evaluates
the likelihood of interactions by assessing the contribu-
tions of similar sequence motifs [6]. Huang et al. [7]
translated protein sequences into feature vectors of com-
position and transition descriptors, and predicted the
PPIs using a weighted sparse representation-based classi-
fier. Guo et al. [8] combined a support vector machine
(SVM) with auto covariance that predicts PPIs from pro-
tein sequences. Other methods utilize the genomic,
proteomic, and/or structural information of proteins [9,
10]. In recent years, semantic similarity has been applied
to ontology, providing a valuable indicator of the re-
latedness level between two biological entities [11]. Ob-
servationally, proteins will likely interact when localized
in the same cellular component, or when sharing a
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common biological process or molecular function. Ac-
cordingly, various methods infer PPIs from the gene
ontology (GO) annotations and semantic similarity of
proteins [12–14]. Other methods integrate semantic
similarity with machine learning (ML) algorithms. For
example, Ben-Hur and Noble [15], Bandyopadhyay and
Mallick [16], and Armean et al. [17] combined GO an-
notations with SVM for PPI prediction. Other ML algo-
rithms employed in PPI prediction include Bayesian
classifiers [18] and random forest (RF) [19]. In addition,
deep learning has recently been applied for PPI predic-
tion. Sun et al. [20] used stacked autoencoders in their
network architecture, Du et al. [21] adopted two separ-
ate deep neural networks to process the characteristics
of each protein in a protein pair, and Gonzalez-Lopez et
al. [22] introduced a deep recurrent neural network
combined with the embedding techniques. These com-
putational methods differ in their feature representations
and algorithmic processes. Different ML approaches
have distinctive inherent biases, including representation
biases and process biases, which affect their learning be-
haviors and performances significantly even in the same
learning task [23].
In this study, we propose a hybrid feature representa-

tion that combines protein sequence properties, gene
ontology information, and interaction network topology.
To reflect the characteristics of amino acids, we encode
their various physicochemical properties (such as hydro-
phobicity, hydrophilicity, polarity and solvent accessible
surface area) into the sequence-based features. To learn
the knowledge organized in a directed acyclic graph
(DAG) from GO, we develop the GO-based features by
clustering the GO terms based on the partitioning of the
GO DAG with respect to the provided training data. To
address PPI prediction using a network reconstruction
problem, we construct a partial network from the training
data, and extract its topological properties as the network-
based features. We adopt a stacked generalization scheme
[24] and develop a classifier called PPI-MetaGO, which
improves PPI prediction by deducing the biases of the
base generalizers and exploiting the synergy among vari-
ous ML algorithms.
PPI-MetaGo was evaluated in consistent and un-

biased tests on the datasets used in previous evalua-
tions of state-of-the-art PPI prediction methods. The
experimental results demonstrate the superior per-
formance of PPI-MetaGO over several established
PPI-prediction approaches.

Methods
This section describes our proposed ensemble super-
vised meta-learner PPI-MetaGO for PPI prediction. The
protein pairs for training the ensemble meta-learner are
represented in feature vectors constructed from the

sequence-based physicochemical properties and the GO-
based semantic similarities. The PPI-MetaGO is imple-
mented as illustrated in Fig. 1.

Feature extraction: sequence-based physicochemical
features
As the basis for PPI prediction, we characterize proteins
by 12 physicochemical properties of their composite
amino acids [25–32], namely, hydrophilicity, flexibility,
accessibility, turns scale, exposed surface, polarity, ante-
genic propensity, hydrophobicity, net charge index of
the side chains, polarizability, solvent accessible surface
area, and side-chain volume. Among the 12 properties,
hydrophobicity and polarity are each calculated accord-
ing to two different scales, respectively. The values of 14
physicochemical property scales of the 20 essential
amino acids are listed in Table 1. We translated each
amino acid into a vector of 14 numeric values, each cor-
responding to a physicochemical scale value in Table 1.
As an example, Fig. 2(a) shows the transformation of
two proteins, P1 and P2, into 14-element vectors. Each
element in each vector corresponds to a physicochemical
scale value [20, 33].
As proteins vary widely in length, different proteins

can be represented by different numbers of vectors.
Meanwhile, the base classifier in an ensemble meta-
learner, such as an artificial neural network (ANN), k-
nearest-neighbor (KNN) or naïve Bayesian (NB), re-
quires a uniform input. For example in Fig. 2(a), protein
P1 composed of five amino acids is represented by five
vectors, but protein P2 with three amino acids is de-
scribed by three vectors. To prepare a uniform input for
the base classifier of the ensemble meta-learner, we
transform the protein representation (a set of variable
numbers of numeric vectors) into a uniform vectorial
form with auto covariance [8, 34], in which all proteins
with varying numbers of amino acids are represented by
vectors of the same length. The auto covariance (AC) of
the physicochemical property scale of a protein sequence
describes the average interactions between the amino
acids separated by a certain gap throughout the entire
protein sequence. Here, the gap is set as a certain num-
ber of residues between an amino acid and its neighbor.
The AC of the ith physicochemical property scale, ACi,g,
is given by

ACi;g ¼ 1
L−g

XL−g

j¼1
Pi; j−μi
� �� Pi; jþg−μi

� � ð1Þ

μi ¼
1
L

XL

j¼1
Pi; j ð2Þ

where g is the pre-specified gap, L is the length of pro-
tein P, and μi is the mean of the ith physicochemical
scale values of protein P. Setting the maximum gap to G
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Fig. 1 Architecture of PPI-MetaGO for predicting protein–protein interactions

Table 1 Values of the 14 physicochemical property scales of the 20 essential amino acids

