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Abstract: Tumor classification and segmentation problems have attracted interest in recent years.
In contrast to the abundance of studies examining brain, lung, and liver cancers, there has been a lack
of studies using deep learning to classify and segment knee bone tumors. In this study, our objective
is to assist physicians in radiographic interpretation to detect and classify knee bone regions in terms
of whether they are normal, begin-tumor, or malignant-tumor regions. We proposed the Seg-Unet
model with global and patched-based approaches to deal with challenges involving the small size,
appearance variety, and uncommon nature of bone lesions. Our model contains classification, tumor
segmentation, and high-risk region segmentation branches to learn mutual benefits among the global
context on the whole image and the local texture at every pixel. The patch-based model improves
our performance in malignant-tumor detection. We built the knee bone tumor dataset supported
by the physicians of Chonnam National University Hospital (CNUH). Experiments on the dataset
demonstrate that our method achieves better performance than other methods with an accuracy
of 99.05% for the classification and an average Mean IoU of 84.84% for segmentation. Our results
showed a significant contribution to help the physicians in knee bone tumor detection.

Keywords: knee bone; tumor; cancer; u-net; segnet; deep learning; segmentation; classification;
detection

1. Introduction

Knee tumors are tumors that appear around the bone regions of the human knee; they
often fall into three types: benign, malignant, and pseudo-tumors. These tumors inflict
substantial physical and emotional pain on the affected patients. Early clinical investiga-
tions used conventional radiographs to detect knee injuries, as they were an effective tool
that was also cheap. Despite the excellent assistance provided by radiographic images,
the manual processes involved in collecting one’s medical history, imaging examination,
and image analysis are often time-consuming, which delays the development of an appro-
priate treatment plan, and which can lead to disability or death for the patients. However,
we believe that computer-aided diagnostics can be a valuable tool that helps clinicians
make correct and timely decisions. As a result, patients will eventually have more reliable
diagnoses, leading to the earlier initiation of appropriate treatment, and, consequently,
a prolonged life.

Recently, the automation of conventional radiographs analysis using convolutional
neural networks (CNNs) [1–3] has emerged as a breakthrough research field in general
visual recognition, which is particularly useful for medical images. Although X-ray images
suffer from noises, the segmentation approach is very effective in reducing noise. Thus,
these deep learning models can already achieve high performance in medical image
segmentation. This clearly shows the possibility of applying them in clinical practice.
The disadvantage is that these models must be trained on huge datasets to be able to

Diagnostics 2021, 11, 691. https://doi.org/10.3390/diagnostics11040691 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7034-0364
https://orcid.org/0000-0003-3936-9799
https://orcid.org/0000-0003-3024-5060
https://orcid.org/0000-0003-3575-5035
https://doi.org/10.3390/diagnostics11040691
https://doi.org/10.3390/diagnostics11040691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11040691
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11040691?type=check_update&version=1


Diagnostics 2021, 11, 691 2 of 22

make predictions. However, the number of publicly available medical datasets is limited,
especially on datasets of the knee bone. Therefore, we must first prepare a quality dataset
of knee bone tumors before starting to build the system.

Our dataset is collected from various sources, and it is supported directly by many
physicians. However, we encountered many difficulties in the data normalization of knee X-
ray images because of data heterogeneity; for example, tumors can appear anywhere in the
knee area, so the posture also changes. The process of setting and adjusting parameters for
radiography can also vary significantly from one dataset to another. For example, a patient
examined in one hospital may have different knee X-ray images in another hospital. In
addition, the raw knee X-ray images are often high-resolution and of extremely massive
sizes, thereby requiring substantial amounts of memory for the training process. It is
therefore necessary to scale down the radiology image in pre-processing. Consequently,
under the resize-image condition, some small tumors almost disappear, while others
become too small, as shown in Figure 1. However, Vartevan et al. [4] described a way to
recognize tumors by margins, periosteal reaction, bone destruction, and the existence of a
soft-tissue mass. These local textures can help detect tumors of any size, and they should
be added to the learning process of the machine. In 2018, Reicher et al. [5] used a tumor
matrix to only discriminate the local features of tumors in the radiology images, as shown
in Figure 1f–h. More details in related works are mentioned in Appendix A.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 1. (Row 1) The robust multi-level features used to help detect the very small tumor region.
From left to right, (a) original image containing the very small tumor region, (b) zoomed-in view of
the tumor region, (c) the ground-truth, (d) the result with multi-level distance features, and (e) the
result without those features. (Row 2) Meaningful bone tumor matrices of knee bone tumor classifi-
cation shown in (f–h). It is proven to be a highly predictive feature of bone tumor classification in [5].
This explains why global and patch-based approaches should be applied to distinguish between
benign-tumor and malignant-tumor regions.

Unlike other research using global information to detect, classify, and segment tu-
mors [6], our model combines both global and patched-based approaches using muli-level
distance features. In the global-based approach, our Seg-Unet model aims to not only
learn the whole geometric context of the knee bone, but also exploit high-risk regions for
tumor occurrence. For example, tumor regions commonly have a small size, unclear border,
and uncommon appearance. Similar to the diagnosis process, our model assesses the whole
X-ray images and learns the texture regions around the high-risk regions near the tumor
regions. Through the learning processes, our model in practice will have the ability to
efficiently focus on the tumor regions based on the global geometric characteristics of the
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knee bone as well as the textures of the high-risk regions, where they are larger than the
tumor regions.

In the patch-based approach, our model is transferred the weight from the global
model, and image patches are input into the model for further fine-tuning. In contrast to
the whole radiology image used in the global model, the patch model focuses on image
patches consisting of small image chunks of the high-resolution original image. These
help our patch model deal with malignant tumor regions which have the most uncommon
appearance and the smallest size. From transfer learning by the global model, the patch
model integrates the global information of the whole image with the local information of
small regions to boost the performance of malignant tumor detection.

