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Abstract

There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging 

studies provide evidence that brainstem arousal systems, such as the locus coeruleus

norepinephrine system (LC-NE), influence functional connectivity and brain network topology, 

suggesting they have a role in flexibly reconfiguring brain networks in order to adapt behavior 

and cognition to environmental demands. To date, however, the relationship between brainstem 

arousal systems and functional connectivity has not been assessed within the context of a task 

with an established relationship between arousal and behavior, with most prior studies relying 

on incidental variations in arousal or pharmacological manipulation and static brain networks 

constructed over long periods of time. These factors have likely contributed to a heterogeneity 

of effects across studies. To address these issues, we took advantage of the association between 
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LC-NE-linked arousal and exploration to probe the relationships between exploratory choice, 

arousal—as measured indirectly via pupil diameter—and brain network dynamics. Exploration 

in a bandit task was associated with a shift toward fewer, more weakly connected modules that 

were more segregated in terms of connectivity and topology but more integrated with respect to 

the diversity of cognitive systems represented in each module. Functional connectivity strength 

decreased, and changes in connectivity were correlated with changes in pupil diameter, in line 

with the hypothesis that brainstem arousal systems influence the dynamic reorganization of 

brain networks. More broadly, we argue that carefully aligning dynamic network analyses with 

task designs can increase the temporal resolution at which behaviorally- and cognitively-relevant 

modulations can be identified, and offer these results as a proof of concept of this approach.

Keywords

Brainstem arousal systems; Dynamic functional connectivity; Exploration; Norepinephrine; 
Pupillometry; Time series analysis

1. Introduction

The brain has a remarkable capacity to adaptively shift processing to support a diverse array 

of behavioral goals, contextual demands, and environmental changes. This fact raises two 

fundamental questions: What neural mechanisms allow the brain to rapidly shift between 

states that form the substrates of different cognitive processes and behaviors, and how does 

the brain maintain a balance between the stability necessary to support ongoing behavior 

and the flexibility necessary to adapt to new exigencies? A number of theoretical proposals 

have pointed to a role for neuromodulatory systems in answering these questions, and 

in particular the neuromodulatory actions of norepinephrine (NE), a key component of 

physiological arousal (Arnsten et al., 2010; Aston-Jones and Cohen, 2005; Bouret and 

Sara, 2005; Yu and Dayan, 2005). The primary source of NE in the brain is the locus 

coeruleus (LC), a pontine nucleus that projects widely throughout the cortex (Berridge and 

Waterhouse, 2003). NE has complex effects at the single neuron level, but a common finding 

is that it increases the signal-to-noise ratio of neural responses, effectively modulating the 

gain of the neural response function (Berridge and Waterhouse, 2003; Hasselmo et al., 1997; 

Hurley et al., 2004), which will tend to amplify and propagate stronger neural activity while 

suppressing weaker activity (Aston-Jones and Cohen, 2005; Eldar et al., 2016; Mather et 

al., 2016). Simulations suggest these effects of gain modulation can collectively lead to 

changes in functional connectivity and network topology (Eldar et al., 2013; Shine et al., 

2018a). These features make the LC-NE system well situated to effect large-scale changes 

in brain networks and cognitive function. Several prominent theories have ascribed this 

system such a role, suggesting that it resets functional brain networks in support of specific 

behaviors and cognitive states as dictated by environmental demands (Bouret and Sara, 

2005), shifts the balance of information processing from top-down to bottom-up depending 

on the uncertainty of internal world models (Yu and Dayan, 2005), or shifts the brain 

between states of exploration and exploitation based on ongoing estimates of task utility 

(Aston-Jones and Cohen, 2005).
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Recent studies have begun to explore the association between brainstem arousal systems 

and functional brain networks using functional neuroimaging. Neuromodulators including 

norepinephrine, dopamine, and acetylcholine have been implicated in coordinating brain 

network dynamics (Birn et al., 2019; Eldar et al., 2013; Guedj et al., 2017; Roffman et 

al., 2016; Shafiei et al., 2019; Turchi et al., 2018; van den Brink et al., 2018, 2016b; 

Záborszky et al., 2018; Zerbi et al., 2019; see van den Brink et al., 2019 for review). 

For example, utilizing the fact that activity in LC and other brainstem neuromodulatory 

nuclei leads to increases in pupil diameter (de Gee et al., 2017; Gilzenrat et al., 2010; 

Joshi et al., 2016; Reimer et al., 2016; Varazzani et al., 2015), studies have found that 

elevated pupil diameter—either baseline pupil during task or endogenous fluctuations during 

rest—is associated with stronger overall functional connectivity and greater clustering of 

functional connections (Eldar et al., 2013; van den Brink et al., 2016b; Warren et al., 

2016), as well as an increase in the diversity of connectivity between functional modules, 

potentially indicating greater integration among cognitive systems (Shine et al., 2016). 

NE-linked changes in functional connectivity have also demonstrated spatial patterning 

consonant with specific catecholamine receptor distributions in humans (van den Brink 

et al., 2018) and mice (Zerbi et al., 2019). Pharmacological manipulation of NE with 

atomoxetine, a norepinephrine transporter blocker, has produced conflicting results, with 

resting-state studies finding decreased connectivity between networks (van den Brink et al., 

2016b; see Guedj et al., 2017 for similar result in macaques), but increased connectivity 

between networks in a task-based study (Shine et al., 2018b).

The heterogenous results across studies likely stem from a number of factors, including 

differences in the methods used to construct and analyze brain networks, as well as 

differences in neural response between endogenous fluctuations of LC-NE activity and 

manipulation with atomoxetine, which influences LC firing in addition to increasing cortical 

NE levels (Bari and Aston-Jones, 2013). Importantly, the divergence between task and rest 

effects may stem from the inverted-U-shaped relationship between catecholamine levels and 

their neural and cognitive effects (Aston-Jones and Cohen, 2005; Berridge and Waterhouse, 

2003; McGinley et al., 2015; Robbins and Arnsten, 2009), where the resting state is 

presumably associated with lower arousal levels. Furthermore, neural activity varies between 

rest and task, and between different tasks, which as outlined above will interact with 

neuromodulation of neural gain to amplify (or suppress) activity specific to that particular 

cognitive state at that particular moment in time. Given that the actions of LC-NE and 

other brainstem arousal systems depend on the underlying state of the system, it is critical 

to ask what the relationship between brain network organization, neuromodulatory activity, 

and task performance is for particular classes of behaviors and at behaviourally-relevant 

timescales. To date, however, the relationship between brainstem arousal systems and 

functional connectivity has not been assessed within the context of a task with an established 

relationship between these systems and behavior.

The role of the LC-NE system in mediating between exploration and exploitation provides 

a strong place to begin to form these links. It has been proposed that increases in tonic 

LC-NE activity promote disengagement from the current task (exploitation) in order to seek 

alternatives (exploration) (Aston-Jones and Cohen, 2005). Direct LC stimulation promotes 

patch leaving and general disengagement during foraging (Kane et al., 2017), and pupil 
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diameter has been found to increase with exploratory choice (Jepma and Nieuwenhuis, 

2011) and with decreases in task utility signaling the need to disengage from the current 

course of action (Gilzenrat et al., 2010). More broadly, elevated tonic LC activity and 

pupil diameter have been linked to distractibility (Aston-Jones and Cohen, 2005; Bouret 

and Sara, 2005; Ebitz and Platt, 2015; Unsworth and Robison, 2016; van den Brink et 

al., 2016a). A number of studies have found that performance in cognitively demanding 

tasks is supported by increased integration among functional brain networks, with poorer 

performance predicted by decreased integration (Braun et al., 2015; Ekman et al., 2012; 

Gießing et al., 2013; Shine et al., 2016; Vatansever et al., 2015). This pattern of results 

suggests a potential parallel between elevated LC-NE activity and brain network integration

—namely, that elevated LC-NE activity may lead to decreased functional integration, which 

may in turn provide a substrate for exploration.

We tested this hypothesis in the present study. Subjects completed a two-armed bandit 

task while undergoing fMRI and pupillometry. In order to meet the goal of linking 

arousal, functional connectivity, and behavior, we examined dynamic functional connectivity 

(Calhoun et al., 2014; Fedorenko and Thompson-Schill, 2014; Khambhati et al., 2018b; 

Kopell et al., 2014; Medaglia et al., 2015), going beyond the static connectivity measures 

used in most prior studies in this domain to more tightly link arousal, connectivity changes, 

and behavior. Furthermore, by time-locking our analyses to exploratory choice and utilizing 

semi-parametric time series methods, we demonstrate the ability to uncover fine-grained 

fluctuations in functional network dynamics at a temporal resolution generally not achieved 

with dynamic functional connectivity. By addressing the above hypotheses at a timescale 

consonant with behavior, we seek to develop a more fundamental understanding of the 

neural bases of exploratory states and arousal-linked mechanisms of dynamic network 

reconfiguration.

2. Methods

2.1. Subjects

Forty subjects (22 female, Mage = 23.48 years) completed the study. Informed consent was 

obtained from each subject in accordance with the University of Pennsylvania IRB. All 

subjects in the final sample (1) were right-handed; (2) were between 18 and 35 years old; 

(3) had normal or corrected-to-normal vision; (4) had no known learning impairments or 

history of neurological or psychological disorders; and (5) were not currently taking any 

psychiatric medications or medications known to affect the autonomic nervous system. Two 

subjects were excluded because it was later determined they were taking medications that 

did not meet the inclusion criteria. Four additional subjects were excluded from the analyses 

for excessive head movement during scanning (average framewise displacement across runs 

> 0.2 mm), for a final sample of 34 (20 female, Mage = 22.82 years).

2.2. Materials and procedure

Subjects completed the Leapfrog bandit task (Knox et al., 2012). In this highly constrained 

two-armed bandit (Fig. 1A), the options are always 10 points apart in value; when the 

options are selected, they deliver payoffs deterministically. After every trial, with probability 
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P(flip) the currently lesser-valued option may jump in value by 20 points to become the 

superior option. Which option is better thus alternates throughout the task, and subjects 

must balance (1) choosing the option that is the best according to their current knowledge 

(exploiting) and (2) sampling the other option to find out if it has improved (exploring). The 

constrained nature of this task is advantageous because trials can be classified as exploratory 

or exploitative solely on the basis of behavior, without recourse to model-based analyses 

necessitated by drifting bandits (Daw et al., 2006; Ebitz et al., 2018). Concretely, trials 

were classified as explore trials if subjects chose the option that was lesser-valued, based on 

previously observed outcomes (e.g., choosing the right option after having observed that the 

left option was now worth 120 points and prior choice of the left option had yielded 110 

points).