AA H11
a H12

a H2 NCI P11
a P12

a P2 SASA V F A1 E T A2

A 0.62 2.1 − 0.5 0.007 8.1 0 0.046 1.181 27.5 −1.27 0.49 15 −0.8 1.064

C 0.29 1.4 −1.0 −0.037 5.5 1.48 0.128 1.461 44.6 −1.09 0.26 5 0.83 1.412

D −0.9 10.0 3.0 −0.024 13.0 40.7 0.105 1.587 40.0 1.42 0.78 50 1.65 0.866

E −0.74 7.8 3.0 0.007 12.3 49.91 0.151 1.862 62.0 1.6 0.84 55 −0.92 0.851

F 1.19 −9.2 −2.5 0.038 5.2 0.35 0.29 2.228 115.5 −2.14 0.42 10 0.18 1.091

G 0.48 5.7 0.0 0.179 9.0 0 0 0.881 0 1.86 0.48 10 −0.55 0.874

H −0.4 2.1 −0.5 −0.011 10.4 3.53 0.23 2.025 79.0 −0.82 0.84 56 0.11 1.105

I 1.38 −8.0 −1.8 0.022 5.2 0.15 0.186 1.81 93.5 −2.89 0.34 13 −1.53 1.152

K −1.5 5.7 3.0 0.018 11.3 49.5 0.219 2.258 100 2.88 0.97 85 −1.06 0.93

L 1.06 −9.2 −1.8 0.052 4.9 0.45 0.186 1.931 93.5 −2.29 0.4 16 −1.01 1.25

M 0.64 −4.2 −1.3 0.003 5.7 1.43 0.221 2.034 94.1 −1.84 0.48 20 −1.48 0.826

N −0.78 7.0 2.0 0.005 11.6 3.38 0.134 1.655 58.7 1.77 0.81 49 3.0 0.776

P 0.12 2.1 0.0 0.240 8.0 0 0.131 1.468 41.9 0.52 0.49 15 −0.8 1.064

Q −0.85 6.0 0.2 0.049 10.5 3.53 0.18 1.932 80.7 1.18 0.84 56 0.11 1.015

R −2.53 4.2 3.0 0.044 10.5 52.0 0.291 2.56 105 2.79 0.95 67 −1.15 0.873

S −0.18 6.5 0.3 0.005 9.2 1.67 0.062 1.298 29.3 3.0 0.65 32 1.34 1.012

T −0.05 5.2 −0.4 0.003 8.6 1.66 0.108 1.525 51.3 1.18 0.7 32 0.27 0.909

V 1.08 −3.7 −1.5 0.057 5.9 0.13 0.14 1.645 71.5 −1.75 0.36 14 −0.83 1.383

W 0.81 −10 −3.4 0.038 5.4 2.1 0.409 2.663 145.5 −3.78 0.51 17 −0.97 0.893

Y 0.26 −1.9 −2.3 117.3 6.2 1.61 0.298 2.368 0.024 −3.3 0.76 41 −0.29 1.161

H11 & H12 hydrophobicity, H2 hydrophilicity, NCI net charge index of side chains, P11 & P12 polarity, P2 polarizability, SASA solvent-accessible surface area, V volume
of side chains, F Flexibility, A1 Accessibility, E Exposed, T Turns, A2 Antegenic
aHydrophobicity (H11 & H12) and polarity (P11 & P12) were calculated by two different methods
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(i.e. g = 1, 2, 3, …, G), we can represent any protein (re-
gardless of length) as a vector of k ×GAC variables,
where k is the number of physicochemical property
scales. Using auto covariance between amino acids, we
are able to process the raw physicochemical scale values
into a uniform vectorial form. All proteins, regardless of
their lengths, can consequently be represented by vec-
tors of the same length. For example, when G is set to 2
and there are 14 physicochemical scales, the numeric
vectors of proteins P1 and P2 in Fig. 2(a) can be trans-
formed into a uniform AC vectorial form shown in Fig.
2(b). Proteins P1 and P2 are represented by a vector of
28 AC values, respectively, even though they have differ-
ent lengths.
To avoid the effects of variance, we first normalize the

AC of each property scale to zero mean and unit stand-
ard deviation as follows:

Si ¼ Ai−μi
SDi

; i ¼ 1⋯M; ð3Þ

where Si is the standardized value, Ai is the raw value of
the ith AC, μi and SDi denote the mean and standard
deviation of the ith AC, respectively, and M is the num-
ber of AC values in the AC vector. Secondly, to ensure
that the ACs derived from different physicochemical
scales are commensurate and to further suppress the ef-
fects of outliers, we adopt a min–max scaling method
that scales the standardized AC values to a fixed range
of [0, 1]. The min–max scaling is described by Eq. (4).

V i ¼ Si− mini
MAXi− mini

; i ¼ 1⋯M; ð4Þ

where Vi is the scaled value, Si is the standardized value
of the ith AC, MAXi and mini are the maximum and
minimum of the standardized values of the ith AC, re-
spectively, and M is defined above.
With two proteins represented by two AC vectors,

protein pair (P1, P2) can be represented in one of two
common forms: (1) combination [V(P1)⊕V(P2)], or (2)
concatenation [V(P1)V(P2)]. Here, V(P) is the sequence-
based feature vector corresponding to protein P, and the
⊕ operator adds the feature values of the two proteins
in element-by-element fashion [16]. In our approach, the
element-by-element feature values of two proteins are
combined by concatenating the feature vectors. The
concatenation avoids the need for applying a direct pair-
wise kernel on the feature space of protein pairs [16],
which involves a complex kernel design, or applying spe-
cific binary operators such as addition or multiplication
to each pair of elements, which introduce uncertain ef-
fects. However as mentioned in Bandyopadhyay and
Mallick [16], concatenating the protein pair features is
undesirable in PPI prediction because for the same pro-
tein pair P1 and P2, [V(P1)V(P2)] and [V(P2)V(P1)] are
differently represented in the feature space. Training a
learner by one of the two representations will lose the
information of the other representation. To resolve the
order problem, we represent the protein pair (P1, P2) by
both concatenations, [V(P1)V(P2)] and [V(P2)V(P1)].
Provided with the concatenations in both orders for

Fig. 2 Vectorial representations of two proteins, P1 and P2. a Each amino acid AAi is first translated into a vector of 14 physicochemical scale
values, b Both proteins, P1 and P2, are later represented in a uniform vectorial form with 28 AC values. We demonstrate the calculation of the first
two AC values of H11 for P2 when the gap is 1 (g = 1) and 2 (g = 2), respectively
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training, the learner can flexibly identify the (approxi-
mately) optimum decision regions for the PPI prediction,
based on either of [V(P1)V(P2)] or [V(P2)V(P1)]. To clas-
sify a new protein pair (P3, P4), we average the predicted
class probabilities (interacting and non-interacting) pro-
duced by the trained learner for [V(P3)V(P4)] and [V(P4)
V(P3)], respectively, and predict the class of the protein
pair (P3, P4) according to the higher average probability.

Feature extraction: GO-based features
GO is a hierarchical vocabulary for annotating gene func-
tions and their relationships with respect to their molecu-
lar function (MF), cellular components (CC), and
biological process (BP) [35]. Each subontology is repre-
sented by a rooted DAG, where each node corresponds to
a GO-term, and each link denotes a relationship between
two terms, such as part_of or is_a. This hierarchical
knowledge of the functional relationships between gene
products has proved most useful for assessing the rele-
vance of the involvement of genes in various biological ac-
tivities [36], including PPI prediction [13, 16, 19].
Interacting proteins often participate in similar bio-

logical processes, exercise similar molecular functions,
and/or co-localize in similar cellular components; conse-
quently, they exhibit high GO semantic similarity [14,
37]. Many measures of semantic similarity have been
proposed and categorized into edge-based, node-based
and hybrid methods [11]. The edge-based methods are
mainly based on counting the edges along the paths be-
tween the GO terms being considered [38]. By contrast,
the node-based approaches compare the properties of
the involved terms, their ancestors, or their descendants
[39, 40]. One of the most commonly considered proper-
ties is the information content of the terms. Node-based
measures are typically more reliable than edge-based
methods in the biomedical field, because most of the
edge-based measures assume that the distance between
all relationships in an ontology is constant or depth-
dependent. Neither assumption is valid in existing bio-
medical ontologies. Alternatively, the hybrid methods as-
sign weights to the edges and defines the semantic
similarity after combining various types of measures,
such as node depth, node link density, information con-
tent, or semantic contribution of the relationships (e.g.
is_a or part_of ) [41].
We propose a novel approach that characterizes pro-

tein pairs based on the clustering of GO terms. Given
two sets Gi and Gj of GO terms annotating each of the
proteins Pi and Pj in a pair, we traverse the GO hierarchy
from the GO terms in Gi and Gj up to their lowest com-
mon ancestor (ULCA) [19]. In this fashion, we identify
the lowest common ancestor (LCA) of each protein pair
<Pi, Pj > in a given set of protein pairs. The found LCAs
are stored in a list sorted by ascending order of their

hierarchical GO level. For each LCA in the sorted list in
ascending order, we iteratively group that LCA and all
its descendants into a cluster, excluding those already
assigned to a previously formed cluster. The entire GO
DAG is consequently partitioned into a set of mutually
exclusive subgraphs, each rooted by an LCA, as illus-
trated in Fig. 3. In the sample hierarchy of Fig. 3, the
two protein pairs <P1,P2 > and < P5,P6 > share a common
LCA (G11), which is denoted by LCA3. The LCA of pro-
tein pair <P3,P4 > (G4) is denoted by LCA2. The LCAs of
protein pairs <P7,P8 > and < P9,P10 > (G15 and G1 respect-
ively), are denoted by LCA4 and LCA1, respectively.
These four LCAs are organized into a sorted list L in as-
cending order of their hierarchical levels, namely,
L = (LCA4, LCA3, LCA2, LCA1). The first LCA in the
sorted list, LCA4, is grouped with all its descendants in
the hierarchy. The resulting cluster contains G15, G20,
G21, G26, G27, G28, G33, G34, G35, G36, G42, G43, G44, and
G45. Similarly, by grouping all the descendants from G11