Our contribution in this study is to propose a multi-level Seg-Unet model using a
combined global and patch-based approach to deal with small tumor regions and achieve
improvements in malignant tumor detection. Our model has an encoder–decoder architec-
ture that leverages the mutual benefits of classification and segmentation branches to learn
the global geometric context and local texture features at every pixel. Moreover, the multi-
level distance features help improve our model’s performance in high-risk places around
tumor regions. In addition, the patch-based aspect uses the weight of the global-based
model to make suitable fine-tuning to detect malignant tumor regions from small image
chunks of the original high-resolution image. Finally, we build and conduct experiments
on a knee bone tumor dataset with the annotations of physicians at Chonnam University
Hospital (CNUH). We hope to contribute to knee bone tumor research and the use of deep
learning to address various issues.

The rest of our paper is organized as follows: In Section 2, we present the materials
and our proposed method for knee bone segmentation. Next, we provide our results in
Section 3 and the discussion in Section 4. Finally, in Section 5, we conclude our research.
Related works, implementation details, environment setup, and evaluation metrics are
mentioned in the Appendices A–C.

2. Materials and Methods
2.1. CNUH Dataset and Challenges

In this study, we evaluated our method on the knee bone tumor dataset Chonnam
National University Hospital (CNUH) [7] presented in Table 1. This dataset includes 1195
tumor images and 381 normal images. Institutional review board approval was obtained.
The condition for informed consent was waived as this study was a retrospective review of
radiologic images without demographic data of patients.

Table 1. Chonnam National University Hospital (CNUH) dataset.

Knee Region Benign Tumor Malignant Tumor Normal

Distal femur 598 89 -
Proximal tibia 463 45 -

Total 1061 134 381

Our dataset focuses on benign and malignant tumors in two regions of knee bone, i.e.,
Distal femur and Proximal tibia, as shown in Figure 2.

Figure 3 illustrates the data distribution among three labels in our problem. There is an
imbalance in our dataset where the number of benign tumors (1061 images) is larger than
the number of malignant tumors (134 images). Almost all of the images are large, with a
maximum size of 3480× 4240 and a minimum size of 330× 597, as shown in Figure 4.
Otherwise, the tumor regions have a wide variety of sizes, ranging from the approximate
small size of 100 to the approximate large size of 1500.
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5

Normal knee bone
Benign tumor 
Proximal Tibia

Benign tumor
Distal Femur

Malignant tumor 
Distal Femur

Malignant tumor 
Proximal Tibia

Figure 2. Sample images in the CNUH Dataset.

Figure 3. Data Distribution in the CNUH Dataset.

6

Distribution of image width and height

Figure 4. The weight (left) and height (right) distribution of the images in the CNUH Dataset.
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Figure 5 illustrates the challenges faced in knee bone tumor detection. The imbalance
in the number of tumor-malignant images leads to difficulties in tumor detection based
on the limited data. In addition, the imbalance between tumor regions and background
regions also leads to a reduced performance of tumor detection in practice. Moreover, some
difficult cases often arise, such as a high diversity of sizes; the number of tumor regions,
which can vary from a minimum of 1 to a maximum of 8; and the range of changes in
tumor sizes, from very small regions leading to important distortions when zooming out to
very large regions covering almost the entire image, which prevent the accurate detection
of the full tumor region.

6

(a) Many tumor regions (b) Small tumor region (c) Large tumor region

Figure 5. Difficult tumor images in CNUH dataset. The red lines are the ground-truths drawn by the
CNUH physicians. These sample images show common challenges in the CNUH dataset such as
(a) diversity of tumor occurrence, (b) too small size of tumor region, and (c) too large size of tumor
region and pose variety.

Therefore, the goal of this study is to propose a robust method by which to detect
normal and tumor regions as well as classify knee bone images among three labels (normal,
benign, and malignant) to tackle the challenges described above. It is expected to be a
useful recommendation application to help physicians diagnose knee bone tumors early.

2.2. Proposed Method
2.2.1. Overview

In this study, our input is a scaled-down or patch image X ∈ RH×W of the human knee
region in an X-ray image with width W and height H. Our first task is to determine the
one-hot tumor probability Yclas ∈ RC to determine the specific tumor label yc ∈ {0, 1, 2}
corresponding to the normal, benign, or malignant label. Let p =∆ (x, y) be the pixel location
of the given X-ray image X. The second task is to segment the tumor regions in the X-ray
image X, then output the tumor segmentation mask Yseg ∈ RW×H×2 where the pixel-tumor
probabilities Y(p) at every pixel p in X determine whether it belongs to the normal or
tumor label. In this study, we suggest a third task of determining the multi-level distance
map Ydist ∈ RW×H×5 to exploit the high-risk regions around the tumor regions. Every pixel-
level distance feature Ydist(p) helps a physician by providing five levels of alert, consisting
of normal, tumor, and high-risk tumor levels from 1 to 3, depending on the distance to
tumor. The third task creates an attention map to enhance our performance in difficult
cases under in-the-wild conditions such as small tumor regions and malignant tumors.
Therefore, our problem becomes finding the knee bone detection model M including three
mapping functions Fclas, Fseg and Fdist to predict the tumor probability Ŷclas in the whole
image, as well as the tumor segmentation mask Ŷseg and the multi-level distance map Ŷdist
to identify the tumor regions and high-risk tumor regions as follows:

M =
{

Fclas, Fseg, Fdist
}

(1)
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where:

Ŷclas = Fclas(X)

Ŷseg = Fseg(X)

Ŷdist = Fdist(X)

(2)

As shown in Figure 6, our model M contains the encoding block E, the decoding
block D and three branch blocks Hclas, Hseg and Hdist for multi-task learning. The goal of
multi-task learning is to provide mutual information to enhance the performance of our
proposed models by encoding feature Xenc and decoding feature map Xmap.