Subjects completed four blocks of the task, with 80 trials per block (320 trials total). 

To minimize luminance-mediated changes in pupil diameter, task stimuli were luminance

matched grayscale images and were only modestly brighter than the background. Option 

changes were randomly generated per participant based on the underlying P(flip). P(flip) 

was fixed within blocks but alternated across blocks (low volatility: P(flip) = 0.05; high 

volatility: P(flip) = 0.20), with the order of alternation counterbalanced across subjects. 

At the start of block 1, the left and right options were set to a value of 100 and 110, 

respectively. In a separate behavioral session prior to the scan session, subjects were 

instructed about the structure of the task (including the initial option values), performed 

8 practice trials to familiarize themselves with the controls and the task display, and then 

performed an identical version of the task to the scanner version, excepting that the stimuli 

were not luminance-controlled. While subjects received information about the volatility 

levels by completing the behavioral session, they were not told about the volatility changes. 

To minimize eye movements, subjects were instructed to fixate on the center of the task 

display, except during the ITI, when they were told to keep their gaze within a 189×179

pixel light gray rectangle in the center of the display. Subjects made their responses with 

the index and middle finger of their right hand. Because the increase in payoffs throughout 

the task could distort choice behavior, subjects were incentivized to choose the currently 

best option on all trials rather than maximize their payoffs (Otto et al., 2014). Subjects were 

paid $10/h for the behavioral session (length 1 h) and $20/h for the scan session (length 

1.5–2 h) plus a bonus determined by p ×
bmax

ntrials
, rounded to the nearest dollar, where p is 

the number of choices of the currently best option, bmax is the maximum possible bonus 

($10 behavioral, $15 scan), and ntrials is the total number of trials. The task was written in 

PyPsyExp (https://gureckislab.org/pypsyexp/sphinx/) and run in the PsychoPy environment 

(Peirce, 2009).

The fMRI session began with eye tracker calibration, after which scans were run in the 

following order: Leapfrog block 1, B0 field map, Leapfrog block 2, Leapfrog block 3, T1, 

Leapfrog block 4. Subjects were reminded of the initial option values before the start of 

block 1. Because of the scans between task blocks, they were also reminded of the current 

option values before the start of blocks 2 and 4. Prior to the first Leapfrog block and after the 

last block, we also collected a five-minute resting-state scan, which we did not analyze here.
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2.3. MRI data acquisition

Magnetic resonance images were collected using a Siemens Prisma 3T scanner (Siemens 

Medical Systems, Erlangen, Germany) with a 64-channel head coil. T1-weighted anatomical 

images were acquired (MPRAGE; repetition time [TR] = 1810 ms; echo time [TE] = 3.45 

ms; flip angle [FA] = 9°; field of view [FOV] = 240 mm; matrix = 256×256; voxel size 

= 0.9×0.9×1.0 mm; 160 slices). During task runs, T2∗-weighted functional volumes were 

collected using multiband echo planar imaging (EPI; TR = 1000 ms; TE = 30 ms; FA = 

60°; FOV = 208 mm; matrix = 104×104; voxel size = 2.0×2.0×2.0 mm; 72 slices; multiband 

acceleration factor = 6). A field map was also acquired for distortion correction of the EPI 

images (TR = 580 ms; TE 1 = 4.12 ms; TE 2 = 6.58 ms; flip angle = 45°; voxel size = 3.0 

mm× 3.0 mm× 3.0 mm; FoV = 240 mm).

2.4. MRI preprocessing

Preprocessing was performed using FSL (Jenkinson et al., 2012) and FreeSurfer (Fischl, 

2012). Cortical reconstruction and volumetric segmentation of the anatomical data were 

performed with FreeSurfer. Functional data were despiked by replacing values greater 

than 7 RMSE from a 1-degree polynomial fit to the time course of each voxel with 

the average value of the adjacent TRs. Motion correction parameters were computed by 

registering each volume of each run to the middle volume using a robust registration 

algorithm (mri_robust_register; Reuter, Rosas, & Fischl, 2010) and voxel shift maps for 

EPI distortion correction were calculated using PRELUDE and FUGUE (Jenkinson, 2004, 

2003); the resulting transformations were combined and simultaneously applied to the 

functional images. Boundary-based registration between structural and functional images 

was performed with bbregister (Greve and Fischl, 2009). To account for motion and 

physiological noise, the following nuisance time series were regressed from the functional 

data: (1) 24 motion regressors (Friston et al., 1996); (2) the five first principal components of 

non-neural sources of noise (i.e., white matter, CSF), obtained with FreeSurfer segmentation 

tools (aCompCor; Behzadi et al., 2007); (3) cardiac and respiratory rhythms derived from 

pulse oximetry data collected during each scan (Verstynen and Deshpande, 2011; due to 

technical issues, pulse oximetry data were unavailable for two subjects); and (4) local noise, 

estimated as the average white matter signal within a 15 mm radius of each gray matter 

voxel (ANATICOR; Jo et al., 2010). The data were then high-pass filtered with a cutoff 

frequency of 0.009 Hz.

In the analyses reported in Section 3.6, to account for task-evoked activity, additional 

nuisance regressors were included corresponding to the choice and outcome phases of the 

task. The choice phase was modeled as a boxcar beginning at the onset of the choice signal 

(Fig. 1A) and lasting for 1.5 s. The outcome phase was modeled as a boxcar lasting for the 

duration of the 1.5 s outcome presentation. In blocks with missing responses, the signal for 

a missed trial (a question mark) was additionally modeled as a boxcar beginning at the onset 

of the question mark (the start of the wait phase) and lasting for the remaining 2.5 s of the 

trial. All task regressors were convolved with the canonical double-gamma hemodynamic 

response function prior to nuisance regression.
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2.5. Network construction

The cortex was parcellated into 200 regions based on the Schaeffer 200-parcel atlas 

(Schaefer et al., 2018). To this we added 15 subcortical regions segmented by FreeSurfer 

(Fischl et al., 2002). The average BOLD time series was extracted from each region, and 

functional connectivity between all pairs of regions was estimated via continuous wavelet 

coherence in the range of 0.08–0.125 Hz (Grinsted et al., 2004). This frequency range 

has been previously shown to be sensitive to dynamic changes in task-based functional 

connectivity (Bassett et al., 2011; Braun et al., 2015; Craig et al., 2018; Gerraty et al., 

2018; Sun et al., 2004). The continuous wavelet transform (CWT) was chosen over the 

more common discrete wavelet transform to provide additional sensitivity to time-varying 

changes around exploration. This procedure produces a connectivity value for each TR, 

sampled across the frequency range. Note that no windowing of the time series was 

performed prior to transformation, as the CWT is itself a sliding-window method (i.e., a 

convolution), and additional windowing would produce unwanted edge effects (Grinsted et 

al., 2004). We then averaged across the frequency range to produce a single time-varying 

connectivity measure between each region. Finally, given that the resultant signal was 

heavily over-sampled, the connectivity time series were then downsampled by a factor of 2 

(Matlab decimate), providing a final sampling rate of 0.5 Hz, and yielding one 215×215×240 

weighted adjacency matrix per task run.

2.6. Multislice modularity optimization

In order to identify changes in network architecture over time, the connectivity matrices 

were submitted to a Louvain-like locally greedy modularity maximization algorithm (Mucha 

et al., 2010) implemented in Matlab (Jeub et al., 2011). This method, which has been used 

extensively to estimate time-varying modular structure in functional brain networks (Bassett 

et al., 2015, 2011; Gerraty et al., 2018; Mattar et al., 2015), maximizes a multilayer quality 

function given by:

Qmultislice = 1
2μ ∑ijsr Aijs − γs

kiskjs
2ms

δsr + δijωjsr δ gis, gjr , (1)

where the adjacency matrix of layer s has components Aijs, gis gives the module assignment 

of node i in layer s, gjr gives the module assignment of node j in layer r, kjs is the intralayer 

strength of node j in layer s, cjs = ∑rωjsr is the interlayer strength of node j in layer s, κjs 

= kjs + cjs is the strength of node j in layer s, and the total edge weight of the network 

is given by μ = 1
2κjr. The quantity 

kiskjs
2ms

 corresponds to the Newman-Girvan null model 

(Newman and Girvan, 2004), where ms = 1
2 ∑ijAijs is the total edge weight in layer s. The 

structural resolution parameter γs of layer s and the interlayer coupling parameter ωjsr from 

node j in layer s to node j in layer r tunes the size of the modules within each layer and 

the number of modules across layers (i.e., time), respectively. In this case, the structural 

resolution parameters were assumed to be constant across layers (γs = γ); the interlayer 

coupling parameters were set to a constant value ω for all s and r representing immediately 

adjacent layers and were set to 0 everywhere else, producing an ordered multilayer network.
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The choice of γ and ω is not entirely straightforward. Often, they are left at a default 

value of 1 (Bassett et al., 2013). In other instances, they are selected to optimize some 

quantity, such as Qmultislice or other network measures of interest (Weir et al., 2017). Then, 

given the near degeneracy of the modularity landscape (Good et al., 2010), the modularity 

maximization algorithm is run a number of times (e.g., 100) at the selected parameter 

values. To avoid dependence of our results on a particular point in parameter space and to 

increase sensitivity to fluctuations in integration regardless of scale, here we repeated the 

modularity maximization procedure a single time across a range of parameter values (γ 
∈ [1.14, 1.19] discretized by a step size of 0.01; ω ∈ [0.05, 0.85] discretized by a step 

size of 0.05) rather than multiple times at a single set of parameter values (see Vaiana et 

al., 2019 for a related approach). The range of γ was chosen such that on average the 

number of non-singleton modules in a layer approximated the number of non-singleton 

cognitive systems in our resting-state reference partition (see Section 2.7 below and Fig. 

1C); the range of ω was chosen to optimize network flexibility, which quantifies how often 

nodes switch modules across layers (Bassett et al., 2011). We chose to optimize ω with 

respect to network flexibility to increase sensitivity to rapid changes in network architecture. 