(i.e. LCA3), we represent the second cluster of GO terms
by a hierarchical subgraph rooted at G11. This subgroup
contains 11 GO terms, including G11 itself. Continuing
to the next LCA in the list, LCA2, we cluster all descen-
dants of G4 (i.e. LCA2) that have not been assigned to
an earlier cluster. Excluding the terms included in the
second cluster, we form the third cluster of GO terms,
constituting G4, G7, G8, G12, G18, G24, G25, G32, G40 and
G41. Finally, based on LCA1, we group G1, G2, G3, G5,
G6, G9, G10, G13, G14 and G19 into the fourth cluster.
The entire hierarchy is consequently partitioned into
four subgraphs, each corresponding to an LCA, based
on the provided training set of protein pairs, namely, {<
P1, P2>,<P3, P4>,<P5, P6>,<P7, P8>}. Provided with differ-
ent training protein pairs, we can partition the hierarchy
accordingly to reflect the different interaction character-
istics of the protein pairs.
Feature vectors of GO-terms have been constructed by

considering the presence or absence of shared GO terms
[19], or weighting the GO terms by their information
content and local topology [16]. Instead, we define one
GO-based feature as one GO-term cluster indexed by an
LCA. To translate the sets of GO-term annotations Gi

and Gj for each protein pair <Pi, Pj > into numeric
values of LCA-indexed GO-based features, we first lo-
cate the GO terms in sets Gi and Gj on each LCA-
indexed subgraph. For each GO-term, we count the
nodes along the ascending path up to the root of a sub-
graph, and sum the node counts on the subgraph. This
sum is assigned as the value of the corresponding GO-
term feature. Figure 4 shows the encoding of two protein
pairs into two feature vectors, based on the four LCA-
indexed GO-term features presented in Fig. 3. To obtain
the LCA-indexed GO-term feature vector for the protein
pair <P11, P12>, we locate the GO terms of Pi and Pj on
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the hierarchy. The GO terms G5 and G6 are located in
the subgraph of LCA1, terms G7 and G8 are located in
the subgraph of LCA2, and G20 is located in the sub-
graph of LCA4. The subgraph rooted at LCA3 contains
no GO-term of either P11 or P12. Tracing along the as-
cending paths from G5 and G6 up to LCA1 (blue arrows
on the subgraph of LCA1 in Fig. 4), we encounter G5,

G6, G3, and G1 (a total of four nodes). Therefore, the
value of the LCA1-indexed GO-term feature is 4. Simi-
larly, the values of the GO-term features indexed by
LCA2 and LCA4 are determined as 3 and 2, respectively.
As the subgraph of LCA3 contains no GO terms of ei-
ther P11 or P12, the Go-term features indexed by LCA3

are assigned a value of zero. Finally, the LCA-indexed

Fig. 3 Demonstration of GO DAG partitioning into clusters based on LCAs

Fig. 4 Example of encoding protein pairs into LCA-indexed GO-term feature vectors. The blue and green arrows show the ascending traversals
up to the LCAs from the GO terms of <P11, P12 > and < P13, P14>, respectively
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GO-term feature vector for <P11, P12 > is obtained as (2,
0, 3, 4). The GO terms of <P13, P14 > are converted into
a GO-term feature vector (0, 3, 3, 0) by the same process
(see Fig. 4). Because the partitioning of the GO DAG de-
pends on the given training data, the GO-based features
of the same protein pair can vary in number and their
values to adapt dynamically to the changes of training
data. This flexibility warrants a better definition of GO-
based features and leads to higher predictive perfor-
mances when the size and the quality of training data
increase.

Feature extraction: network-based features
We derive the network-based features from the topo-
logical properties of a PPI network, NPPI = <V, E>, where
V and E denote the node and link sets, respectively.
Here, each node represents a protein, and each link is an
interaction between two proteins. To predict the PPI of
a set of proteins, we construct the PPI network NPPI,
and whether two proteins are linked in NPPI depends on
the semantic similarity of their GO terms. The func-
tional similarity between two gene products can be de-
termined by various similarity measures, some of which
were originally developed for natural language taxonomy
[37, 40, 41]. We here measure the functional similarity
between proteins by the widely used Resnik’s measure
[40], which has proven superior in several prominent
studies [12, 39, 42].
Resnik’s measure quantifies the semantic similarity be-

tween two ontology terms ti and tj as the information
content (IC) of their most informative common ancestor
(MICA) [11, 13, 40]. Resnik’s semantic similarity be-
tween ti and tj is defined by Eq. (5):

SimResnik ti; t j
� � ¼ max IC tð Þjt∈CA ti; t j

� �� �
; ð5Þ

where CA (ti, tj) is the set of common ancestors of ti and
tj in the GO hierarchy, and IC(t) is the information con-
tent of term t. IC(t) is defined by –log p(t), where p(t) is
the occurrence probability of term t in a specific GO an-
notation corpus. Therefore, the Resnik’s similarity be-
tween two proteins Pi and Pj, annotated to sets of GO
terms Gi and Gj respectively, defines the maximum IC of
the set Gi ×Gj as

SimResnik Pi;P j
� � ¼ max SimResnik ti; t j

� �jti∈Gi; t j∈Gj
� �

:

ð6Þ
After computing the Resnik’s semantic similarity be-

tween any two proteins, we set one of the semantic simi-
larities as the threshold θR. The NPPI is then constructed
by linking only the proteins with a semantic similarity
above θR. The threshold similarity θR is obtained by de-
riving a reference PPI network, called NS, from the train-
ing set of protein pairs. In constructing NS, each protein

pair is preclassified as interacting or non-interacting,
and two proteins are connected only when confirmed as
interacting in the training set. The θR is then selected to
equalize the average degrees in NPPI and NS, thereby
capturing the PPI characteristics of the training data in
NPPI. Based on the topology of NPPI, we create five
network-based network features for each protein pair <
Pi, Pj>: (a) number of common neighbors, (b) the Jac-
card index, (c) the Adamic–Adar index, (d) the preferen-
tial attachment score, and (e) the Otsuka–Ochiai
coefficient [43, 44]. The network-based features are for-
mally defined in Table 2. With the similar flexibility of
the GO-based features, the network-based features of
the same protein pair can be different and adapt when
the training data change and so does the topology of the
PPI network.

Stacked generalization
Ensemble learning combines many different classifiers
into one predictive unit typically by majority voting. In
simple voting schemes such as bagging [45], each classi-
fier is allowed one vote, and the majority vote is ac-
cepted as the final prediction. Boosting [46] is a more
complex scheme that weights the training examples by
the difficulty of classifying them correctly, and updates
the rewards to the classifiers based on the weights of
their correctly classified examples. The final predictive
unit is the weighted average of all classifiers over their
rewards.
Unlike the bagging and boosting approaches, which

mainly aim to improve the performance of a classifier by
reducing the variance of multiple classifiers, our stacked
classifiers operate as layered processes that aim to de-
duce the biases of the base generalizers [24]. In the
stacked learning framework, each base classifier in a set
is trained on a dataset, and their predictions are assem-
bled as the meta-data. Successive layers of meta-
classifiers receive the meta-data as the input for training
the meta-models in parallel, then pass their outputs to
the subsequent layer. A single classifier at the top level
makes the final prediction. Stacked generalization is
considered as a form of meta-learning because the

Table 2 Summary of network-based features

Features Definitiona

Common neighbors |N(Pi) ∩ N(Pj)|

Jaccard index jNðPiÞ∩NðP j Þj
jNðPiÞ∪NðP j Þj

Adamic–Adar index X

Pk∈NðPiÞ∩NðP jÞ

1
logjNðPkÞj

Preferential attachment score |N(Pi)| × |N(Pj)|

Otsuka–Ochiai coefficient jNðPiÞ∩NðP jÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðPiÞ�NðP jÞj

p
aN(Pi) denotes the set of Pi’s neighbors

Chen et al. BMC Bioinformatics          (2019) 20:308 Page 7 of 17



transformed training data for the current layer contain
the predictive information of the preceding learners,
which constitutes a form of meta-knowledge.
We developed a two-level stacked generalization archi-

tecture for PPI prediction. The bottom level comprises
four base classifiers: RF [47], NB [48], ANN [49] and
KNN [50]. At the top level, we place a Radial Basis
Function (RBF) kernel SVM [51] as a meta-classifier that
arbitrates among the base classifiers, and makes the final
prediction. The base classifiers are trained on a set of
protein pairs that have been pre-labeled as interacting or
non-interacting, and translated to vectors of sequence-
based features and GO-based features. The predictions
of the base classifiers provide the meta-data for training
the top-level SVM. To classify a new protein pair, we
first feed its feature vector derived from the physico-
chemical properties, GO terms, and network topologies
to each trained base classifier, which makes a prediction.
Subsequently, the predictions of the four classifiers are
input to the trained SVM, which makes the final PPI
prediction for the new protein pair.