E

Xenc= E(XG or P)

D
Balance Random 

Sampling

Scaled-down

XO

XG

XP

Xmap= D(Xenc)

Hclas

Hseg

Hdist

𝑌𝑠𝑒𝑔

𝑌𝑑𝑖𝑠𝑡

𝑌𝑐𝑙𝑎𝑠

3

5

2

normal, benign, and malignant

normal and tumor

normal, tumor1…4

Figure 6. Knee Bone Tumor Detection Model. It uses the geometric-context classification Hclas to enhance the encoding
feature Xenc from encoding E to return the geometric-context probability vector Yclas. The 2D decoding feature map is
enhanced by multi-task learning at the pixel level between the pixel-tumor segmentation Hseg and the high-risk pixel-tumor
segmentation Hdis for outputting tumor segmentation mask Ŷseg and multi-level distance features Ŷdist. Ŷdist has the role of
high-risk attention around tumor regions. The model’s input is from the scaled-down image XG of the original X-ray image
X for the global model and the patch image XP generated from balance random sampling for the patch model.

Due to the complexity of knee bone X-ray images under challenging conditions such
as the various potential poses, size diversity, and uncommon appearance, we need the
classification branch to determine at the global-context level whether an image belongs
to normal or tumor (including benign and malignant). It is placed at the middle of the
model to provide information to the encoding feature Xenc to improve the encoding block
E as follows:

Ŷclas = Hclas(E(X)) = Fclas(X) (3)

where Xenc = E(X) compacts the original image X into the features to be calculated for
classification, segmentation, and high-risk segmentation. This then serves as the input
of decoding block D to calculate the results for the pixel-level tasks in the two remaining
branches as follows:

Ŷseg = Hseg(D(Xenc)) = Fseg(X)

Ŷdist = Hdist(D(Xenc)) = Fdist(X)
(4)

where Xmap = D(Xenc) is the decoding feature map for the pixel-level feature representa-
tion affected by the tumor segmentation and high-risk tumor segmentation branches. This
means that the tumor segmentation branch can efficiently learn the distance information of
the high-risk tumor segmentation branch and the global-context feature of the classification
branch under challenging conditions. Otherwise, the classification branch is also enhanced
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from the mutual information. The distance feature calculation is described in further detail
in the section below.

2.2.2. Global and Patch-Based Models

Our proposed system involves two approaches derived from the above model M
consisting of a global-based model MG and a patch-based model MP. The global model MG
receives the high-resolution image XO ∈ RWO×HO with WO, HO ≤ 4000 and scales it down
into a small image XG ∈ RW×H with a suitable size W, H. It then uses multi-task learning
to learn the mutual information from three tasks: classification, tumor segmentation, and
high-risk tumor segmentation. From there, it can not only detect small tumor regions but
also alert physicians to the high-risk regions around tumors.

Meanwhile, the patch-based model MP makes predictions from a small image chunk
XP ∈ RW×H , where XP is cropped from XO. The image chunks fed to MP will be generated
by balance random sampling which obtains small regions in the high-resolution original
image that satisfy the balance constraint among normal and tumor region occurrences.
By transferring the weight from the global model XG, XP takes advantage of the knowl-
edge of the geometric and texture features at the whole image level to apply it in small
images chunks for detecting difficult cases in tumor detection, particularly malignant
tumor detection.

However, global and patch-based models both have specific advantages and disadvan-
tages. For examples, the global-based model MG faces difficulties when its inputs are very
high-resolution X-ray images. In this study, our image size is almost the width of 3000 and
the height of 4000, while the width and height of the tumor regions are commonly small,
with a value of about from 100 to 1000 for each. The global-based model with multi-level
distance features is almost as good at segmentation of normal and tumor regions, but it
faces difficulties when distinguishing between benign and malignant regions. This means
that it is good for learning geometric features and large texture regions. By contrast, our
patch-based model MP tackles difficult problems that arise in learning texture features
from small image chunks. It also uses detailed multi-level distance features to identify
uncommon appearances and the smallest regions in which malignant tumors often appear.
However, the above advantages lead to difficulties for the patch-based model in classifying
among normal and tumor regions due to its sensitivity in tumor detection; it often fails in
false-positive cases.

Therefore, we proposed a method using a combination of global and patch-based
models for the segmentation and classification problem. For the classification problem, we
use the results of normal and begin prediction from the global-based model, as well as the
malignant prediction from the patch-based model. For the segmentation problem, we use
the weighted average method to integrate the results of the global and patch-based models.

More details are mentioned in Appendix B.

2.2.3. Model Architecture Details

Our network architecture is illustrated in further detail in Figure 7 with the global
and patch-based approaches. The input of our model is a down-scale image XG or an
image patch XP from an original high-resolution image XO. There are three outputs in
our model, including the classification result Ŷclas, the tumor segmentation result Ŷseg,
and multi-level high-risk tumor result Ŷdist. Ŷclas is the one-hot probability vector used to
determine whether the input belongs to one of the normal, benign, or malignant labels.
Ŷseg with size W × H × 2 is used to classify whether each pixel of the input belongs to
normal or tumor. Finally, Ŷdist with size W × H × 5 determines the attention level among
normal, tumor, or high-risk from levels 1 to 3 based on the distance to tumor.
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Figure 7. Multi-level Seg-Unet model with global and patch-based approaches.