The ranges used in the study were identified via a larger parameter sweep over γ and ω 
(Figure S1A,B), where the final range was chosen to meet the criteria above and yield ~100 

repetitions of modularity maximization.

Maximizing the above multilayer modularity quality function is NP hard. To improve the 

quality of the multilayer partitions, we used a heuristic algorithm that at each step chooses 

moves (of a node into a module) probabilistically in proportion to the increase in the 

multilayer quality index (Bazzi et al., 2016; Jeub et al., 2011). In order to avoid local 

minima, after each run of the Louvain algorithm, module assignments were revised to 

maximize the persistence of modules across time without altering the intralayer modular 

structure (Bazzi et al., 2016; Jeub et al., 2011). Modifying the multilayer partition in this 

fashion is guaranteed to increase multilayer modularity and helps avoid large changes in 

module assignment across time that are not accompanied by prominent changes in intralayer 

modular structure (Bazzi et al., 2016). The resultant partition was then used as the starting 

point for an additional run of the Louvain algorithm, and this procedure was repeated until 

the output partition converged (Jeub et al., 2011). These steps were repeated across the 

parameter grid, yielding 102 time-varying networks per run.

2.7. Integration

At each time point, a module allegiance matrix Pt was constructed, with entries:

Pij
t = 1

O ∑o = 1
O aijot, (2)

where O is the number of final output partitions (O = 102) and the allegiance value aijot

for nodes i and j is 1 if the nodes were placed in the same module at time t of partition o 

and 0 otherwise. Intuitively, Pij
t  is the fraction of times that two nodes were placed in the 

same module, across the parameter space (see Braun et al., 2015 for a similar approach to 
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computing network measures per time window). See Figure S1C for the standard deviation 

of modular allegiance values across the parameter space.

In order to then use the modular allegiance matrices to assess the interaction between brain 

regions across time, we assigned each network node to a resting-state cognitive system. 

All cortical nodes were previously assigned to one of seven resting-state systems identified 

from large-scale resting-state data (Schaefer et al., 2018; Yeo et al., 2011). All subcortical 

nodes were assigned to an eighth subcortical system with the following exceptions: bilateral 

amygdala and hippocampus were placed in the limbic system, while the brainstem was 

assigned to its own singleton system. See Figure S1D for the correspondence between 

average task connectivity and the resting-state cognitive systems.

The integration of brain region i in cognitive system s at time t can then be computed as:

Ii
ts = 1

N − ns
∑j ∉ sPij

t , (3)

where N is the total number of nodes (brain regions) and ns is the number of nodes in system 

s (Mattar et al., 2015). Integration thus quantifies the probability at a given time that a node 

from a given cognitive system is placed into the same module as nodes from other cognitive 

systems. Averaging integration across nodes then provides a measure of the global level of 

integration in the brain at each time point.

Integration can also be computed for each system and between each pair of systems. The 

integration of system s with the rest of the brain (i.e., all systems not s) is:

Is
t = 1

ns N − ns
∑
i ∈ s

∑
j ∉ s

Pij
t , (4)

indicating the tendency for nodes from system s to be placed into modules with nodes from 

other systems at time t. Similarly, the integration between two systems k and l is given by:

Ikl
t = 1

nknl
∑i ∈ k ∑j ∈ lPij

t , (5)

where nk is the number of nodes in system k and nl is the number of nodes in system l. High 

integration between two systems at a given time indicates a departure from resting-state 

structure and is suggestive of strong functional interactions between cognitive systems.

2.7.1. Peri-explore integration analysis—Statistical analysis of change in the 

integration time course around exploration presents several methodological challenges. 

The time series is strongly autocorrelated due to the nature of the fMRI BOLD 

signal and the CWT, which increases the risk of type I error due to violation of the 

independence assumption of linear regression. The response to exploration is of an unknown 

functional form and possibly non-monotonic, making standard linear regression—even using 

polynomial terms—a potentially poor fit. Finally, there is no clear contrast or baseline 

because of the sluggishness of the signal relative to task timing (the ITI is only 1 s), so 

we cannot directly contrast explore with exploit time courses as individual exploit trials 
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cannot be resolved; rather, explore trials occur against an effectively continuous background 

of exploit trials.

To address all these issues, we utilized generalized additive mixed models (GAMMs) in 

the peri-explore integration analyses. GAMMs are an extension of the regression framework 

that allow for the fitting of arbitrary (e.g., nonlinear, nonmonotonic) functions, including 

both linear and nonlinear random effects terms (Wood, 2017). These nonlinear functions, 

or smooths, are fit using maximum likelihood estimation using a weighted sum of basis 

functions. The basis functions are selected from families of penalized splines, where 

overfitting is mitigated and therefore smoothness is enforced by a penalty on basis function 

coefficients. The appropriate smoothness for a given data set is controlled via smoothing 

parameters that are estimated as part of the fitting procedure (see Baayen et al., 2017; 

Pedersen et al., 2019; and van Rij et al., 2019 for tutorials, and Wood, 2017 for additional 

technical and mathematical details).

Prior to model fitting, peri-explore integration time courses were extracted and processed 

as follows. After identifying the points in the integration time course that contained each 

exploratory choice, we extracted the time series immediately preceding (following) the 

choice window, up to the previous (next) exploratory choice. For this analysis, we did not 

include peri-explore epochs in which subjects explored immediately following a missed 

flip (i.e., subjects exploited and saw a change). We excluded these trials (median per 

subject: 1, range: 0–8) because they are rare and surprising, which might confound any 

subsequent physiological signature related to exploration. In order to isolate the effect of a 

single exploratory choice given the sluggishness of the integration time course, we further 

restricted the analysis to explore choices preceded by a minimum of 2 exploit trials and 

followed by a minimum of 4 exploit trials. Given limits on the amount of data per subject, 

we made the buffer asymmetric to maximize our sensitivity to the exploration-evoked 

response while including as much data as possible. We additionally excluded the first and 

last peri-explore periods of every block. The final analysis window was then restricted to 

encompass the 12 s prior to the explore time point extending to 18 s post-explore (median 

peri-explore periods per subject: 21.5, range: 2–37). We then downsampled the time series to 

0.25 Hz (by dropping every other data point) as a first step in mitigating autocorrelation.

All GAMMs included a smooth for time as well as by-subject random smooths for time. 

Models also included by-time-course linear random intercepts and slopes in order to account 

for additional variance due to drifts in integration over time, which helps to further alleviate 

autocorrelation in the residuals (van Rij et al., 2019). Because model residuals were 

still autocorrelated, we also introduced an AR1 model to each GAMM. For analyses of 

global integration, the AR1 parameter that minimized AIC in a grid search (ρ ∈ [0.00, 

0.99] in steps of 0.01) was selected for the final model (Wood, 2017). For by-system 

integration, residual autocorrelation was very similar in each system, so we selected the ρ 
that minimized AIC for the model with the median AR1 value. The same approach was 

used for between-system integration. Significance was assessed based on a Wald statistic 

(i.e., testing the null hypothesis that the smooth = 0), with p-values computed using the 

F-distribution with degrees of freedom based on the effective degrees of freedom of the 

smooth (Wood, 2017, 2013).
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To ask whether there was overall evidence for significant differences between peri-explore 

time courses at the by-system and between-system levels, we conducted a model comparison 

procedure. We fit a full model to data from all systems (between-system interactions), 

which included each system (between-system interaction) as a separate smooth. We then fit 

a reduced model that assumed one global smooth for all data. Both the full and reduced 

models included by-system (between-system interaction) intercepts, since the focus was 

on differences in the form of the modulation rather than on baseline differences in the 

absolute level of integration. Because of the complexity of these models, we replaced the 

by-subject random smooths for time used in other models with parametric random effects 

terms: by-subject random intercepts and by-subject random effects of system and time. The 

models were then compared using AIC.

To confirm the results of the global integration GAMM, a permutation analysis was 

conducted. Within each block, the assignment of exploration time points to the integration 

time course was permuted 500 times, with the constraint that permuted time points must be 

ones in which subjects actually made a choice and the mean inter-explore interval of each 

permutation must be within one unit of the true mean interval for that block. Peri-explore 

time courses were then extracted and analyzed identically to the true time courses, resulting 

in a GAMM fit for each permutation. The significance of the true data was then assessed 

relative to this distribution. Note that we constructed our permutation distribution from 

the p-values of the smooths rather than the F-values. Unlike a standard parametric linear 

analysis, the number of degrees of freedom differs between models, owing primarily to 

differences in the roughness of the fit, and also to slight differences in the amount of data in 

each permutation as a result of preprocessing exclusions. Using F-values can thus produce 

conservative results, as smooths with fewer effective degrees of freedom may benefit from 

larger F-values. Because the p-value computation takes degrees of freedom into account 

(Wood, 2013), it is a more appropriate measure in this case.

2.8. Additional network measures

To better characterize the network dynamics surrounding exploration, we computed four 

additional measures, using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010): 

strength, system segregation, modularity, and number of modules.

Changes in integration will be accompanied by changes in the underlying patterns or 

strength of functional connectivity. Therefore, the average strength, s, of node i at time t 
was computed as:

sit = 1
N − 1 ∑jAij

t . (6)

By averaging node strength separately for within- and between-system connections across 

the whole brain, system segregation (Chan et al., 2014) was computed as:

system segregation = sw − sb
sw

, (7)
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where sw is the mean within-system strength and sb is the mean between-system strength, 

across the whole brain. Unless otherwise noted, we computed system segregation relative to 

the Yeo cognitive systems (Yeo et al., 2011), to match our procedure for integration, rather 

than to the module assignments at each time point.

The single-layer modularity Q (Blondel et al., 2008) was computed at each time t using as 

input the module assignments derived from each run o of multilayer modularity (Eq. 1). 