Datasets
Our PPI-MetaGO for PPI prediction was evaluated on the
datasets of eight species: Homo sapiens, Mus musculus,
Drosophila melanogaster, Arabidopsis thaliana, Caenorhab-
ditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces

pombe, and Escherichia coli. In the comparative analysis, we
used the data collected from different databases and proc-
essed in earlier studies, namely, DIP [52], HPRD [53] and
MIPS MPact [54]. The species, sizes and prediction tools of
the datasets are summarized in Table 3. For species studied
by different prediction methods on different datasets, such
as H. sapiens, Table 4 summarizes the numbers of coinci-
dent proteins and protein pairs in the additional datasets.
These numbers indicate the degrees of similarity between
pairs of datasets, and should consequently be considered
when evaluating and comparing the prediction methods.

Results
Performance measures
To evaluate and compare the performances of PPI-
MetaGO and other PPI prediction approaches, we con-
ducted 10-fold cross-validation (CV) using the 7 mea-
sures: (1) true positive rate (TPR), (2) false positive rate
(FPR), (3) precision, (4) percentage accuracy, (5) F-score,
(6) Matthews correlation coefficient (MCC), and (7) area
under receiver operating characteristic curve (AUC).
The seven performance measures are defined as follows:

TPR ¼ TP= TPþ FNð Þ ð7Þ

FPR ¼ FP= FPþ TNð Þ ð8Þ

Table 3 Summary of benchmark datasets

Label Species Proteins Interactions (positive/negative) Prediction Tool

HS1 Homo sapiens 9439 37,027/37027 PRED_PPI (Guo et al.)

EC1 Escherichia coli 1834 6954/6954 PRED_PPI (Guo et al.)

DM1 Drosophila melanogaster 7059 21,975/21975 PRED_PPI (Guo et al.)

CE Caenorhabditis elegans 2640 4030/4030 PRED_PPI (Guo et al.)

SC1 Saccharomyces cerevisiae 2245 3956/3956 PRED_PPI (Guo et al.)

HS2a Homo sapiens 7033 24,718/177117 SPRINT (Li & Ilie)

HS3 Homo sapiens 1515 12,244/12244 TRI_tool (Perovic et al.)

SC2 Saccharomyces cerevisiae 3291 15,238/15238 go2ppi-RF (Maetschke et al.)

HS4 Homo sapiens 3296 3490/3490 go2ppi-RF (Maetschke et al.)

EC2 Escherichia coli 589 1167/1167 go2ppi-RF (Maetschke et al.)

SP Schizosaccharomyces pombe 904 742/742 go2ppi-RF (Maetschke et al.)

AT Arabidopsis thaliana 756 541/541 go2ppi-RF (Maetschke et al.)

MM Mus musculus 1088 500/500 go2ppi-RF (Maetschke et al.)

DM2 Drosophila melanogaster 658 321/321 go2ppi-RF (Maetschke et al.)

SC3 Saccharomyces cerevisiae 2152 3844/3844 go2ppi-RF (Maetschke et al.)

HS5 Homo sapiens 6037 1091/3427 HVSM (Zhang et al.)

SC4 Saccharomyces cerevisiae 5436 4529/10831 HVSM (Zhang et al.)

SC5 Saccharomyces cerevisiae 454 500/500 GIS-MaxEnt (Armean et al.)

SC6 Saccharomyces cerevisiae 4424 17,257/48594 DeepSequencePPI (Gonzalez-Lopez et al.)
aIn the work of SPRINT [6], the authors prepared three separate data into three human PPI data sets (i.e. C1, C2 and C3). To facilitate 10-fold CV in our
experiments, we merged all three data sets into one single set of human PPI data with the redundancies removed
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Table 4 Summary of different PPI datasets for Homo sapiens, Saccharomyces cerevisiae, Escherichia coli, and Drosophila melanogaster.
(a) the numbers of coincident proteins and (b) the numbers of coincident interacting and non-interacting protein pairs (Pos and
Neg, respectively) in the datasets

(a)

Protein HS2 HS3 HS4 HS5

HS1 4513(11959a) 971(9983) 2460 (10275) 2699 (12777)

HS2 – 1043 (7505) 2272 (8057) 2492 (10578)

HS3 – – 620 (4191) 616 (6936)

HS4 – – – 1472 (7861)

Protein SC2 SC3 SC4 SC5 SC6

SC1 1759 (3777) 2078 (2319) 2088 (5593) 0 (2699) 1979 (4690)

SC2 – 1762 (3681) 3187 (5540) 0 (3745) 2622 (5093)

SC3 – – 2074 (5514) 0 (2606) 2001 (4574)

SC4 – – – 0 (5890) 3612 (6248)

SC5 – – – – 0 (4878)

Protein EC2

EC1 469 (1954)

Protein DM2

DM1 295 (7422)

(b)

Pos HS1 HS2 HS3 HS4 HS5

Neg

HS1 – 8388 (53357) 2282 (46989) 1626 (38891) 514 (37604)

HS2 87 (214057b) – 2742 (34220) 1505 (26703) 451 (25363)

HS3 5 (49266) 59 (189302) – 463 (15271) 194 (13141)

HS4 4 (40513) 15 (180592) 2 (15732) – 272 (4309)

HS5 0 (40454) 5 (180539) 1 (15670) 0 (6917) –

Pos SC1 SC2 SC3 SC4 SC5 SC6

Neg

SC1 – 1985 (17236) 3587 (4213) 3372 (5113) 0 (4456) 3526 (17687)

SC2 4 (19190) – 2073 (17009) 2534 (17233) 0 (15738) 4479 (28016)

SC3 10 (7790) 8 (19074) – 3532 (4841) 0 (4344) 3728 (17373)

SC4 4 (14783) 12 (26057) 3 (14672) – 0 (5029) 3602 (18184)

SC5 0 (4456) 0 (15738) 0 (4344) 0 (11331) – 0 (17757)

SC6 43 (52507) 76 (63756) 28 (52410) 42 (59383) 0 (49094) –

Pos EC1 EC2

Neg

EC1 – 384 (7737)

EC2 3 (8118) –

Pos DM1 DM2

Neg

DM1 – 15 (22281)

DM2 0 (22296) –

HS Homo sapiens, SC Saccharomyces cerevisiae, EC Escherichia coli, DM Drosophila melanogaster aNumbers in parentheses are the total numbers of non-
duplicated proteins in the two datasets, e.g. HS1 and HS2
bNumbers in parentheses are the total numbers of non-duplicated protein pairs in the two datasets, e.g. HS1 and HS2
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Precision ¼ TP= TPþ FPð Þ ð9Þ
Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ

ð10Þ
F−score ¼ 2� TPR

� Precision= TPRþ Precisionð Þ ð11Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð12Þ
AUC ¼ Area under the ROC curve ð13Þ