We choose the Seg-Unet architecture [7] based on U-Net [8] with contracting and
expanding paths, as well as Seg-Net [9] with the pooling-indices layer. The contracting
path at the left side of the model has the encoding block E(Xenc) with the goal of encoding
features Xenc from the input X. At the middle location, the classification branch uses
the global average pooling to extract the encoding feature followed by dense and soft-
max layers to classify the input into normal, benign, or malignant labels based on the
classification probability vector Ŷclass. Next, the right side of the model is the expanding
path corresponding to the decoding block D(Xenc), which maps the encoding feature into
a decoding feature map Xmap at the pixel-level. From there, two remaining branches can
be mapped into the tumor segmentation map Ŷseg and the high-risk tumor segmentation
map Ŷdist.

2.3. Experiments Setup

Training Process. We separated the CNUH dataset into two subsets comprising
training data and validation data with the ratio value of 80/20. For the global-based model,
we resized the image to 416× 416 and randomly applied rotation, flipping, or cropping
for augmentation, as shown in Figure 8. For the patch-based model, we used balance
random sampling to obtain sub-regions of the original image with the size 416 × 416.
The sampling process had constraints such as balancing between the tumor and normal
regions with a main focus on bone regions. We assigned the normal region as the area
where the tumor mask was too small below the specified number of pixels. We then applied
data augmentation on the sub-regions in the same way as the data augmentation in the
global-based model shown in Figure 9.

First, we trained the global-based model using Adam optimization with a learning
rate of 0.001 [10] while reducing on the plateau and stopping early after 20 epochs. Next,
we used the pre-trained weight of the global-based model for the weight initialization of
the patch-based model. We trained the patch-based model by SGD optimization [11] with
a learning of 0.0004 while reducing on the plateau and stopping early after 20 epochs.
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7

Benign Mask Benign Mask Mask Benign MaskMalignant

MaskMalignant Normal Mask Normal Mask Benign Mask

Figure 8. Data augmentation in the global-based model with transform operators such as resizing, rotating, center cropping,
and flipping randomly.

6

Benign Mask Malignant Mask

Malignant Mask Normal Mask

Benign Mask Benign Mask

Normal Mask Benign Mask

Figure 9. Data augmentation in the patch-based model with transform operators such as resizing, rotating, center cropping,
and flipping randomly.

Ablation Study. For the specific evaluation of the effects of different parts in our
proposed models, we adjusted our proposed model as follows: with/without classification
branch, tumor segmentation branch, and high-risk tumor segmentation branch (also called
multi-level distance) under global, patch, and combination approaches. There are five
deviation models in total in the ablation-study experiment, as listed in Table 2. More details
in environment setup and evaluation metrics are mentioned at Appendix C.

Table 2. Ablation study to specifically test the effects of the three branches with global, patch-based, and
combination approaches.

No. Model Classification Segmentation Multi-Level Distance Patch Global

1 Seg-Unet
2 Seg-Unet + ClasSeg
3 Seg-Unet + ClasSegDis Patch
4 Seg-Unet + ClasSegDis Global
5 Seg-Unet + ClasSegDis Patch + Global

3. Results
3.1. Experiments on Tumor Segmentation

We conducted experiments on five models (numbered from 1 to 5) by adjusting for
the use and non-use of segmentation and multi-level distance branches in the global and
patch-based approaches. Table 3 presented our quantitative results with the MeanIoU
metric as follows:
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Table 3. Segmentation results of CNUH dataset on the validation set.

No Model MeanIoU

1 Seg-Unet 69.50%
2 Seg-Unet + ClasSeg 77.28%
3 Seg-Unet + ClasSegDis Patch 66.53%
4 Seg-Unet + ClasSegDis Global 78.89%
5 Seg-Unet + ClasSegDis Patch + Global 84.84%

For the tumor classification branch, our model learned the global-context feature from
the whole X-ray image to improve the encoding feature Xenc. This helped Model 2 increase
the tumor segmentation result from the MeanIoU of 69.50% obtained in Model 1 to the
MeanIoU of 77.28% obtained in Model 2; this is the significant increase of 7.78%.

For the multi-level distance branch, the multi-level distance feature map helped our
model recognize small tumors based on neighbouring regions called high-risk regions,
with three levels based on a image distance percentage of 0.25, 0.5, or 0.75. This provided a
slight increase of 1.55% in Model 4 from Model 2 by enhancing the decoding feature map
Xdec based on the multi-level distance map shown in Figure 10.

10

Prediction Dist. Mask 0 Dist. Mask 1 Dist. Mask 2 Dist. Mask 3 Dist. Mask 4

Figure 10. Tumor segmentation result with segmentation branch and high-risk tumor segmentation result with multi-level
distance branch. The prediction column shows the original image with a red line for the ground-truth and a blue mask for
the tumor mask prediction. The multi-level distance mask has five level masks, with distance mask 0 for the background
region, 1 for the tumor region, and 2 through 4 for the three distance levels corresponding to tumor regions.

There are difficult cases in which the tumors are very small compared to the back-
ground region. Our model attempted to detect small tumors by learning mutual informa-
tion from the neighboring feature maps around tumors. Figure 10 illustrates the learning
result from the neighboring feature maps in column 2. The figure shows the background
probabilities in the distance feature map where there were four rectangles from nearest to
furthest to show four levels of distance to the tumor position.

Finally, one of the challenges in knee bone tumor detection is the size of the high-
resolution image in contrast to the very small size of the tumors. The image input is often
resized to be suitable for our global-based model due to its limited memory. This leads to
a loss of important image texture for recognizing tumors, especially small tumors. This
problem is fixed by the patch-based model learning detailed image texture from image
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patches. By contrast, the patch-based model is improved by the global-based model from
the geometric characteristics on the whole image. Therefore, the performance of Model 5,
which is a fusion between Models 3 and 4, leads to a significant increase of 6.95% with a
MeanIoU of 84.84%.