Specifically:

Qo
t = 1

2m ∑ij Aij − kikj
2m δ ci, cj , (8)

where ki = ∑jAij and m = 1
2 ∑ijAij, and where o and t super/subscripts are omitted for 

clarity. The Q values were then averaged over all o runs to produce a single value at each 

time point. Both system segregation and modularity are considered to measure the extent 

to which cognitive systems are segregated (Chan et al., 2014; Cohen and D’Esposito, 2016; 

Rubinov and Sporns, 2010), meaning they have the potential to provide evidence convergent 

with integration as to the nature of the topological changes accompanying exploration. Note 

that Qmultislice (Eq. 1) was not used for these analyses because it yields a single value 

per run, reflecting overall modularity in time and space, whereas here the question is how 

modularity changes across time. Finally, because changes in integration may in part reflect 

modules coalescing or dividing, the number of modules was defined as the average number 

of modules present at each time point, averaged over runs of the GenLouvain algorithm.

As with integration, the significance of peri-explore modulation was assessed using 

GAMMs. Because the number of modules were heavily skewed, these data were fit with 

an inverse Gaussian regression (log link). A single AR1 parameter ρ was used for the 

strength-based measures (strength, system segregation), and a separate single ρ parameter 

was used for the modularity-based measures (Q, number of modules).

2.9. Pupillometry

Eye position and pupil diameter of the right eye were recorded during scanning at a 

sampling rate of 250 Hz with an EyeLink 1000 Plus (SR Research) equipped with the 

Long Range Mount. The PyGaze toolbox was used to interface with the eye tracker 

(Dalmaijer et al., 2014). Periods of missing data due to blinks or other artifacts were 

linearly interpolated after removing an additional 25 samples (100 ms) surrounding the blink 

on either side. Additional artifacts were identified by computing the difference between 

consecutive samples of the pupil time course. High velocity periods, defined as samples 

differing in diameter by more than 50 in absolute value (a.u.) from the preceding sample 

were removed, and for runs of high velocity > 4 samples we additionally removed 25 

samples on either side of the run, identical to the procedure described for blinks. These 

censored periods were then linearly interpolated (median total proportion interpolated data 

per subject: 0.13, range 0.01–0.40). The pupil time course was then low-pass filtered with 

a 4 Hz cutoff. The data were then normalized by z-scoring within-subject across data from 

all functional runs. Gaze position data for time points missing or removed from the pupil 
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time course were also interpolated. Blocks in which > 50% of the pupil data were missing or 

censored were not included in the analysis (two blocks from one subject).

2.9.1. Pupil analysis—Baseline pupil diameter was calculated as the average diameter 

in the last 500 ms of the fixation period at trial start. For trial-level analyses, data were 

downsampled to 50 Hz (all pupil downsampling was performed with Matlab decimate), 

and all models included vertical and horizontal gaze position as covariates. Analyses of the 

choice period also controlled for baseline pupil diameter at the start of the trial. Analyses for 

the outcome period instead controlled for average pupil diameter in the last 250 ms of the 

wait period between the end of the choice window and the onset of the outcome stimulus.

For the post-explore pupil analysis, pupil diameter was downsampled to 2 Hz, since the 

focus was on slower changes in diameter over a longer timescale. For pre- and post-explore 

pupil analyses, we used the same restrictions on the data as described for integration 

(Section 2.7.1), except we relaxed the minimum number of exploit trials post-explore to 

2. For analyses of the post-explore peak/minimum, we identified peaks as the maximum 

dilation in the period from 0–12 s post-explore. The post-peak minimum was then identified 

in the period from the peak to 18 s post-explore.

2.10. Pupil–network relationships

To characterize the relationship between pupil-linked arousal and integration, we first 

downsampled pupil diameter to the sampling rate of the TR and then applied a low-pass 

filter by convolving it with a Gaussian with a standard deviation equal to that of the median 

wavelet scale used to compute wavelet coherence for the network analysis (9.80 s). Finally, 

we downsampled the filtered time course to the sampling rate of the integration time course 

(0.5 Hz). We then computed the cross-correlation between the pupil diameter and each 

network measure over the peri-explore period, using the same peri-explore criteria described 

for peri-explore integration (section 2.7.1). To plot the cross-correlation and compute within- 

and across-subject averages, we first Fisher z-transformed the correlations. Because the 

presence of autocorrelation biases the variance of sample correlations, we corrected the 

z-transformed correlations for this bias, using the method of Pyper and Peterman (1998), 

producing Z-scores (Afyouni et al., 2019). This procedure essentially weights each z value 

in proportion to its effective degrees of freedom. We then averaged the Z-scores within 

subject and assessed the significance of the correlation at the peak lag using a one-sample 

t-test against 0, across subjects.

2.11. Data analysis

Statistical analyses were performed in R (R R Core Team, 2019). Linear and logistic mixed 

effects models were implemented in the lme4 package (Bates et al., 2015b), except when 

an AR1 model was fit for the residuals, in which case nlme was used (Pinheiro et al., 

2019). Where possible, models included random intercepts for subjects and random slopes 

for all within-subjects variables (i.e., the maximal model; Barr et al., 2013). In cases where 

the maximal model failed to converge or produced singular fits, we iteratively reduced the 

random effects structure until convergence, following steps outlined by Bates and colleagues 

(Bates et al., 2015a). Post-hoc comparisons were computed using the emmeans package 
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(Lenth, 2016). GAMMs for the analysis of peri-explore integration time courses were 

implemented in the mgcv package (Wood, 2017). Where noted, significance levels were 

corrected for multiple comparisons using the Bonferroni-Holm method (Holm, 1979).

3. Results

We first characterized the pupil response to exploration in order to confirm that exploration 

leads to increases in pupil-linked arousal (Jepma and Nieuwenhuis, 2011). We also 

established the onset and time course of this response relative to choice behavior, which 

licenses inferences about the underlying neuromodulatory dynamics and their relationship 

to exploratory state. We then examined the dynamic modulation of global brain network 

integration around exploration, utilizing generalized additive mixed models (GAMMs), a 

semi-parametric regression approach (see Methods Section 2.7.1) that provides a principled 

method of uncovering nonmonotonic fluctuations in slowly-varying time series, obviating 

the need to pre-specify the functional form of the modulation (i.e., impose linearity) or 

to enforce arbitrary decisions related to time-averaging. We then asked whether there was 

heterogeneity in the modulation of integration across cognitive systems, which is relevant 

to assessing whether shifts into an exploratory state reflect a brain-wide phenomenon or 

possess anatomical specificity. We also examined additional measures of connectivity and 

topology to provide convergent evidence for the dynamic modulation of integration and 

to better characterize the form of this modulation. Finally, we utilized a cross-correlation 

approach to relate pupil dynamics and brain network dynamics, providing evidence for 

arousal-linked modulation of brain network dynamics at a relatively fine temporal scale. As 

a comparison with prior studies, we also examined block-level changes in pupil diameter 

and brain network dynamics. These results are reported in section S3 of the Supplementary 

Material.

3.1. Exploration modulates pupil dilation

Confirming our prediction, pupil dilation responses were higher for explore choices relative 

to exploit choices (Fig. 2A,B). The difference was reliable beginning 260 ms before the 

button press and continued to be reliable for the remainder of the choice period (all 

pscorrected < 0.03). Elevated baseline pupil diameter has been previously found prior to 

exploration, distraction, and disengagement (Ebitz and Platt, 2015; Gilzenrat et al., 2010; 

Jepma and Nieuwenhuis, 2011). Given the results of these prior studies, we also examined 

baseline pupil diameter. While there was no overall difference in baseline diameter between 

explore and exploit trials (Fig. 2C, p > 0.31), baseline pupil diameter varied significantly 

among the three trials just prior to and including the explore trial (Fig. 2D; F(2, 5032) = 

6.56, p = 0.001). This effect was driven primarily by a decrease in pupil diameter from 

the second to the first trial pre-explore (β = −0.06, t (5032) = −3.62, pcorrected = 0.009), 

potentially reflecting in part the diminishing influence of the previous exploratory choice. 

Although pupil diameter rose on the explore trial relative to the immediately preceding trial, 

this rise was not significant (β = 0.03, t (5032) = 1.80, pcorrected = 0.14), and baseline 

diameter on the explore trial was still numerically smaller than that of two trials previous (β 
= −0.03, t (5032) = −1.81, pcorrected = 0.14). This finding indicates that in this task, increased 
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post-explore pupil responses were driven by the explore choice itself and not by a gradual 

ramping of arousal.

Because pupil dilation is also modulated by outcomes, particularly if they are surprising 

(Alamia et al., 2019; Friedman et al., 1973; Lavín et al., 2014; Nassar et al., 2012; 

Preuschoff, 2011), we also examined pupil dilation in response to changes in payoffs. 

In the Leapfrog task, because payoffs are deterministic except for the stochastic jumps, 

outcomes will either be the same as when the option was last checked, or they will have 

jumped in value. Therefore, we divided trials into three classes, based on whether subjects 

explored and the payoff increased (explore–change), explored and the payoff was unchanged 

(explore–no change), or exploited and the payoff was unchanged (exploit–no change). Trials 

in which subjects exploited and the payoff increased (exploit–change) were excluded from 

the analysis as there were very few per subject (M = 5.94). Given the paucity of the exploit–

change type, we contrasted the response to change within explore trials only.

Pupil dilation was slightly elevated in response to a change in outcome (Fig. 3A,B). 

This separation began to emerge in the averaged data around 500 ms after the outcome 

presentation but was only reliable in the last 100 ms of the outcome period (all pscorrected < 

0.047). This effect was much smaller in magnitude than the continued effect of exploration 

on the pupil response (contrast of explore trials with exploit–no change trials), which was 

reliable throughout the outcome period (Fig. 3A,C; all pscorrected < 0.0001). Note that this 

effect is not simply due to the difference present at the end of the choice period, as these 

analyses controlled for average pupil diameter in the 250 ms prior to outcome presentation; 

rather, this effect appears to reflect an extended influence of exploration on post-choice 

arousal.