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

Performance comparison of PPI-MetaGo and recent PPI
predictors
The PPIs predicted by PPI-MetaGO on the different
datasets were compared with those of seven recent
PPI predictors: PRED_PPI [55], SPRINT [6], TRI_tool
[56], hierarchical vector space model (HVSM) [57],
go2ppi [19], GIS-MaxEnt [17], and DeepSequencePPI
[22]. Among these, PRED_PPI, SPRINT, TRI_tool, and
DeepSequencePPI are sequence-based methods,
whereas HVSM, go2ppi and GIS-MaxEnt are GO-
driven approaches.
Each of these prediction tools was previously trained

and tested on a different dataset. In each experiment, we
selected one tool for comparison with our proposed ap-
proach. To ensure a consistent and unbiased test, we
trained and tested PPI-MetaGO exclusively on the train-
ing and evaluation datasets of the predictor selected for
comparison. The performances of the different PPI pre-
diction methods were evaluated by three times of strati-
fied 10-fold CV. The dataset was randomly divided into
10 disjoint folds (subsets) of approximately equal size.
The folds were stratified to maintain the same distribu-
tion of the interacting and non-interacting protein pairs
as in the original dataset. One fold was retained for test-
ing the prediction performance; the remaining nine folds
were used for training. The same training–testing
process was iterated on each fold. In each iteration, if
the performance of the PPI predictors was sensitive to the
parameter values, we optimized all settings in a systematic
search (sequential or grid search) within a range of param-
eter values, and used the values yielding the best prediction.
The result of each test run on the selected fold was pooled.
After completing all iterations of the 10-fold CV, the results
of all runs were averaged to obtain the overall performance
of the predictor. The results are shown in Table 5. The
ACC, F-score, MCC and AUC performances of PPI-
MetaGO and the other PPI predictors were compared in
paired t-tests. Conventionally, significant differences in

comparison tables are marked with an asterisk. However,
the asterisks in Table 5 indicate insignificant differences,
highlighting that in most cases, PPI-MetaGO significantly
outperforms the established prediction tool. Note that in
Table 5 some of the values of AUC are higher than those of
ACC, F-score, and MCC for the same dataset, such as in
HS1 and SC2. This is because AUC is defined as the area
under the ROC curve, which depicts the tradeoffs between
true positives and false positives, while any of the other per-
formance measures (e.g. ACC) merely corresponds to a sin-
gle point in the ROC space, depending on the output score
threshold specified for the prediction tools. To warrant the
best performance of each tool for the CVs, we chose the
threshold value that maximized the MCC in the training
phase, and used that threshold for predicting PPI in the test
phase of the CVs.
Based on SVM, PRED_PPI [55] was developed for pre-

dicting PPIs in humans, yeast, Drosophila, E. coli, and C.
elegans. As shown in Table 5, the ACC, F-score, MCC,
and AUC of the HS1, EC1, DM1, CE, and SC1 datasets
(on which PRED_PPI was trained and tested) were sig-
nificantly higher in PPI-MetaGO than in PRED_PPI
(paired t-test, p < 0.05). The superiority of PPI-MetaGO
could be attributable to the inclusion of GO-based and
network-based features in its protein-pair representation,
and the synergy of multiple base classifiers in its learn-
ing. Unlike PRED_PPI, both SPRINT [6] and TRI_tool
[56] were specifically developed for PPI predictions in
humans. SPRINT was designed for predicting the entire
human interactome, whereas TRI_tool is a web-based
online tool that automatically predicts transcriptional
regulation interactions in humans. We compared PPI-
MetaGO with SPRINT on the human PPI dataset HS2
(on which SPRINT was trained and tested). SPRINT ap-
plies an alignment algorithm that evaluates the contribu-
tions of similar protein subsequences to the likelihood of
protein interactions. In contrast, the sequence-based fea-
tures in PPI-MetaGO were derived from the physico-
chemical properties of amino acids. Although the ACC
and MCC were significantly higher in PPI-MetaGO than
in SPRINT (paired t-test, p < 0.05), the F-score and AUC
were lower than in SPRINT, probably because SPRINT
is designed specifically for human PPI prediction, and
has been carefully trained on human PPI data. The final
sequence-based PPI predictor competed against PPI-
MetaGO was a web-tool called TRI_tool, which predicts
PPIs using a pseudo amino-acid composition representa-
tion and an RF classifier. In this comparison, PPI-
MetaGO and TRI_tool were tested on HS3 (on which
TRI_tool was trained and evaluated). The ACC, F-score,
MCC, and AUC were significantly higher in PPI-
MetaGO than in TRI_tool (paired t-test, p < 0.05) al-
though the improvement in PPI-MetaGo was modest.
Instead of relying on hand-crafted features to represent
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a protein pair for PPI prediction in deep learning [20,
21], DeepSequencePPI [22] learns low-level features dir-
ectly from raw protein sequences by combining the em-
bedding techniques with recurrent neural networks. We
compared PPI-MetaGO and DeepSequencePPI on SC6,
on which DeepSequencePPI had been earlier trained and
tested. Compared with the other datasets collected from
Saccharomyces cerevisiae, SC6 has the largest size in
terms of the number of interacting and non-interacting
protein pairs, respectively. The dataset size has a greater
impact on deep learners than on other predictors be-
cause deep learning engages in feature extraction from
raw data before constructing the prediction model. As a
result, DeepSequencePPI could have more leverage with
large datasets, such as SC6, than PPI-MetaGO. While
the ACC, F-score, MCC, and AUC were significantly
higher in DeepSequencePPI than in PPI-MetaGO (paired
t-test, p < 0.05), the differences were marginal.
In addition to the sequence-based methods, we se-

lected three state-of-the-art GO-driven approaches for
comparison with PPI-MetaGO. To facilitate the paired
comparisons with PPI-MetaGO, we tested each GO-
driven approach on all three categories of GO terms,

rather than sequentially evaluating the performance on
each category. As a hybrid approach go2ppi [19] com-
bines semantic similarity measures (SSMs) and ML. PPI-
MetaGO and go2ppi-RF (using Random Forest) were
evaluated on the eight datasets previously used for train-
ing and testing go2ppi. In six out of the eight datasets,
except EC2 and AT, PPI-MetaGO significantly outper-
formed go2ppi-RF for all four measures, ACC, F-score,
MCC and AUC (paired t-test, p < 0.05). PPI-MetaGO
performed significantly better than go2ppi-RF for all
measures except AUC in the EC2 dataset, and the differ-
ences in ACC and MCC were insignificant in the AT
dataset (as indicated by the asterisks in Table 5). Rather
than adopting a hybrid approach, HVSM refines the
basic vector space model (VSM) approaches by relating
the terms in the hierarchical structure of GO DAG. The
method considers not only the directly annotated GO
terms, but also their ancestors and descendants. The
HVSM improves the expressiveness of the gene vectors
transformed from GO terms, which should improve the
accuracy of the similarity measure between vector pairs.
We compared PPI-MetaGO and HVSM on HS5 and
SC4, on which HVSM had been earlier trained and

Table 5 Performance results of 10-fold CV of PPI prediction methods

PPI-MetaGO Other recent prediction tools

Dataset TPR FPR Prec ACC F-score MCC AUC TPR FPR Prec ACC F-score MCC AUC Tool

HS1 0.964 0.013 0.987 0.975 0.975 0.951 0.993 0.835 0.046 0.948 0.895 0.888 0.795 0.900 PRED_PPI

EC1 0.923 0.015 0.984 0.954 0.952 0.909 0.983 0.897 0.147 0.860 0.875 0.878 0.752 0.935 PRED_PPI

DM1 0.966 0.010 0.990 0.978 0.978 0.956 0.996 0.750 0.223 0.771 0.763 0.760 0.527 0.841 PRED_PPI

CE 0.984 0.004 0.995 0.990 0.990 0.979 0.997 0.833 0.158 0.841 0.838 0.837 0.676 0.910 PRED_PPI

SC1 0.898 0.051 0.947 0.923 0.921 0.848 0.974 0.686 0.342 0.667 0.672 0.676 0.344 0.737 PRED_PPI

HS2 0.327 0.009 0.834 0.91 0.469 0.487 0.791 0.540 0.072 0.513 0.881 0.526 0.458 0.814 SPRINT

HS3 0.826 0.187 0.816 0.820 0.821 0.639 0.897 0.789 0.193 0.803 0.798 0.796 0.596 0.878 TRI_tool