We conducted a detailed analysis of the successful and failed cases in the fusion
method of both the global and patch-based models. In the figures below, the red lines
represent the ground-truths according to physicians while the blue regions show the
detection results.

Figure 11 shows the results of the successful cases using the fusion results from the
global-based model. The patch-based model failed with (a) noise in small tumors, (b) non-
tumor detection in variant pose, and (c) noise in larger tumors. However, the global-based
model detected these successfully.

14

Global Patch Fusion Global Patch Fusion Global Patch Fusion

(a) (b) (c)

Figure 11. Successful cases of the global-based model enhancing the fusion results with (a) small tumors, (b) variant poses,
and (c) large tumors. (red line: ground-truth, blue region: tumor detection).

By contrast, Figure 12 illustrates the successful prediction of the patch-based model
with (a) small, (b) long, and (c) large tumors. The fusion of both models achieved good
performance by integrating the results of the patch-based model.

13

Global Patch Fusion Global Patch Fusion Global Patch Fusion

(a) (b) (c)

Figure 12. Successful cases of the patch-based model enhancing the fusion results with (a) small tumors, (b) long tumors, and
(c) large tumors. (red line: ground-truth, blue region: tumor detection, blue arrow: zoom in the small ground-truth regions.)
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Finally, Figure 13 shows the failed cases of the fusion method. Here, the global and
patch-based models met problems in tumor detection stemming from insufficient tumor
detection, noise, and non-tumor detection.

15

Global Patch Fusion Global Patch Fusion Global Patch Fusion

(a) (b) (c)

Figure 13. Failed cases of the fusion between global and patch-based models with (a) not enough tumor regions, (b) no
tumors, and (c) not enough tumor and noise. (red line: ground-truth, blue region: tumor detection, blue arrow: zoom in the
small ground-truth regions).

3.2. Experiments on Tumor Classification

We also performed a classification evaluation on the CNUH dataset using four models
in the ablation study, as presented in Table 4.

Table 4. Classification results of the CNUH dataset on the validation set.

No Model Accuracy Mean ± stdAccuracy F1

2 Seg-Unet + ClasSeg 95.27% 82.27% ± 29.60% 94.57%
3 Seg-Unet + ClasSegDis Patch 77.29% 80.37% ± 13.72% 78.58%
4 Seg-Unet + ClasSegDis Global 94.32% 93.97% ± 5.61% 94.42%
5 Seg-Unet + ClasSegDis Patch + Global 99.05% 96.30% ± 6.41% 99.03%

The fusion method of the global and patch-based models provided the best result with
an Accuracy of 99.05% and a MeanAccuracy of 96.30% compared to Model 2 (only using
classification and segmentation branches) with values of 95.27% (Accuracy) and 82.27%
(MeanAccuracy), as well as Model 4 (addition of multi-level distance feature) with values
of 94.32% (Accuracy) and 96.30% (MeanAccuracy).

To explain this, Figure 14 points to the important improvement in the accuracy of
malignant classification when using the multi-level distance feature map from 48.1% in
Model 2 to 88.9% in Model 4 by the confusion matrix analysis. Although the overall
accuracy of Model 4 (94.3%) was lower than the accuracy of Model 2 (95.27%), the mean
accuracy of Model 4 (93.96%) was increased faster than the mean accuracy of Model 2
(82.27%). By integrating the global and patch-based approaches, we slightly enhanced the
accuracy of the benign performance in the global-based model 4 from 93.0% to 100% in
Model 5 (the fusion of both models).
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Benign 100.0% 0.0% 0.0% 70.9% 0.5% 28.6% 93.0% 0.0% 7.0% 100.0% 0.0% 0.0%

Malignant 51.9% 48.1% 0.0% 11.1% 74.1% 14.8% 11.1% 88.9% 0.0% 11.1% 88.9% 0.0%
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Figure 14. Confusion matrices of four models used in the classification experiment.

4. Discussion

Figure 15 presents our classification and segmentation experiments in the ablation
study. This research illustrated the important role of multi-task learning of learning mutual
information between the classification branch for the global context and the pixel-level fea-
tures with segmentation and multi-level distance features. For segmentation performance,
Model 4 with three branches achieved a good performance of 78.89% compared to those
of Model 1 (only using segmentation) of 69.50% and of Model 2 (using classification and
segmentation branches) of 77.28%. In addition, Model 4 provided good performance with
a MeanAccuracy of 93.97% compared to the MeanAccuracy of 82.27% of Model 2. This
represented a significant improvement in malignant accuracy with an accuracy of 88.9%,
as shown in Figure 14.
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Figure 15. Classification and segmentation performance in the CNUH validation set.

In this study, the multi-level distance feature map served as an attention map to help
our model detect small tumors. They provided the probability of background region,
tumor region, and neighbouring regions around tumors. From there, the tumors can be
recognized based on the pixel-level features of the neighbouring regions in difficult cases
with very small tumors in high-resolution images. The background region feature map
shown in Figure 10 illustrates the efficiency of learning the multi-level distance feature. It
shows four rectangles corresponding to the four distance levels from distances 0 (at tumor),
0.25, 0.5 and 0.75 according to the ratio of image size.
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To deal with the high-resolution image, the patch-based model received image patches
of the original images to learn the detail texture. We used the pre-trained weight of
the global-based model to transfer learning to the patch-based model to overcome the
convergence problem and to transfer the global features of the whole X-ray image. Due
to a lack of global information from the whole X-ray image, the patch-based model met
problems such as sensitivity to benign and malignant tumors leading to false negatives in
prediction processing, as shown in Figure 11. The accuracy values of the classification and
segmentation in the patch-based model were 77.29% and 66.53%, respectively. However, it
also improved the global-based models in difficult cases, as shown in Figure 12. From there,
the fusion of both models achieved the best overall performance results in the classification
and segmentation evaluations, with respective values of 99.05% and 84.84%.