We next sought to characterize the duration of the arousal response (Fig. 4A). Pupil 

diameter was significantly elevated above the explore-trial baseline for 7.5 s post-choice, 

approximately the start of the outcome period of the subsequent trial (all pscorrected < 

0.015). This result held when controlling for gaze position (all pscorrected < 0.039) and when 

additionally constraining the analysis to those epochs with minimal eye movements (< 50 

pixels root mean squared; all pscorrected < 0.028). The sustained duration of the effect also 

does not appear to be primarily attributable to an artifact of averaging over subjects with 

variable exploration responses (Fig. 4B). The median peak exploration response (median 

of within-subject medians) from 0–12 s post-explore occurred 4.0 s post-choice, which 

is very similar timing to the peak at 3.5 s in the time-averaged data. Furthermore, most 

individual subjects’ median peaks were not significantly different from the group median 

(31/34 subjects, sign test [corrected]). Similarly, the median minimum pupil dilation in the 

window from the post-explore peak to 18 s post-explore was 14.5 s, identical to the time

averaged minimum. The minimum in all subjects was consistent with this group median 

(34/34 subjects, sign test [corrected]). Nor was the time course significantly modulated by 

outcome type, although there was a small modulation that was significant at an uncorrected 

p < 0.05 level from 4–5.5 s post-choice, consistent with the effect seen at the trial level at 

the end of the outcome period and extending into the ITI and the start of the subsequent trial 

(Figure S3). The smearing out of the outcome effect by time-locking on choice, as well as 
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the trial restrictions imposed on this analysis, may have made it more difficult to detect the 

small modulation by outcome found in the trial-level data.

Increases in pupil diameter with exploratory choice thus seem potentially explained as a 

transient increase in tonic arousal driven purely by the choice to shift from exploitation 

to exploration, rather than an artifact or a response to the outcome. Nor does increased 

arousal appear to be the cause of the exploratory choice, rather than its effect. However, 

an additional possibility is that pupil dilation in response to exploration is due to the 

greater uncertainty in the outcome on explore trials as compared to exploit trials. Indeed, 

the probability of observing a change in option value on explore trials is fairly uncertain 

(P(change | explore) = 0.41), while it is unlikely on exploit trials (P(change | exploit) = 0.13). 

If uncertainty were driving the response, it might be expected that the pupillary response to 

exploration would differ between volatility conditions, as P(change | explore) was higher in 

the high volatility blocks (P(change | explore,high) = 0.57; P(change | explore,low) = 0.24). 

This was not the case. There was no effect of volatility condition, nor any volatility x choice 

type interaction during the choice period (Figure S4; all pscorrected = 1). Similarly, there was 

no effect of volatility condition on the post-explore time course (Figure S4; all pscorrected 

> 0.62). Given subjects’ overall weak sensitivity to the volatility conditions (Figure S8A), 

these results do not completely rule out a role for uncertainty, but they raise the possibility 

that exploratory choice itself, isolated from effects of uncertainty or surprise, can drive shifts 

in arousal (see Section 4.3 for further discussion).

3.2. Exploration transiently modulates peri-explore integration

Integration was also significantly modulated around exploration (Fig. 5A.; F(3.32, 4551.90) 

= 4.03, p = 0.002). Integration appears to increase leading up to exploration, peak around the 

explore choice, and fall thereafter. To rule out the possibility that this result was reflective of 

some more general oscillation in the data, we refit the GAMM on data in which the location 

of explore trials was permuted within each block (500 permutations; see Methods Section 

2.7.1). A permutation test suggested that the modulation was unique to exploration (p = 

0.006).

To understand the factors driving this change in integration, it is important to answer 

two questions: (1) Which cognitive systems and their interactions contribute most to these 

dynamics? and (2) How do changes in integration relate to other global network properties?

3.3. Evidence for differential modulation of integration across cognitive systems

To answer the first question, we computed system-level integration, which we define as 

the integration of each cognitive system with all other systems (i.e., with the rest of the 

brain; see Methods Section 2.7, Eq. 4). While qualitatively there was some evidence of 

global modulation when examining each cognitive system individually, this effect was only 

significant for the dorsal attention, default, frontoparietal, and limbic systems (Fig. 6A.; 

dorsal attention: F(3.19, 4505.57) = 4.05, pcorrected = 0.018; limbic: F(3.32, 4623.70) = 3.53, 

pcorrected = 0.036; frontoparietal: F(3.30, 4554.87) = 3.40, pcorrected = 0.037; default: F(4.05, 

4548.81) = 5.31, pcorrected = 0.0006). To provide stronger evidence for differences across 

systems, we conducted a model comparison procedure in which we asked whether the data 
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were better fit by a model with separate time courses for each system (full model) or by 

model with a single time course for all systems (shared model). The full model failed to 

provide a sufficiently better fit to overcome the additional degrees of freedom required to fit 

separate time courses (Δdf = 14, ΔAIC = 11.02).

We then asked whether any interactions between cognitive systems differentially contributed 

to the system-level changes by computing between-system integration, the integration of 

two cognitive systems with each other (Eq. 5). Qualitatively, only some between-system 

interactions appeared to change around integration (Figure S5), and significant modulation 

of between-system integration was found only for the dorsal attention–limbic, dorsal 

attention–default, and frontoparietal–default interactions (Fig. 6B; dorsal attention–limbic: 

F(3.36, 4466.03) = 5.36, pcorrected = 0.006; dorsal attention–default: F(3.57, 4428.86) = 

5.11, pcorrected = 0.007; frontoparietal–default: F(4.03, 4368.86) = 5.19, pcorrected = 0.003). 

However, the model comparison procedure again failed to demonstrate a better fit for a full 

model compared to a shared model (Δdf = 54, ΔAIC = 19.51).

Together, the system-level and between-system results provide suggestive but inconclusive 

evidence for specificity in changes in integration. While it is not the case that integration was 

reliably modulated throughout the brain, these differences were not themselves reliable. For 

between-system interactions that were reliably modulated, the effects could be reflective of 

common neuromodulatory input (van den Brink et al., 2019), of interactions between these 

systems underlying decisions to explore, or of changes in interactions between these systems 

providing the substrate for exploratory states.

3.4. Exploration induces complex changes in connectivity and topology

Regarding the second question above, changes in integration between cognitive systems 

could be accompanied by other changes in the underlying connectivity and topology. For 

example, although integration is based on network topology and not directly on connectivity, 

intuitively increases in integration might reflect a shift toward increased functional 

connectivity strength. Contrary to this expectation, average node strength demonstrated 

an opposing profile to integration, reaching a minimum and plateauing close to the time 

of choice (Fig. 7A; F(3.80, 4297.55) = 7.64, p < 0.0001). To assess whether strength 

changed differentially within and between cognitive systems, potentially contributing to the 

change in integration, we computed a strength-based measure of system segregation—the 

difference in within- versus between-system connectivity, as a percentage of within-system 

connectivity (Chan et al., 2014; see Methods section 2.8, Eq. 7). Thus, increases in this 

quantity reflect an increase in the relative strength of within-system connectivity. While both 

within- and between-system connectivity demonstrated a qualitatively similar peri-explore 

profile (Figure S6), system segregation demonstrated a positive modulation in favor of 

within-system connectivity (Fig. 7B; F(3.18, 4337.78) = 4.79, p = 0.0007). This result was 

not driven by a mismatch between the assignment of nodes to cognitive systems relative 

to the dynamic modular structure of the network, as a similar pattern was obtained when 

computing system segregation relative to the module assignment at every time point (Figure 

S6; F(3.38, 4449.78) = 5.24, p = 0.0002).
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This increase in system segregation, usually inferred to reflect a decrease in the integration 

of network modules, suggests that the positive modulation of integration may rather reflect 

a transient topological shift toward fewer modules. This was indeed the case (Fig. 7C; 

F(4.38, 4268.60) = 5.27, p < 0.0001). We then asked how these changes in connectivity 

and topology related to the (single-layer) modularity of the network (see Methods section 

2.8, Eq. 8), which is also often considered a measure of segregation (Rubinov and Sporns, 

2010). Because modularity is a measure of the extent to which intra-module strength is 

greater than expected, it might be predicted to positively associate with system segregation. 

Alternatively, it could be predicted to track with the number of modules, as fewer modules 

often accompany a less modular structure. Here, we found that modularity demonstrated 

a positive fluctuation during the peri-explore period, in line with the increase in system 

segregation (Fig. 7D; F(3.68, 4522.20) = 6.10, p < 0.0001). Finally, while the network 

measures demonstrated similar time courses around exploration and were moderately 

to strongly intercorrelated (0.39–0.86, in absolute value; Table S1), network measures 

computed over functional connectivity matrices in which the topological structure of the 

network was permuted demonstrate significant differences in correlation structure (Table 

S2), suggesting that the functional organization of the brain during the task strongly drove 

the relationships in the data.

In sum, around exploration, there was a temporary shift toward a smaller collection of 

more loosely connected modules that included nodes from a greater diversity of cognitive 

systems. This counterintuitively led to an increase in measures normally taken to measure 

segregation (modularity, system segregation), while at the same time increasing our measure 

of integration. While these results are consistent with our hypothesis that integration would 

be modulated around exploration, they are not entirely in line with the directionality of 

the hypothesis—that exploration would decrease integration. This inconsistency is due 

both to the heterogeneity across measures and to the fact that the integration results 

could be consistent with either a localized peak concomitant with exploration, or with an 

increase during exploitation followed by a decrease following exploration. Unfortunately, 

the temporal resolution of our analysis is not sufficient to fully disentangle these two 

possibilities. Notably, using wavelet analysis, the minimum size of an effect produced by 

a transient will be approximately the size of the wavelet’s “cone of influence” (COI), 

which is the central segment of the wavelet in which changes in the underlying signal have 

the greatest impact on wavelet power (Torrence and Compo, 1998; see Figure S7 for a 

visualization of the COIs in this study). Qualitatively, the integration and modularity time 

courses might be consistent with a transient, while the shifts in strength and the number of 

modules appear longer lasting and potentially indicative of more enduring changes to the 

network around exploration. We return to these topics in the discussion.

3.5. The relationship between pupil-linked arousal and network integration and 
segregation

Both pupil diameter and measures of network integration and segregation were modulated 

around exploration, raising the possibility that pupil-linked arousal systems, such as the 

LC-NE system, influence integration during exploration, as hypothesized. To more formally 

assess this possibility, we computed the cross-correlation between pupil diameter and our 
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network measures (see Methods section 2.10). All measures demonstrated a peak at lag 0 

(Fig. 8), so we therefore assessed the significance of the zero-lag correlation across subjects. 