SC2 0.858 0.059 0.936 0.899 0.895 0.802 0.952 0.819 0.076 0.915 0.872 0.864 0.747 0.921 go2ppi-RF

HS4 0.826 0.106 0.887 0.860 0.855 0.723 0.921 0.786 0.126 0.863 0.830 0.822 0.663 0.890 go2ppi-RF

EC2 0.879 0.075 0.922 0.902* 0.900* 0.805* 0.950* 0.869 0.059 0.937 0.905 0.902 0.813 0.951 go2ppi-RF

SP 0.922 0.065 0.935 0.929 0.928 0.858 0.965 0.865 0.096 0.901 0.885 0.882 0.771 0.941 go2ppi-RF

AT 0.778 0.163 0.830 0.808* 0.801 0.619* 0.866 0.684 0.105 0.875 0.789 0.764 0.596 0.810 go2ppi-RF

MM 0.754 0.182 0.808 0.786 0.779 0.575 0.860 0.604 0.128 0.836 0.738 0.695 0.500 0.762 go2ppi-RF

DM2 0.857 0.118 0.885 0.869 0.867 0.744 0.916 0.832 0.146 0.853 0.843 0.841 0.688 0.889 go2ppi-RF

SC3 0.786 0.104 0.883 0.841 0.831 0.686 0.894 0.707 0.120 0.858 0.794 0.774 0.598 0.826 go2ppi-RF

HS5 0.824 0.026 0.911 0.938 0.864 0.826 0.974 0.782 0.213 0.801 0.784 0.609 0.578 0.849 HVSM

SC4 0.773 0.036 0.901 0.908 0.832 0.773 0.945 0.707 0.213 0.777 0.747 0.581 0.505 0.797 HVSM

SC5 0.920 0.034 0.965 0.943 0.942 0.888 0.984 0.926 0.088 0.915 0.919 0.920 0.839 0.977 GIS-MaxEnt

SC6 0.912 0.064 0.934 0.924 0.923 0.848 0.972 0.920 0.078 0.942 0.932 0.931 0.864 0.978 DeepSequencePPI

TPR true positive rate, FPR false positive rate, Prec precision, ACC accuracy, MCC Matthews correlation coefficient, AUC area under ROC
HS Homo sapiens, EC Escherichia coli, DM Drosophila melanogaster, CE Caenorhabditis elegans, SC Saccharomyces cerevisiae, SP schizosaccharomyces pombe, AT
Arabidopsis thaliana, MM Mus musculus
*denotes insignificant difference in a paired t-test between PPI-MetaGO and the prediction tool in the 10-fold CV at the significance level α = 0.05
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tested. In an evaluation study, the similarity measure of
HSVM achieved a higher AUC on HS5 and SC4 [57]
than several popular SSMs, including TCSS [13] and
Resnik’s measure [40]. However, PPI-MetaGO, which
adopts Resnik’s measure in its hybrid approach, outper-
formed HVSM in AUC and all other performance mea-
sures (see Table 5). The third annotation-based method
selected for a performance comparison with PPI-
metaGO was GIS-MaxEnt. Unlike go2ppi and HVSM,
GIS-MaxEnt incorporates two annotation sources, GO
and InterPro, and processes them by a maximum en-
tropy modeling method, thus preparing an input matrix
for training the SVM in PPI prediction. We compared
the performances of PPI-MetaGO and GIS-MaxEnt on
the SC5 dataset, on which GIS-MaxEnt had been previ-
ously evaluated. PPI-MetaGO significantly outperformed
GIS-MaxEnt for all four performance measures (ACC,
F-score, MCC and AUC; paired t-test, p < 0.05).

Study of cross-species PPI predictions
In addition to intra-species self-tests, cross-species PPI
prediction has been reported in several previous studies
[19, 58]. In these studies, the PPI predictor was trained
on one species, and then tested on others. According to
Park’s [58] results, the cross-species predictive perfor-
mances of sequence-based PPI predictors are consider-
ably lower than intra-species self-test performances. An
AUC of 0.9 achieved by 4-fold CV on a human dataset
can decrease to 0.68 if the predictor was trained from
yeast before application to the human dataset. In con-
trast to sequence-based prediction methods, Maetschke
et al. [19] hypothesized that GO-based predictors can
maintain good cross-species predictive performances be-
cause GO was designed as a species-independent anno-
tation system. They separately tested go2ppi with an NB
classifier on seven species in the BP, CC, and MF ontol-
ogies, and concluded that good prediction performance

Table 6 AUCs of cross-species predictions of PPI-MetaGO/go2ppi-NB using the biological process (BP), cellular component (CC), and
molecular function (MF) ontology, respectively

BP Test

Train AUC EC2 SP HS4 SC2 DM2 AT MM

EC2 0.94/0.88 0.92/0.78 0.86/0.76 0.87/0.77 0.69/0.80 0.73/0.64 0.59/0.65

SP 0.87/0.65 0.96/0.81 0.88/0.74 0.87/0.75 0.68/0.74 0.78/0.55 0.60/0.61

HS4 0.90/0.72 0.94/0.75 0.95/0.76 0.88/0.73 0.71/0.80 0.76/0.64 0.63/0.68

SC2 0.89/0.80 0.95/0.79 0.90/0.76 0.95/0.79 0.76/0.83 0.73/0.67 0.58/0.70

DM2 0.83/0.60 0.92/0.70 0.85/0.71 0.87/0.67 0.79/0.78 0.68/0.63 0.58/0.60

AT 0.82/0.72 0.91/0.80 0.84/0.74 0.86/0.75 0.73/0.76 0.86/0.72 0.61/0.63

MM 0.81/0.62 0.87/0.71 0.85/0.73 0.85/0.71 0.70/0.74 0.69/0.56 0.73/0.69

CC Test

Train AUC EC2 SP HS4 SC2 DM2 AT MM

EC2 0.94/0.88 0.91/0.67 0.86/0.68 0.87/0.68 0.68/0.74 0.71/0.59 0.55/0.66

SP 0.85/0.55 0.96/0.82 0.88/0.70 0.88/0.78 0.66/0.73 0.73/0.61 0.56/0.56

HS4 0.89/0.70 0.94/0.70 0.95/0.80 0.88/0.77 0.71/0.79 0.75/0.65 0.66/0.68

SC2 0.89/0.78 0.95/0.74 0.90/0.76 0.94/0.83 0.75/0.80 0.72/0.65 0.58/0.64

DM2 0.82/0.64 0.91/0.69 0.84/0.74 0.87/0.79 0.81/0.80 0.70/0.63 0.58/0.60

AT 0.79/0.57 0.90/0.66 0.84/0.67 0.85/0.73 0.67/0.70 0.85/0.71 0.61/0.61

MM 0.76/0.70 0.87/0.71 0.86/0.74 0.85/0.77 0.68/0.77 0.61/0.61 0.70/0.70

MF Test

Train AUC EC2 SP HS4 SC2 DM2 AT MM

EC2 0.94/0.88 0.92/0.65 0.87/0.62 0.87/0.66 0.69/0.70 0.74/0.62 0.57/0.56

SP 0.85/0.81 0.97/0.76 0.87/0.65 0.87/0.67 0.68/0.72 0.76/0.67 0.58/0.57

HS4 0.89/0.85 0.94/0.78 0.95/0.76 0.88/0.68 0.72/0.76 0.75/0.67 0.63/0.68

SC2 0.88/0.89 0.95/0.73 0.89/0.66 0.95/0.76 0.75/0.75 0.74/0.59 0.55/0.62

DM2 0.79/0.80 0.92/0.68 0.85/0.65 0.86/0.66 0.82/0.79 0.72/0.67 0.57/0.60

AT 0.75/0.72 0.93/0.70 0.83/0.63 0.83/0.60 0.72/0.70 0.86/0.75 0.61/0.58

MM 0.79/0.77 0.88/0.66 0.86/0.67 0.85/0.65 0.67/0.74 0.71/0.70 0.72/0.67

EC Escherichia coli, SP schizosaccharomyces pombe, HS Homo sapiens, SC Saccharomyces cerevisiae, DM Drosophila melanogaster, AT Arabidopsis thaliana, MM
Mus musculus
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in the cross-species prediction requires a high intra-
species self-test performance. That is, the predictive per-
formance on the target species was high when the self-
test performance for that species was also high; other-
wise, the cross-species performance was low.
Following Maetschke et al. [19], we conducted the

cross-species 10-fold CV tests of PPI-MetaGO and
go2ppi-NB on the same datasets of the same seven spe-
cies, using the BP, CC and MF ontologies separately.
The AUCs are summarized in Table 6. The intra-species
self-test results are shown diagonally in the cells in bold-
face for reference.
From Table 6, we note that PPI-MetaGO and go2ppi-