Comparison with related works. Table 5 presents a comparison of the performance
results of our proposed method with those of related stuides using the CNUH validation set.

Table 5. Performance comparison with related studies on the CNUH validation set.

No. Model Accuracy MeanIoU

1 MobileNet V2 [12] 93.60%
2 VGG16 [13] 90.50%
3 RSS-BW with VGG16-B [14] 86.93%

4 U-Net [8] 38.30%
5 Seg-Net [9] 57.10%
6 Seg-Unet [15] 69.50%

7 Seg-Unet with Clas. and Seg. [7] 95.30% 77.28%
8 Seg-Unet with Clas., Seg., and distance features [16] 97.16% 78.83%
9 Our proposed method (Patch) 77.29% 66.53%

Our proposed method (Global) 94.32% 78.89%
Our proposed method (Gloal + Patch) 99.05% 84.84%

For classification comparison, Huynh et al. [14] proposed a regenerative semi-
supervised bidirectional W-network (RSS-BW) for classification into normal, benign tumor,
and malignant tumor from the X-ray images. They used the encoder–decoder model to ex-
tract bone regions. From there, that model classified three types of tumor state based on the
input image and bone regions. They achieved a classification performance of 86.93% with
backbone VGG16. For comparisons on segmentation, we compared our model to related
works [7,15,16]. We also included conventional models in classification and segmentation
to train and evaluate; these were MobileNet V2 [12] and VGG16 [13] in classification evalu-
ation and U-Net [8] and Seg-Net [9] in segmentation evaluation. Our proposed method
achieved the best results in classification and segmentation with an Accuracy value of
99.05% and a MeanIoU value of 84.84%

Our work demonstrates that the Seg-Unet model with multi-level features can provide
meaningful results for classifying and segmenting knee bone tumors in X-ray images.
It is able to compare to the accuracy of 80% of the experienced experts in bone tumor
detection [17]. We try to integrate it as a module in the medical imaging software such
as Slicer3D, MITK Workbench to improve the diagnostic accuracy that decision support
will benefit those with less experience. It is useful in clinical diagnosis using imaging
modeling when the timely and accurate diagnosis is challenging dealing with non-specific
symptoms that mimic common musculoskeletal injuries, late patient presentation, and low
suspicion by physicians [18]. Moreover, it is helpful in the analysis of a potential bone
tumor against difficult conditions such as the small size, appearance variety, variant pose,
and high resolution. The current research is only for bone tumor detection around the knee
region, but our system could be extended in the future for the bone tumors around the
lung, arm, or another typical area for X-ray inspection.
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5. Conclusions

In this paper, we proposed a Multi-Level Seg-Unet model with global and patch-based
approaches for the detection of knee bone tumors from X-ray images. Our goal is to assist
physicians in knee bone detection from radiology images by segmenting tumor regions
and classifying them into three labels: normal, benign, and malignant. Our problem deals
with challenges that arise in the knee bone tumor diagnosis process in the CNUH dataset
such as small size, high-resolution, uncommon appearance, and variant pose for knee bone
tumor detection on X-ray images.

Our proposed model employed multi-task learning with classification, tumor segmen-
tation, and high-risk tumor segmentation using a multi-level distance feature map. Three
branches help our model learn mutual information to enhance the global-context encoding
feature vector and the pixel-level decoding feature map. The segmentation result of the
model with three branches shows important increases of 1.61% and 9.39% over the models
using two branches (segmentation and classification) and the segmentation branch alone,
respectively. The classification result in MeanAccuracy was also increased to 93.97% for
the model using three branches compared to the model using two branches, with 82.27%.

Moreover, the multi-level distance feature map at the high-risk tumor segmentation
branch provides an important contribution to detecting tumors with a small size and
uncommon appearance, and suggests a distance feature map for determining neighbouring
regions around tumors. The malignant accuracy in the model using the multi-level distance
map was 88.9%, compared to the value of 74.1% obtained with the model using only the
classification and segmentation branches.

Finally, the patch-based model was transferred the weight from the global-based
model to further fine-tune image patches to focus on texture details having information loss
based on the small tumor size against the high-resolution image. From there, the fusion of
global and patch-based models helped improve the classification and segmentation results.
Our proposed method with the fusion of both models achieved the best performance,
with a MeanIoU value of 84.84% in segmentation and a MeanAccuracy value of 99.05%
in classification.

In the future, our proposed method needs to improve the performance of the global
and patch-based models in an end-to-end fashion in training to better exploit the global-
context features in the whole X-ray image as well as the texture details in image patches.
We also need to exploit bone shape relating to tumor regions with a graph convolution
neutral network as well as bone location with object detection loss.
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Appendix A. Related Works

In medical image research, any determinations of lesions and abnormalities must be
made with a high level of accuracy, which also demands precise segmenting of these regions.
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Three typical approaches to medical image segmentation are manual segmentation, semi-
automatic segmentation, and automatic segmentation. Manual segmentation demands
experienced experts as well as a lot of time and cost. In the semi-automatic approach,
users must provide some inputs to support the segmentation process [19]. Finally, the
automatic segmentation is a fully automatic method without user input, but it is difficult to
obtain accurate results by relying solely on the machine. However, this is a unique feasible
method for applications involving a substantial number of images.

Appendix A.1. Tumor Detection

There are several typical works related to medical image processing such as
Li et al.’s [20] study of liver cancer, which is one of the deadliest types of cancer; Es-
teva et al.’s [21] exploration of skin cancer aiming to classify skin lesions using images
alone; and Milletari et al. [22], who proposed a 3D medical image segmentation model and
trained it end-to-end on MRI volumes depicting the prostate. In traditional medical image
processing techniques, researchers leveraged image features to extract texture descriptions
as local information. In particular, the authors of [23] suggested a hybridized approach of
edge and region-based techniques, while Abdel-Maksoud et al. [24] used unsupervised
learning, including K-Means and Fuzzy C-Means algorithm, for brain tumor segmentation.