This relationship was weak overall, with the only significant correlation occurring for pupil–

strength (rave = 0.157, t(33) = 2.57, p = 0.015). However, the relationship was at a trend 

level for all other measures but integration (integration: rave = −0.035, t(33) = −0.88, p = 

0.38; system segregation: rave = −0.098, t(33) = −1.77, p = 0.085; number of modules: rave 

= 0.086, t(33) = 2.01, p = 0.053; modularity: rave = −0.079, t(33) = −1.90, p = 0.066). This 

finding extends prior work demonstrating a positive association between pupil diameter and 

overall strength of functional connectivity at the block level (Eldar et al., 2013; Warren et al., 

2016). Given that the other measures are all ultimately derived from connectivity strength, 

it may be that further noise introduced by those calculations—particularly those involving 

the computation of modularity—may have served to partially obscure these relationships. It 

may also be the case that the effect of brainstem arousal systems during exploration is best 

characterized as influencing overall connectivity strength, which then interacts with other 

factors to affect these other measures. Yet taken together, these results suggest a role for 

pupil-linked neuromodulatory activity in the complex changes in network connectivity and 

topology around exploration.

3.6. Accounting for task-evoked confounds

A potential concern with the preceding analyses is that the functional interactions could 

reflect parallel responses to task events in the absence of genuine neural interactions (Cole 

et al., 2019; O’Reilly et al., 2012). In order to address this confound, we re-ran all network

based analyses, after additionally regressing out task events from the BOLD time series (see 

Methods section 2.4, Tables S3–S5). All principal results reported without task regression 

hold except: (1) The subcortical system now shows significant modulation of integration 

around exploration F(2.89, 4605.64) = 3.58, pcorrected = 0.043. (2) The modulation of 

integration between the dorsal attention and limbic systems fell to a trend level (F(2.96, 

4465.94) = 4.24, pcorrected = 0.072). (3) The correlations for pupil–system segregation, 

pupil–modularity, and pupil–number of modules fell below trend-level (all ps > 0.13). 

Crucially, the pupil–strength correlation remained significant (rave = 0.154, t(33) = 2.60, p = 

0.014). In short, task-evoked responses were not a strong driver of the exploration-induced 

modulations reported above.

4. Discussion

Here we assessed the relationship between changes in pupil diameter, brain network 

integration, and behavior in the context of exploratory choice. Consonant with our 

predictions and corroborating previous findings (Jepma and Nieuwenhuis, 2011), we found 

that exploration induced a reliable increase in pupil diameter. This increase is consistent 

with the adaptive gain theory of LC-NE function, which states that changes in tonic LC 

firing mediate between states of exploration and exploitation (Aston-Jones and Cohen, 

2005). We also examined changes in brain network integration around exploration. While 

our hypothesis that integration would be modulated around exploration was confirmed, 

the simple directionality of the hypothesis was not. Rather than finding strictly reduced 

integration, exploration-linked alterations in functional network architecture across a range 
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of measures were consistent with a shift toward fewer, more weakly connected modules that 

were both more segregated in terms of connectivity and topology but also more integrated 

with respect to the diversity of cognitive systems represented in each module. Importantly, 

overall functional connectivity strength decreased, and changes in connectivity were 

associated with changes in pupil diameter, in line with the hypothesis that changes in LC-NE 

or other pupil-linked neuromodulatory activity contribute to the dynamic reorganization of 

brain networks. These findings are the first to tightly link arousal, brain network dynamics, 

and behavior in human subjects, going beyond prior studies, which relied on incidental 

variations in arousal or pharmacological manipulation assayed over longer periods of time. 

In so doing, this study has pushed the temporal grain at which sliding-window network 

analyses have been applied, indicating the possibility of using these methods to uncover 

finer-timescale changes when carefully coupled to behaviors of interest.

4.1. Complex peri-explore network dynamics

We found that during the peri-explore period, when the brain has fewer, larger modules, 

cognitive systems are more weakly connected and less internally homogenous (lower 

connectivity strength), and the ratio of within- versus between- system strength is higher 

(system segregation). Having fewer modules in turn increases integration because regions 

from different cognitive systems become intermingled in these loose modules. This pattern 

of results suggests that when brain functional connectivity is relatively high, its topological 

structure tends to better respect the boundaries of the resting-state cognitive systems. When 

overall connectivity strength is lower, such as during exploration, the boundaries between 

cognitive systems tend to dissolve, favoring larger, looser modules. Despite this, system 

segregation increases because it is a relative measure, so connectivity within cognitive 

systems need only decrease less than connectivity between cognitive systems.

The overall decrease in connectivity strength during the peri-explore period may thus be 

particularly important in driving the present results. Closely mirroring our findings, in a 

model of coupled oscillators, global decreases in coupling strength can lead to decreases in 

synchronization both within and between modules, as well as increases in modularity (Zhao 

et al., 2010). Changes in coupling strength have also been a target of modeling the effect 

of neuromodulatory systems on brain networks, which can lead to nonlinear changes in the 

degree of integration in the network (Shine et al., 2018a).

However, the complex changes in functional network architecture during the peri-explore 

period contrast with some prior findings in the literature. For example, performing the 

cognitively demanding n-back task has been found to increase brain network integration 

as measured in the present study (Braun et al., 2015), as measured by the diversity of 

intermodular connections (participation coefficient; Shine et al., 2016), and as measured by 

the average path length between nodes (global efficiency; Cohen and D’Esposito, 2016). It 

has also been found to decrease modularity (Cohen and D’Esposito, 2016; Vatansever et 

al., 2015) and system segregation (Cohen and D’Esposito, 2016)—both taken as measures 

of segregation—and decrease the number of modules (Vatansever et al., 2015). In the 

n-back task, all measures converge on a depiction of brain networks that have become more 

integrated (less segregated) in their connectivity and topology. Indeed, while integration and 
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segregation can be measured separately (Deco et al., 2015; Rubinov and Sporns, 2010), 

such measures display anticorrelations in both computational models (Deco et al., 2015) and 

empirical data (Cruzat et al., 2018), as is also implied by the findings from the n-back data 

across studies.

The divergence between these findings and the conflicting changes in integration and 

segregation found during exploration highlight the need to assess putative changes in 

integration across a range of tasks and measures. Network measures differ in whether 

they are based on topology or connectivity strength and differ in their focus on within- 

or between-network interactions. Therefore, different measures can be expected to show 

different sensitivities. For example, a neural network model trained on multiple measures of 

segregation and integration was better able to predict performance across a range of tasks 

than the individual measures alone, suggesting that each contributes unique information 

(Bertolero et al., 2018). Additionally, some network measures are relative, and so apparently 

contradictory changes may not be contradictory in relative terms, such as our finding 

of increased system segregation in the presence of increased integration. Moreover, as 

implied by our initial hypotheses, more integration—however defined—may not always be 

better. For example, performance in motor tasks has been shown to benefit from increased 

segregation of brain networks (Bassett et al., 2015; Cohen and D’Esposito, 2016). Indeed, it 

has been suggested that more modular brain networks are of benefit in simple tasks that rely 

on segregation of processing and relatively isolated cognitive systems, while less modular 

networks are better in more complex tasks that require integrated processing (Yue et al., 

2017).

This discussion raises the following question: What is the benefit of modulating integration 

in the context of exploration, which is not well-captured by the distinction between 

simplicity and complexity? Indeed, these changes in state occur in the context of a single 

task. Modeling work suggests that networks constrained to be sparser and more modular 

in some cases are better at converging to the solution in a given task (Bernatskiy and 

Bongard, 2015) and better adapt to task changes (Clune et al., 2013). Importantly, structural 

brain networks are not only modular, but also small-world, characterized by high clustering 

and short path lengths (Bassett and Bullmore, 2006). While small-world networks need 

not be modular, this property of the brain has been proposed to balance the segregated 

processing afforded by modularity with the integrative processing afforded by more global 

connectivity (Bassett and Bullmore, 2006; Gallos et al., 2012). Interestingly, small-world 

topology has been shown to impact exploration and exploitation in the context of problem

solving networks. In such networks, agents attempt to find the best solution to a problem 

in parallel (e.g., guessing the number that yields the highest payoff), where individuals 

connected to each other in the network have access to one another’s answers. Networks of 

human subjects as well as simulated agents display more exploration of the problem space in 

less connected networks, as greater segregation of information promotes the coexistence of a 

greater variety of possible solutions (Lazer and Friedman, 2007; Mason et al., 2008). While 

fully connected networks excel in unimodal problem spaces, small-world networks excel 

in multimodal problem spaces (Mason et al., 2008). Notably, some of the same benefits of 

structural connectivity can be obtained by changing the dynamics, such that agents can only 

occasionally view the solutions of their network neighbors (Bernstein et al., 2018; Lazer 
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and Friedman, 2007). As may be expected, these results are highly dependent on the type 

of problem to be solved (Mason and Watts, 2012; Shore et al., 2015), and they come from 

networks quite distinct from brain networks. However, they suggest the intriguing possibility 

that dynamically increasing segregation in the brain during exploration may increase its 

ability to flexibly adapt when exploring new problem spaces or environments. The fact 

that the overall number of modules decreased, contributing to an increase in integration of 

different cognitive systems, may serve to balance this segregation by increasing the diversity 

of processing within each module. Although these ideas are speculative by way of analogy 

to other networks, they suggest important areas for future research utilizing neural network 

models.

4.2. Specificity of network effects

While brainstem neuromodulatory nuclei project widely throughout the cortex, there appears 

to be some specificity in their effects on brain networks (van den Brink et al., 2019). To take 

the LC as an example, while some studies have suggested that LC-NE-linked modulation 

of network connectivity is relatively global, in keeping with the diffuse projections of LC 

(Eldar et al., 2013), others have uncovered heterogeneity in these effects and linked those 

heterogeneities to catecholamine receptor distributions (van den Brink et al., 2018, 2016b; 

Zerbi et al., 2019). Furthermore, recent work in rodents indicates that LC neuron projections 

and the interactions among LC ensembles are far more regionally specific with respect to 

their cortical targets than previously appreciated (Totah et al., 2019).