NB achieved (almost) maximum AUCs on all self-tests,
and the AUCs were usually higher than obtained from
cross-species tests. Compared with PPI-MetaGO,
go2ppi-NB produced substantially lower self-test and
cross-species AUCs in most cases. Consistent with previ-
ous studies, the performance on the target species was
high (low) when the self-test performance on that spe-
cies was also high (low). In both Maetschke et al.’s and
our study, the AUCs of the self-tests and cross-species
tests were lowest on the mouse PPI dataset (the MM
dataset; see final column of Table 6). Notably however,
when PPI-MetaGO was trained on MM, it achieved rea-
sonably high AUCs tested on the datasets of other
species.

Discussion
We introduced an ensemble meta learning approach,
PPI-MetaGO, for PPI prediction that integrated different
protein-pair representations. To demonstrate its perfor-
mances, we compared PPI-MetaGO with seven other
PPI prediction tools on 19 protein datasets from eight
species. Based on the design of PPI-MetaGO and the re-
sults of the experiments, we identified three issues worth
further discussion. First, while Table 5 shows the super-
iority of PPI-MetaGO using a combination of three types
of features, could other feature combinations produce
the same level of synergy, and to what degree did they
affect the prediction performances? Second, different
benchmark datasets, even collected from the same spe-
cies (e.g. HS1~HS5), have been used in previous studies
of PPI prediction (see Table 3). How significant was data
selection for evaluating the performances? Third, the
GO-based and network-based features employed in PPI-
MetaGO are obtained based on the partitioning of a GO
term hierarchy and the topological properties of a PPI
network, respectively. As the training data determine
both the GO hierarchy clustering and the PPI network,
the GO-based and network-based features can both vary
when different training data are provided. How did they
accommodate to the change of the benchmark datasets

Table 7 Performance results in 10-fold CV of PPI-MetaGO with
different feature combinations

TPR FPR Prec ACC F-score MCC AUC

HS1

F1 0.917 0.016 0.983 0.951 0.949 0.903 0.981

F2 0.872 0.101 0.897 0.886 0.884 0.772 0.901

F3 0.686 0.637 0.521 0.525 0.588 0.053 0.534

F1&F2 0.894 0.031 0.966 0.931 0.929 0.865 0.977

F1&F3 0.926 0.028 0.971 0.949 0.948 0.899 0.987

F2&F3 0.885 0.089 0.909 0.898 0.896 0.796 0.915

F1&F2&F3 0.964 0.013 0.987 0.975 0.975 0.951 0.993

DM1

F1 0.978 0.001 0.999 0.988 0.988 0.977 0.997

F2 0.664 0.237 0.727 0.714 0.644 0.449 0.787

F3 0.690 0.604 0.417 0.543 0.497 0.132 0.538

F1&F2 0.933 0.005 0.995 0.964 0.963 0.930 0.995

F1&F3 0.977 0.001 0.999 0.988 0.988 0.976 0.998

F2&F3 0.740 0.253 0.728 0.743 0.705 0.501 0.765

F1&F2&F3 0.966 0.010 0.990 0.978 0.978 0.956 0.996

HS3

F1 0.812 0.215 0.790 0.798 0.801 0.597 0.862

F2 0.730 0.244 0.750 0.743 0.740 0.487 0.788

F3 0.626 0.235 0.731 0.695 0.672 0.397 0.733

F1&F2 0.809 0.206 0.797 0.801 0.803 0.602 0.870

F1&F3 0.812 0.191 0.809 0.811 0.811 0.621 0.883

F2&F3 0.720 0.202 0.781 0.759 0.749 0.520 0.810

F1&F2&F3 0.826 0.187 0.816 0.820 0.821 0.639 0.897

SC2

F1 0.747 0.261 0.741 0.743 0.744 0.486 0.812

F2 0.805 0.133 0.858 0.836 0.831 0.673 0.871

F3 0.796 0.063 0.927 0.866 0.856 0.740 0.885

F1&F2 0.809 0.145 0.848 0.832 0.828 0.665 0.908

F1&F3 0.841 0.070 0.923 0.885 0.880 0.774 0.933

F2&F3 0.858 0.065 0.930 0.897 0.893 0.796 0.934

F1&F2&F3 0.858 0.059 0.936 0.899 0.895 0.802 0.952

EC2

F1 0.763 0.169 0.821 0.797 0.790 0.598 0.845

F2 0.810 0.089 0.902 0.860 0.853 0.725 0.913

F3 0.878 0.075 0.922 0.902 0.899 0.805 0.938

F1&F2 0.793 0.141 0.850 0.826 0.820 0.655 0.895

F1&F3 0.901 0.069 0.929 0.916 0.914 0.832 0.956

F2&F3 0.915 0.046 0.952 0.934 0.933 0.870 0.973

F1&F2&F3 0.913 0.048 0.950 0.933 0.931 0.866 0.960

F1 physicochemical features, F2 LCA-indexed GO-term features, F3
network-based features
TPR true positive rate, FPR false positive rate, Prec precision, ACC
accuracy, MCC Matthews correlation coefficient, AUC area under ROC
EC Escherichia coli, HS Homo sapiens, SC Saccharomyces cerevisiae,
DM Drosophila melanogaster
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for the same species such as H. sapiens? We discuss
these issues as follows.

Synergy of different feature combinations
PPI-MetaGO constructs a meta-classification model for
PPI prediction using three types of features: physico-
chemical features, LCA-indexed GO-term features, and
network-based features. For simplicity, we denote the
feature types by F1, F2, and F3, respectively. The effects
of combining F1, F2, and F3 were summarized in Table 7,
but a comparison with other feature combinations can
provide insight into the importance of different feature
types in PPI prediction. For this purpose, we tested all
possible feature combinations in PPI-MetaGO on the
same datasets, and analyzed their effects on the predic-
tion performance. The results of different feature combi-
nations on some PPI datasets are given in Table 7. As
shown by the synergy of the F1, F2 and F3 features in
Table 7, the PPI prediction was superior on most data-
sets, but some combinations or even single feature types
maximized the performance on certain data sets. On the
HS1, HS3, and SC2 datasets, the performance of PPI-
MetaGo was generally higher for the combined three
feature types than for the other feature configurations.
However, on the DM1 dataset, the highest ACC, F1
score, and MCC were obtained in PPI-MetaGo with the
F1 features alone. Meanwhile, the best achievement on
EC2 was obtained by PPI-MetaGo with the F1 and F2
features. The performance discrepancies after varying
the feature combinations suggest that each feature type
makes a distinct contribution to the PPI prediction on
different datasets.