Recently, many deep learning methods have been introduced that can accurately han-
dle medical image classification and segmentation, and many new network architectures
have emerged. In 2015, the U-Net architecture [8] was introduced to segment biomedical
images. This network can be trained end-to-end and achieve better results than traditional
methods like the sliding-window convolution network. In 2018, Li et al. [20] proposed
H-DenseUNet, a hybrid densely connected UNet-like with 2D and 3D DenseUNet.

To deal with the high-resolution of medical images, Ronneberger et al. [8] developed
a model based on a U-net model as well as an overlap strategy to handle arbitrary large
images through seamless segmentation. Li et al. [20] used connections between layers to
maximize and ensure the information during the training process. Then, they used a sliding
window strategy on the image patches of the original image to predict the tumor regions.

Appendix A.2. Knee Bone Tumor Detection

A lot of prior studies involving radiographic image segmentation of the human knee
have only focused on knee osteoarthritis assessment [25,26] or knee bone detection [27,28].
However, there is very little research applying radiographic images to segment knee
bone tumors: George et al. [29] used various texture features of radiography to recognize
bone patterns in the tumor region. In [17], Do et al. applied a Bayesian classifier to
identity bone tumor diagnoses based on a combination of radio-graphic observations and
demographic characteristics.

Moreover, Reicher et al. [5] used a deep learning method to classify the bone tumor
matrix; the highly accurate result shows the importance of the bone tumor matrix in bone
tumor diagnosis. In 2019, Ho et al. [14] used the bidirectional W-network to segment three
knee bone regions to input them into the semi-supervised bidirectional W network to
classify tumor types.

Appendix B. Implementation Details

Appendix B.1. Multi-Level Distance Features

The distance transform is defined as the associating function between a set of points P
to each grid location q by the nearest point in P to q as follows:

DP(p) = min
q∈P
{d(p, q) + f (q)} (A1)

where d(p, q) is the distance between p and q, and f is a function on the grid containing q.
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We choose the pixels in the tumor regions as P with the Euclidean distance measure
and f as the membership indicator function of P with 0 when q ∈ P and in f otherwise.
Then, we apply a threshold for the result from the distance transform after normalizing the
values to [0, 1] in the following manners:

T(d) =


1 d = 0

0.75 d < 0.25
0.5 d < 0.5

0.25 d < 0.75
0 otherwise

(A2)

To calculate the tumor distance mask in Figure A1, we apply the distance transform
on the tumor mask, then the threshold by four distances as shown in Equation (A2).

Figure A1. (Left) Tumor mask, (Middle) Distance transform, and (Right) Distance Mask.

The multi-level distance masks are five-level masks with non-tumor regions, and the
tumor distance mask in the specific threshold as shown in Figure A2:

Figure A2. Multi-level distance mask.

The role of multi-level distance masks is to help the network capture the semantic
information around the tumor regions.

Appendix B.2. Loss Function

With the classification branch, we use categorical cross-entropy loss. The segmentation
and distance branches are applied using the dice loss equation as follows:

£dice = 1− ∑N
i=1 2|yi ŷi|+ ε

∑N
i=1(le f t|yi|+ |ŷi|) + ε

(A3)

where N is the amount of segmentation labels, ŷi is the predicted mask compared to the
ground-truth yi, and ε is the smooth term.
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Finally, the multi-task loss in our network is expressed as follows:

£ = α1£clas + α2£seg + α3£dis (A4)

where £clas, £dis, and £seg are respectively the classification, segmentation, and distance
losses with α1 = α2 = α3 = 1 as balancing parameters.

Appendix B.3. Fusion of Global and Patch-Based Models

Global-based model. The global-based model has the Seg-Unet architecture shown
in Figure A3. Its input is the scaled-down image from the high-resolution original image,
which is used to learn the geometric features from the whole image. Its goal is to provide a
classification result determining where the image should be labelled as normal, benign, or
malignant, as well as a segmentation result for identifying the tumor regions in the image.
This integration between two tasks leads to a regularizing effect on the learning process by
the sharing of features, which makes them improve together. This means that the classi-
fication task can make more precise predictions based on the segmentation information.
Otherwise, when knowing the result of the classification task, the segmentation task can
segment quickly using the global-context information with normal, benign, or malignant
classification. Using the multi-level distance feature map in segmentation branch, the
global model can detect small tumor regions in the X-ray image. However, it can also be
inaccurate in difficult cases based on the scaled-down effect from the original image.

normal benign malignant

Conv 3 x 3 , BatchNorm, ReLU

Copy and crop

MaxPool2D

Global Average Pooling

Dense + Dropout

Softmax

Up-Conv 2x2

Conv 1x1
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(2) tumor segmentation

(3) high-risk tumor segmentation
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256 256
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Figure A3. Multi-level Seg-Unet model with global and patch-based approaches.

Patch-based model. The patch-based model uses the pre-training weight of the global
model to transfer the knowledge of the global context. From there, it learns more details of
the texture features from small image chunks of the original image. Every high-resolution
image will be randomly cropped into small image chunks to feed into the patch-based
model. We generate image chunks with a balance between the numbers of tumor and
non-tumor region occurrences. Image chunks containing tumor regions that are too small
under the specific number of pixels (decided in the experiment) will be labelled as normal
image chunks.

In the prediction process, the segmentation result of the overall X-ray image is cal-
culated by choosing the maximum tumor probabilities of all image chunks in the whole
image with a sliding window. A sliding window is used to generate all image chunks from
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left to right and from top to bottom, where it can create overlapping regions. We normalize
the whole probability map into the range [0, 1], obtain a specific threshold for detecting
tumor regions, and apply post-prepossessing by eliminating very small regions below the
specific number of pixels (about 500 pixels).