We also found suggestive evidence for anatomical specificity: modulation of integration 

around exploration was most reliable in the default, dorsal attention, limbic, and 

frontoparietal systems and their interactions. While the default mode system was initially 

defined based on its decreased activity during task (Raichle, 2015), a growing body of work 

suggests its relevance for task processing. In particular, it has been implicated in working 

memory (Vatansever et al., 2015), task switching (Crittenden et al., 2015), attentional 

shifting (Arsenault et al., 2018), and creative cognition (Beaty et al., 2016). Of particular 

relevance to the present study, neurons in posterior cingulate—a default mode area—have 

been implicated in performance monitoring (Heilbronner and Platt, 2013) and exploration 

(Pearson et al., 2009). There is also prior evidence of dynamic interactions between default, 

frontoparietal, and dorsal attention systems, with the frontoparietal system potentially 

regulating activity in the other two systems in order to adjust the balance between internally

generated (default) and externally-directed (dorsal attention) processing (Beaty et al., 2016; 

Dixon et al., 2018, 2017; Smallwood et al., 2012). Furthermore, interactions among limbic, 

attentional, and catecholamine systems appear to modulate attention, learning, and memory 

for salient or motivationally relevant events (Clewett and Murty, 2019; Gallagher and 

Holland, 1994; Mohanty et al., 2008). The Leapfrog task itself has been associated with 

both prefrontal function and arousal (Blanco et al., 2015; Otto et al., 2014). While we can 

only speculate about the role of these systems and their interactions in the present study, they 

may reflect the coordination of monitoring, decision-making, and attentional processes in 

service of flexibly shifting between exploitation and exploration based on ongoing estimates 

of the relative value of exploring.
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These signs of specificity must be qualified by the fact that the differences among the 

time courses were not themselves reliable—model comparison did not favor GAMMs with 

separate time courses for each system or between-system interaction over one shared time 

course, though these are likely conservative tests due to the large number of additional 

degrees of freedom needed to fit individual time courses over a shared time course. This is 

particularly the case for the between-system analysis (28 pairwise interactions), where visual 

inspection suggests very little modulation in some interactions. Future work should continue 

to examine the role of the LC and other neuromodulatory structures in regulating brain 

network connectivity within specific contexts to provide further evidence for the existence of 

global versus task- and region-specific neuromodulatory effects. Such efforts would benefit 

from planned comparisons between regions or networks to increase the power to detect 

differential effects.

4.3. Pupillary response to exploratory state

While it was not a primary goal of the study, our results also bear strongly on the role 

of LC-NE-linked arousal in mediating between exploration and exploitation. Despite the 

long-standing hypothesis that tonic LC activity mediates between these states (Aston-Jones 

and Cohen, 2005), relatively few studies have examined this relationship, although most 

have found support for such a relationship (Gilzenrat et al., 2010; Hayes and Petrov, 

2016; Jepma and Nieuwenhuis, 2011; Kane et al., 2017; cf. Jepma et al., 2010; Warren 

et al., 2017). Despite this, open questions remain about the nature of the relationship. Pupil 

diameter is sensitive to several non-luminance-mediated factors, including uncertainty and 

surprise (Alamia et al., 2019; Friedman et al., 1973; Jepma and Nieuwenhuis, 2011; Lavín 

et al., 2014; Nassar et al., 2012; Preuschoff, 2011; Qiyuan et al., 1985; Urai et al., 2017; 

Zénon, 2019), as well as mental load or task difficulty (Alnæs et al., 2014; Hess and 

Polt, 1964; Kahneman and Beatty, 1966; Wahn et al., 2016). Notably, past task designs 

used to test the relationship between LC-NE-linked activity and exploratory state do not 

always clearly differentiate states of exploration from these other factors. For example, a 

canonical study of exploration—operationalized as task disengagement—utilized increases 

in task difficulty to promote disengagement (Gilzenrat et al., 2010). It could thus be the 

case that pupil diameter in this study was more related to other variables than to exploration 

per se; indeed, it was argued to closely track expected utility, a putative signal of when 

to initiate exploration (Aston-Jones and Cohen, 2005). While it is an empirical question 

whether states of exploration reduce to states of uncertainty or low utility, the information 

gained by exploration has utility in and of itself, despite the opportunity costs associated 

with potentially lower payoffs (e.g., directed exploration; Gershman, 2018; Kaelbling et 

al., 1996; Knox et al., 2012; Wilson et al., 2014). Furthermore, mice demonstrate elevated 

pupil diameter during exploratory behaviors that are not associated with immediate payoffs 

(McGinley et al., 2015), and tonic LC stimulation induces disengagement and increased 

decision noise during patch foraging in rats, which are putative markers an exploratory state 

(Kane et al., 2017). Exploratory states would thus seem to be at least somewhat separable 

from these other factors and potentially heterogenous in nature. The simplified nature of 

the Leapfrog task partially mitigates these concerns; the option values change in a highly 

constrained way, meaning most of the uncertainty/difficulty lies in the decision of when to 

explore, given the rate of change in the environment (Knox et al., 2012).
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Another question concerns the timing of arousal fluctuations relative to exploratory actions. 

A key prediction of the adaptive gain theory is that tonic LC activity and baseline pupil 

diameter should increase preceding exploration or disengagement and then fall when 

transitioning to exploitation, based on the proposal that tonic LC activity tracks expected 

utility (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010; Jepma and Nieuwenhuis, 

2011). Crucially, we found no anticipatory increase in pupil diameter leading up to the 

explore trial. This suggests that increased arousal was a consequence of the decision to 

explore, rather than its cause. This is partially at odds with a prior report that found elevated 

baseline pupil diameter prior to explore trials—though not on exploit trials leading up to 

exploration (Jepma and Nieuwenhuis, 2011), and might therefore be taken as support for the 

supposition that baseline pupil was tracking a quantity such as utility in prior studies but not 

here. While the numerical value of the exploit option does not diminish in the Leapfrog task, 

utility does diminish, as a normative account of the task demonstrates that the relative value 

of choosing the exploit over the explore option decreases over time, due to the increasing 

possibility that the explore option has become the better option; human subjects—including 

in this study (Figure S8B)—demonstrate behavioral signatures at least partially consistent 

with this model (Knox et al., 2012). Pupil diameter may thus be more sensitive to explicitly 

decreasing payoffs than to more abstract computations of utility. Task timing might also be 

a factor. Studies that found anticipatory arousal with either drifting bandits or the Leapfrog 

task allotted more time before subjects could make a decision, so pre-choice arousal levels 

might be more reflective of the anticipation of making an exploratory choice (Jepma and 

Nieuwenhuis, 2011; Otto et al., 2014), whereas our task timing may not have provided 

sufficient time for these signals to develop.

Following the explore choice, pupil diameter remained elevated for several seconds. 

Importantly, response to a change in outcome did not drive this effect, making a role 

for surprise unlikely, and the explore response was not sensitive to volatility condition, 

suggesting it also was not due to greater uncertainty in the outcome of explore choices. This 

conclusion must be qualified, however, by the relatively weak sensitivity of subject behavior 

to volatility level. Given that the pupillary response has been shown to be modulated 

by probabilities and at least qualitatively demonstrates more extended responses to low 

probability events (Alamia et al., 2019; Qiyuan et al., 1985; Zénon, 2019), we cannot 

completely rule out this possibility. Nor can we rule out the possibility that the difference 

between explore and exploit response was due to anticipated outcome, which prior studies 

have demonstrated positively modulates pupil diameter (Cash-Padgett et al., 2018; Van 

Slooten et al., 2018; Varazzani et al., 2015). In this task, we cannot decouple outcome 

anticipation from outcome uncertainty due to the constrained nature of value changes 

in this task. Exploration in drifting bandits is associated with lower expected outcomes 

(Jepma and Nieuwenhuis, 2011), and if subjects in our study were sensitive to the fact that 

explore choices resulted in improved outcomes on only 41% of trials, they should not have 

anticipated higher outcomes. On the other hand, if subjects were exploring using a normative 

strategy, they should have a subjective belief that the explore option is higher-valued before 

exploring (Knox et al., 2012). However, outcome-related responses are very sensitive to 

ongoing task conditions (Cash-Padgett et al., 2018; Van Slooten et al., 2018), so there is 

no reason to believe such anticipatory responses would persist well into the following trial. 
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Based on this pattern of results and the absence of baseline pupil increases prior to choice, 

we tentatively propose that a shift into an exploratory state is accompanied by an increase 

in arousal that is independent from the decision variables contributing to the decision to 

explore. This conclusion is supported by prior work demonstrating that differences in pupil 

diameter on explore vs. exploit trials survive controlling for numerous other factors related 

to expected utility, including expected payoff and the entropy of the option values (Jepma 

and Nieuwenhuis, 2011). Such increases in arousal may have adaptive benefits that are 

separate from merely encouraging further overt exploratory choices, such as increasing 

learning rates (Ebitz et al., 2018). While in our study the increase in arousal was only on the 

order of seconds, we predict it would be more extended in contexts requiring more extended 

bouts of exploration.

Though it is challenging to draw inferences about neural activity from pupil diameter (Joshi 

and Gold, 2020), the timing and duration of the pupil response provide some constraints. 

The canonical pupillary response function has an approximately one second lag to peak and 

returns to baseline after about two seconds (Hoeks and Levelt, 1993). Pupil responses of 

similar latency and duration are evoked by single LC spikes and LC microstimulation (Joshi 

et al., 2016), and response-related LC activity tends to be quite sparse, on the order of single 

spikes (Kalwani et al., 2014; Varazzani et al., 2015). Pupil diameter on exploit trials closely 

followed the canonical pattern (Fig. 2A), and is thus suggestive of phasic LC-NE activity. 

Pupil diameter on explore trials remained elevated for several seconds following the explore 

choice. This might indicate a brief elevation of tonic LC-NE activity, given the proposed link 

between the tonic mode of LC firing and exploration (Aston-Jones and Cohen, 2005). Pupil 

response scales with LC stimulation frequency (Liu et al., 2017), so it is also conceivable 

the extended response results from a phasic LC response that is much larger than for exploit 

choices. Finally, the prolonged response could be due to other neuromodulatory influences. 

In particular, acetylcholine axon activity has been found to more closely track extended 

pupil dilations and their slow decay, while NE activity correlates more strongly with rapid 

changes in pupil diameter (Reimer et al., 2016).

4.4. Limitations and future directions

While this study identified exploration-induced modulation of brain network connectivity 

on a fairly fine temporal scale, there are a few caveats that warrant consideration. First, 

the low-frequency nature of the continuous wavelet coherence analysis makes it difficult 

to infer the exact nature of the underlying neural activity. Indeed, filtering, including the 

use of wavelets, can distort the timing of the underlying signals (de Cheveigné and Nelken, 

2019; Yael et al., 2018). Thus, while our analyses provide evidence of an exploration and 

arousal-linked modulation, the exact nature of the modulation—its timing and directionality

—may be quite different than that uncovered here. On the other hand, wavelet analysis has 

benefits over correlation-based methods in robustness to noise and temporal autocorrelation 

(Zhang et al., 2016).