Effects of training data on prediction performances
PPI-MetaGO generally outperformed its competing
tools, as shown in Table 5, while we also observed that
its performances could vary among different datasets
even from the same species. For example, for H. sapiens
it performed the best on HS1 for AUC as high as 0.993,
but did poorly on HS2 with a markedly lower 0.791
AUC. According to Table 4, the contents of the datasets
from the same species, HS1 to HS5 for example, can dif-
fer significantly as indicated by the small numbers,

relative to the dataset sizes, of the proteins and protein
pairs commonly shared between any pair of datasets. In
addition, the non-interacting protein pairs, namely,
negative examples, common to two datasets, such as
HS2 and HS3, are markedly limited. The non-interacting
protein pairs in HS4 and HS5 are entirely different, as
shown in Table 4(b). These differences in the datasets
can affect the training of any predictor, and consequently
its predictive performance, as noted from Table 5. To
evaluate the effects of different negative examples on the
prediction performances, we trained and tested PPI-
MetaGO and other PPI predictors based on mixed posi-
tive and negative data from different datasets. We con-
ducted a 10-fold CV test of PPI-MetaGO and HVSM,
using the original positive examples of HS5, but re-
placing its original negative examples with those from
HS4. We also compared PPI-MetaGO with DeepSequen-
cePPI, using only the positive examples of SC6, but com-
bined with the negative examples of SC2. The results are
shown in Table 8. Compared with the results of HS5 in
Table 5, we noted that the performances of HVSM in-
creased substantially while PPI-MetaGO’s performances
decreased by a narrow margin. Despite the opposite ef-
fects of the new negative data on HVSM and PPI-
MetaGO, respectively, PPI-MetaGO still outperformed
HVSM on the new dataset. By contrast, after the re-
placement of the negative examples in SC6, the perfor-
mances of both DeepSequencePPI and PPI-MetaGO
declined markedly. Notably however, DeepSequencePPI’s
performances decreased by a wider margin than PPI-
MetaGO’s, which made PPI-MetaGO superior on this
new dataset. These results suggest the importance of the
selection of data for training and evaluating PPI
predictors.

Adaptive generation of features
Unlike most current GO-term features that are node-
based, edge-based or hybrid, the proposed GO-based F2
features are instead derived from the partitioning of the
GO DAG. Other GO-based features are mostly
constant-valued; that is, their values for any protein pair
remain constant after being determined, and any change
of the protein pair dataset for training does not affect

Table 8 Performance results of 10-fold CV, using mixed positive and negative data from different datasets

PPI-MetaGO Other recent prediction tools

Dataset TPR FPR Prec ACC F-score MCC AUC TPR FPR Prec ACC F-score MCC AUC Tool

HS5(+)a

HS4(−)
0.811 0.031 0.893 0.932 0.850 0.808 0.971 0.730 0.054 0.808 0.894 0.766 0.700 0.932 HVSM

SC6(+)b

SC2(−)
0.810 0.155 0.858 0.826 0.832 0.656 0.901 0.819 0.204 0.824 0.811 0.822 0.621 0.891 DeepSequencePPI

TPR true positive rate, FPR false positive rate, Prec precision, ACC accuracy, MCC Matthews correlation coefficient, AUC area under ROC
HS Homo sapiens, SC Saccharomyces cerevisiae
aCombination of positive data from HS5 and negative data from HS4
bCombination of positive data from SC6 and negative data from SC2
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the values. By contrast, the proposed F2 features of a
protein pair are able to adapt to the changes of the train-
ing data because the partitioning of the GO DAG de-
pends on the given training set of protein pairs (see
Methods). Table 9 shows the numbers of F2 features de-
rived from different GO categories in each run of a 10-
fold CV for HS1. As indicated in Table 9, the numbers
of the generated F2 features varied according to different
training data, and consequently their values for a protein
pair were also adjusted to accommodate to the change.
In addition, Table 10 shows the average numbers of the
F2 features generated for HS1 to HS5 of H. sapiens. The
high variance of the numbers of F2 features generated
for the different datasets from the same species suggests
the high adaptability of the F2 features. By contrast, the
values of other GO-based features after being deter-
mined to describe a protein pair will remain the same
regardless of the datasets. This flexible property enables
the F2 features to better adapt to new training data when
available to improve predictive performances.
Similar to the F2 features, the proposed network-based

F3 features can also accommodate to the changes in the
training data. The F3 features are based on the topology
of a PPI network constructed from the training data.
The change in the training data may consequently alter
the topology of the PPI network, and affect the F3 fea-
tures. In contrast to F2, the adaptability of F3 does not
modify the number of features while it revises the fea-
ture values for accommodating to the change in the
training data. It is computationally prohibited to evaluate
every change in the values of F3 features due to the
change of the training data in the experiments. Never-
theless, the combination of F3 with F1, F2, or both gener-
ally produced higher predictive performances than F1 or
F2 alone, as shown in Table 7. These findings fairly verify
the contribution of F3.

Conclusions
Researchers have proposed various computational
methods for predicting PPIs. These methods are charac-
terized by two primary aspects: (a) the computational
strategy that classifies the protein interactions, such as
semantic similarity comparisons versus supervised ML
approaches, and (b) the representation describing the
protein pairs, such as amino acid properties versus GO
annotations. These differences in the design philosophies
affect the prediction performances of the methods. This
study presented an ensemble meta-learning approach for
PPI prediction, which utilizes the synergy of multiple
ML algorithms and different protein-pair representations
to improve the PPI prediction.
The performance of our proposed method, called PPI-

MetaGO, was extensively compared with those of seven
competitive PPI predictors on 19 protein datasets cover-
ing eight species. The experimental results demonstrated
the favorable performances of PPI-MetaGO over other
PPI predictors. The AUC of PP-MetaGo exceeded 0.9 on
14 out of the 19 datasets, reaching 0.95 or higher in 11
datasets. Following previous works, we also ran cross-
species PPI prediction tests. Again, the AUCs of PP-
MetaGo were generally high, exceeding those of the
competitive predictors in most of the cross-species PPI
prediction tests. Overall, these results verify the feasibil-
ity and superiority of the proposed ensemble meta-
learning approach in PPI prediction. Moreover, as a
wider variety of ML algorithms becomes available for
base learning, more ontologies emerge for improving the
annotations of biological entities or experimental assays,
and the flexibility increases for building a stacked archi-
tecture appropriate to a certain prediction task, the pro-
posed ensemble meta-learning strategy should become
extendible to other domains.

Abbreviations
10-fold CV: 10-fold cross-validation; AC: Auto covariance; ANN: Artificial
neural network; AUC: Area under receiver operating characteristic curve;
BP: Biological process; CC: Cellular component; DAG: Directed acyclic graph;
FP: False positive; FPR: False positive rate; GO: Gene ontology;
HVSM: Hierarchical vector space model; KNN: K-nearest-neighbor;
LCA: Lowest common ancestor; MCC: Matthews correlation coefficient;
MF: Molecular function; ML: Machine learning; NB: Naïve Bayesian;

Table 9 Numbers of F2 features generated in each run of 10-
fold CV on HS1

Run Number of F2
(ontology CC)

Number of F2
(ontology BP)

Number of F2
(ontology MF)

Total F2

1 83 327 329 739

2 84 324 328 736

3 86 327 331 744

4 83 326 335 744

5 84 325 334 743

6 85 328 333 746

7 82 323 328 733

8 82 327 331 740

9 86 318 330 734

10 82 326 328 736

F2 LCA-indexed GO-term features

Table 10 Average numbers of F2 features generated for HS1 to
HS5 of H. sapiens

Dataset Avg Number of
F2 (ontology CC)

Avg Number of
F2 (ontology BP)

Avg Number of
F2 (ontology MF)

Avg
Total F2

HS1 84 325 331 740

HS2 103 448 469 1020

HS3 28 29 54 111

HS4 31 78 118 227

HS5 33 105 134 272

F2 LCA-indexed GO-term features, HS Homo sapiens
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RF: Random forest; SSMs: Semantic similarity measures; SVM: Support vector
machine; TP: True positive; TPR: True positive rate; ULCA: Up to the lowest
common ancestor; VSM: Vector space model
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