For the classification region, the role of the patch-based model is to focus in detail on
occurrences of regions with high-risk tumor probability. Therefore, we use a max operator
to integrate all tumor probabilities in the classification prediction of all image chunks
containing tumor regions. This means that, if one of the image chunks containing tumor
regions in the X-ray image has a high probability of tumor classification, the whole image
will be labelled as high-risk in tumor occurrence. This helps reduce the normal prediction
from the normal image chunks. If the image has no tumors, the classification probability
will be calculated by the max operator from all possible image chunks in an X-ray image.

Fusion method. The fusion approach takes advantage of both the global and patch-
based models to boost the overall performance results. The segmentation task proceeds as
follows: Let Gij and Aij be the segmentation probabilities in the global and patch-based
models, respectively, at position (i, j), where Gij and Aij are one-hot vectors with normal
and tumor probabilities, and we will calculate the segmentation probabilities Cij in the
fusion approach as follows:

Cij = βGij + (1− β)Aij + (1− β)AijKij (A5)

where β is the balance factor used to adjust the priority between the global and patch-based
models. In this study, we chose β = 2

3 to take priority in choosing the segmentation
result from the global-based model. Ki,j is the binary mask of the tumor regions from
the patch-based model adjacent to the tumor region in the global-based model, and they
do not belong to the intersection between the tumor regions according to the global and
patch-based models.

We determined four cases to calculate the weighted value at pixel (i, j). We gave
priority to the intersection of tumors in the global and patch-based models (case 1) with
βGij + (1− β)Aij. Next, the probability values of the tumor regions determined by the
global-based model (case 2) and patch-based model (case 3) are βGij, and (1 − β)Aij,
respectively. To identify the tumor regions of the patch-based model expanding the tumor
regions of the global-based model (case 4), we used Kij and we calculated the probability
with 2 ∗ (1− β)Aij. Therefore, the priority order of the four cases is cases 1, 2, 4, and 3.
Finally, we normalize the fusion of the probability map into the range [0, 1].

For the classification outputs, the global-based model can robustly distinguish tu-
mor/normal regions by capturing the whole image to learn the geometric and global-
context characteristics. It also achieves good results in tumor classification between benign
and malignant due to the multi-level distance feature map. However, it faces issues in
difficult cases, such as when the tumor size is very small against the high-resolution of the
image input, which leads to information loss when reducing the image size.

By contrast, the patch-based model generated the classification probabilities based
on the maximum operator of the image chunks containing tumor regions. Therefore, it
addresses the high-resolution challenge in difficult cases; however, it often produces more
noise in segmentation and fails to distinguish between normal and tumor images using
normal X-ray images.

Based on the above analysis, we integrate the results of the global and patch-based
models in the classification as follows:

Pc 6=cn
i = β ∗ Gc 6=cn

i + (1− β)Ac 6=cn
i

Pcn
i =

{
β ∗ Gcn

i + (1− β)Acn
i i f

∣∣∑c 6=cn Gc
i − Gcn

i

∣∣ ≤ T
0 otherwise

where|Pi| = 1

(A6)
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where Gc
i and Ac

i are the classification probability vector of image i; c is the classification
label with three types among benign, malignant, and normal, where cn is the normal
label; and β is the control factor adjusting the priority level between both models. We
will take priority over the global-based model by choosing β = 2

3 in the classification
probability calculation. However, the probability of the normal label will be set to 0 if the
total probability of malignant and benign in global-based reach the normal probability by
the threshold T value. All fusion probability vectors will be normalized to 1.

Appendix C. Environment Setup and Evaluation Metrics

Environment Setup. To implement our method, we used the Keras and TensorFlow
framework on the environment Python 3.7. We conducted our experiments on a desktop
machine with the following hardware: Intel Core i7 8700, 64 GB RAM, and two NVIDIA
GTX1080 Ti graphic cards with 11 GB RAM.

Evaluation Metrics. Our study used Accuracy, F1 score, Meanacc, and Stdacc for
classification evaluation, where Meanacc and Stdacc are, respectively, the average and
standard deviation of the percent values on the main diagonal of the confusion matrix.
These metrics are calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

F1 = 2
Precision.Recall

Precision + Recall

MeanAcc. =
∑n

i=1 Gi,i

n

StdAcc. =

√
∑n

i=1(Gi,i −MeanAcc.)
2

n

(A7)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative values, respectively. Gi,i is the percent values on the main diagonal of the confusion
matrix. Precision and Recall are respectively calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(A8)

where Precision and Recall evaluate the numbers of correct predictions for all positive
samples and for true samples, respectively.

Accuracy measures correct prediction, so it only demonstrates the performance of the
model when there is an almost symmetric data distribution on training and validation. To
evaluate under an uneven imbalance distribution, we used F1 score and Meanacc ± Stdacc.

For tumor segmentation and high-risk tumor segmentation, we used the MeanIoU
metric [30] for the quantitative measurements. First, the metric calculates the average of
the intersection over union between the ground-truth and all segmentation results on every
X-ray image. Next, it averages all MeanIoU values of the whole X-ray images in evaluation
data. The following equation is used for this:

MeanIoU(I) = 100− 1
|C| ∑

c∈C

2 ∑p∈I pc p̂c + ε

pc + p̂c + ε
100

MeanIoU(D) = 100− 1
K

K

∑
k=1

MeanIoU(Ik)100

(A9)

where I and Ik are the images of validation data D with the number of images K; C is the
number of labels; pc and p̂c are the ground-truth and prediction pixels, respectively, in
class c; and ε is the smoothness term to avoid zero division.
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