Relatedly, we took substantial steps to address temporal autocorrelation in our analyses, 

including the use of GAMMs, AR1 error models, and corrected correlation Z-scores. 

Although the impact of temporal autocorrelation—particularly in nonstationary time series
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—has long been recognized in fields such as economics and statistics (Granger and 

Newbold, 1974; Johansen, 2012; Phillips, 1986; Yule, 1926), and univariate analyses of 

fMRI data correct for non-independence in the residuals of fMRI GLM analyses due 

to autocorrelation (Monti, 2011), autocorrelation has not always been taken into account 

in psychological and neuro-scientific analyses, including in analyses of pupil–network 

relationships. This potentially threatens not only statistical inference (i.e., inflated Type I 

error rate), but also in some cases the validity of the parameter estimates themselves (i.e., 

inducing spurious correlations). That said, there has been disagreement as to the severity 

of the autocorrelation problem, likely owing to differences in the underlying signals, the 

length of the time series, and the assumptions made about the autoregressive processes 

(Afyouni et al., 2019; Arbabshirani et al., 2014; Baayen et al., 2017; Dean and Dunsmuir, 

2016; Elber-Dorozko and Loewenstein, 2018; Honari et al., 2019; Leonardi and Van De 

Ville, 2015). We have chosen to take this problem seriously, although other solutions, such 

as pre-whitening or the use of ARIMA models, could have been used, as is recommended 

by some of these authors. We did not use these methods here because we did not want 

to eliminate low-frequency signal components (Afyouni et al., 2019; Pyper and Peterman, 

1998), but future work could usefully assess the impact of various mitigation strategies not 

only on functional connectivity itself, but also on its relation to other signals of interest such 

as pupil diameter. It may also be worth investigating the use of clustering (Khambhati et al., 

2018a; Liu et al., 2018; Medaglia et al., 2018) or deconvolution (Karahanoğlu et al., 2013; 

Wierda et al., 2012) techniques to aid in addressing both issues of temporal precision and 

autocorrelation.

While we have attributed the peri-explore modulation to exploration, this assumption must 

be examined in more detail in future studies. Given our task design and limits on the amount 

of explore trials per subject, we cannot completely disentangle effects of exploration from 

effects of change, uncertainty, and overall volatility, although we made several attempts to 

do so. Furthermore, in the Leapfrog paradigm bouts of exploration are usually on the order 

of a single trial, and we restricted our network analyses to explore choices surrounded by 

several exploit choices to clearly identify the effects of these individual explore choices. 

Designs that provoke more extended exploratory states may help to overcome issues related 

to temporally isolating the effects of exploration, and future work should assess the impact 

of the frequency and duration of exploratory states on network dynamics. Additionally, 

we cannot separate effects of exploration from more general effects of attentional shifting. 

While LC-NE-linked effects on attentional processes are well-known and in some sense 

are partly constitutive of its influence on exploratory state (Aston-Jones and Cohen, 2005; 

Corbetta et al., 2008; McGinley et al., 2015; Sara and Bouret, 2012), exploration has been 

isolated from switching at the single-neuron level (Pearson et al., 2009), so it will be 

important to better delineate the boundaries of these different processes and states in the 

future.

Though we have focused on the LC due to its role in regulating both pupil diameter and 

exploration, other neuromodulators, such as dopamine and acetylcholine, have also been 

implicated in coordinating brain network dynamics (Birn et al., 2019; Roffman et al., 2016; 

Shafiei et al., 2019; Turchi et al., 2018; Záborszky et al., 2018) and have been implicated 

in uncertainty and exploration (Beeler et al., 2010; Fiorillo et al., 2003; Yu and Dayan, 
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2005). Acetylcholine in particular also influences pupil diameter (Reimer et al., 2016), and 

therefore we cannot rule out its impact in the present results. Finally, other mechanisms, 

such as thalamic regulation, have been linked to the control of cortical connectivity (Halassa 

and Kastner, 2017), which highlights the need look beyond neuromodulators for other 

mechanisms of brain network reconfiguration.

In sum, we have demonstrated a relationship between exploration, pupil-linked arousal, and 

brain network dynamics. We argue that forming linkages between functional connectivity, 

behavior, and physiological markers such as pupil diameter represents a promising path 

forward for understanding the impact of neuromodulatory actions on brain network 

dynamics and cognitive processing. More generally, we suggest that carefully aligning 

dynamic network analyses with task designs can increase the temporal resolution at which 

behaviourally- and cognitively-relevant modulations can be identified.
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Fig. 1. 
Analyzing brain network integration and arousal during exploration. A Stimuli and trial 

timing for the Leapfrog task. Each trial was followed by a 1000 ms ITI during which

—in addition to the option images—a light gray rectangle was present in the center of 

the display to maintain luminance. Note that stimuli are higher contrast than they were 

during the experiment. B We recorded pupil diameter as an index of brainstem arousal 

systems. C We parcellated the brain into 200 cortical regions (Schaefer et al., 2018) and 

15 subcortical regions (Fischl et al., 2002), assigned each region to an established cognitive 

system (colors; Yeo et al., 2011) and extracted the average BOLD time course from each 

region. We then computed continuous wavelet coherence between each pair of regions. 

D We averaged coherence across the 0.08–0.125 Hz frequency range to produce a single 

time-varying measure of connectivity strength per node pair. This procedure resulted in 

one 215×215×240 weighted adjacency matrix per task run. E We submitted the adjacency 

matrices to a multislice modularity optimization algorithm (Jeub et al., 2011; Mucha et al., 

2010), yielding time-varying brain networks, where each node is assigned to a module in 
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the network (colors). We repeated this procedure across a range of parameter values of the 

modularity-maximization algorithm, which resulted in 102 time-varying networks per task 

run. Brain networks were visualized using BrainNet Viewer (Xia et al., 2013). F At each 

time point, we computed the modular allegiance matrix, which identifies the probability 

that two nodes were placed in the same module, across the parameter space. G We then 

used the modular allegiance matrices to compute global brain network integration, which 

measures the extent to which nodes from different cognitive systems (C) were placed into 

the same module at a particular point in time, across the brain. Vertical dotted lines indicate 

time windows in which an exploratory choice was made. H To characterize the relationship 

between integration and exploration, for each subject we extracted peri-explore time courses 

spanning 12 s before to 18 s after explore choices.
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Fig. 2. 
Pupil dilation is reliably modulated by choice type. A Average pupil response to explore 

choices and exploit choices across subjects. Pupil diameter was z-scored within subject, and 

the evoked response was calculated relative to a baseline taken from the average of the 500 

ms prior to the choice period. Here and throughout, error bars accompanying averaged data 

reflect the standard error of the mean (SEM). See Figure S2 for the pupil response across 

the entire trial, including the baseline period, aligned to trial start. B The contrast of explore 

> exploit from a mixed-effects regression model at every time point. Pupil diameter was 

downsampled from 250 to 50 Hz. The regression model controls for baseline pupil diameter 

and gaze position. Error bars are 95% confidence intervals for the parameter estimates. 

Black line indicates p < 0.05. C There was no difference between baseline pupil diameter 

on explore and exploit trials. D Pre-explore baseline pupil diameter on the trials preceding 

exploration. Only the decrease from the second to the first trial pre-explore was significant. 

Note: this analysis was restricted to peri-explore epochs with at least two exploit trials pre- 

and post-explore (see section 2.9.1), which leads to a somewhat different estimate of explore 

trial baseline pupil than in 2C.
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Fig. 3. 
The effect of outcomes on pupil response. A Average pupil response to outcomes, separated 

by whether the choice was explore or exploit. The evoked response was calculated relative 

to the average pupil diameter in the 250 ms prior to presentation of the payoff. Note that 

exploit–change trials are not shown, as they were rare outcomes and were thus not analyzed. 

B The contrast of explore–change > explore–no change from a mixed-effects model of 

the outcome period. Outcome changes induced reliably larger pupil dilation at the end of 

the outcome period. C The contrast of explore > exploit–no change from the same model. 

This contrast reflects the effect of exploration over and above the effect during the choice 

period, as the model controls for average pupil diameter in the 250 ms prior to outcome 

presentation. The model also controls for gaze position.
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Fig. 4. 
Modulation of pupil diameter post-explore. A The post-explore pupil time course, aligned to 

the explore choice. Dashed vertical lines indicate the approximate start times of subsequent 

trials. The small upward modulations in the time course shortly after each trial start are 

due to subsequent exploit choices. Pupil diameter was significantly elevated above the 

explore-trial baseline for 7.5 s post-choice. B The post-explore pupil diameter latency to 

peak and latency from peak to the post-peak minimum (max 18 s post-explore) across all 

data (top); the median latency to peak and post-peak minimum for each subject (bottom).
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Fig. 5. 
A The peri-explore integration time course is significantly modulated around exploration. 

All peri-explore time courses both here and below were mean-centered prior to averaging 

for display purposes. Uncentered time courses were used in the statistical analyses, and 

trial-to-trial variability was captured using by-trial random effects. B The peri-explore pupil 

time course, downsampled to the sampling rate of the integration time course and low-pass 

filtered.
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Fig. 6. 
The modulation of peri-explore integration varies by cognitive system. A The integration 

of each cognitive system with all other systems (i.e., the rest of the brain). B Pairwise 

integration between cognitive systems that demonstrated a significant modulation around 

exploration. See Figure S5 for all between-system time courses. ∗ p < 0.05; ∗∗ p < 0.01; 

∗∗∗ p < 0.001.

Tardiff et al. Page 43

Neuroimage. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
A Average node strength, B system segregation, C number of modules, and D modularity all 

showed significant modulations in the peri-explore period.
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Fig. 8. 
Pupil–network cross-correlations. The cross-correlation between each network measure and 

the downsampled and low-pass-filtered pupil time course during the peri-explore period. 

Average cross-correlations and SEMs were computed by first Fisher z-transforming the 

correlations at each lag, and then back-transforming for display.
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