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ation of a novel SrCO3/g-C3N4

nano-composite and its application in selective
adsorption of crystal violet

Peng Lu, a Xueli Hu,b Yujie Li,a Meng Zhang,a Xiaoping Liu,b Youzhou He,b

Fan Dong, b Min Fub and Zhi Zhang*a

A novel kind of nanoparticle SrCO3/g-C3N4 was prepared using strontium carbonate (SrCO3) andmelamine

(C3H6N6) as raw materials via one-step calcination. The formation of SrCO3/g-C3N4 was confirmed from

the X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), Scanning Electron Microscopy

(SEM), Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET) and X-ray photoelectron

spectroscopy (XPS) analysis. Its selective adsorption performance was evaluated towards crystal violet

(CV), rhodamine B (RhB) and methylene blue (MB). The results showed that the SrCO3/g-C3N4 had

selective adsorption ability of CV. Furthermore, adsorption measurements of CV were conducted to

investigate the influences of contact time, initial concentration, initial dye solution pH value and

adsorbent dosage. The maximum removal rate of CV was 98.56% when the initial concentration was

1600 mg L�1. The kinetic study indicated the adsorption of CV followed the pseudo-second-second

model well. The adsorption efficiency of SrCO3/g-C3N4 was greater (97.46%) than that of g-C3N4

(31.30%) and SrCO3 (17.30%). It could be deduced that the synergistic effect of conjugation interaction of

g-C3N4 and the electrostatic attraction of SrCO3 might be the main driving force for the superb

adsorption of CV.
1 Introduction

Nowadays, graphitic carbon nitride (g-C3N4) has gained
considerable research attention because it possesses excellent
advantages such as high chemical and thermal stability under
ambient temperature, cost-effective, non-toxic and simple
preparation.1,2 g-C3N4, as a new intriguing class of graphite
analogue, consists of conjugated planes containing highly
ordered tri-s-triazine (C6N7) units. The layered structure of the
tri-s-triazine is connected by weak forces-van der Waal forces. It
has been widely used in the photocatalysis eld for it has an
energy band gap of 2.7 eV which makes it is capable of the
visible adsorption.3–6 As a photocatalyst, it has been widely used
in water splitting,7,8 organic pollutants degradation,9,10 CO2

reduction,11 and other elds.12,13

Crystal violet (CV, C25H30ClN3, IUPAC name is N-[4-[bis][4-
dimethyl-amino]-phenyl]methylene]-2,5-cyclohexadien-1-yli-
dine]-n-methylmethanaminium chloride), a typical triphenyl-
methane dye, is widely used in cell biology, paper, leather and
textile industry.14–16 The wastewater containing CV is low
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biodegradability and high stability (complex aromatic structure)
and it could be absorbed through the skin and causing the skin,
eye, digestive irritation and even cancer.17–19 From the aspect of
environmental safety and health of life, it is vital to develop an
effective way to abate CV in wastewater. Various methods have
been adopted for eliminating dye pollution from water,
including chemical oxidation,20,21 photo-catalytic decomposi-
tion,22,23 electro-catalytic degradation24,25 and non-thermal
plasma.26–28 These methods usually have some defects, such
as slow degradation rate, complex, heavy expenses and usually
causing secondary pollution. The adsorption technique is
gaining more attention for it is high efficiency, simple design,
cost-effective and adaptable.29–35 There have been various kinds
of adsorbents developed, such as carbon materials,36–38 natural
clay minerals,39–42 and bioadsorbents.43–45 However, certain
deciencies including costly, intricate pre-treatment and low
adsorption capability limited the use of some certain
adsorbents.46–53

Due to the conjugated region, stacking structure and the
weak forces of g-C3N4, it has the potential for aggregating
functional groups or materials to form nanocomposite with
multiform favorable properties.54–56 This distinctive structure
has drawn great interesting in improving the photocatalytic
performance.57,58 But the research of using modied g-C3N4 as
adsorbent for clearing up dye pollutant is rarely been re-
ported.59,60 As far as we know, there has been no report of using
RSC Adv., 2018, 8, 6315–6325 | 6315
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Fig. 1 XRD patterns of the g-C3N4, SrCO3 and SrCO3/g-C3N4.

RSC Advances Paper
g-C3N4-based composite as an adsorbent in dye wastewater
treatment. Strontium carbonate (SrCO3), a typical alkaline earth
metal carbonate, has been widely used as additives in industrial
production.61–63 Meanwhile, some research has been reported
on its adsorption performance attributed to its various
architectures.64,65

In this work, we rstly induced SrCO3 to incorporate with
g-C3N4 via one-step calcination method to fabricate a novel
adsorbent SrCO3/g-C3N4. The morphology and structure of the
composite was characterized by XRD, FT-IR, SEM, TEM, BET
and XPS, and its adsorptive capacity and selectivity of CV in
aqueous solution were investigated. To the best of our knowl-
edge, this work represents the rst example employing g-C3N4-
based composite for selective adsorption of CV.

2 Experimental
2.1 Synthesis of SrCO3/g-C3N4

SrCO3, melamine and CV are all AR grade and purchased from
Chengdu Kelong Chemical Agents (China), without any further
purication. SrCO3/g-C3N4 was synthesized by one-step calci-
nation process in a muffle furnace. SrCO3 and melamine (mass
ratio ¼ 1 : 1) were dissolved with deionized water in alumina
crucible, and then the mixed solution was dispersion with
ultrasonic irradiation for 20 min under ambient temperature.
The nal solution was transferred into muffle furnace and
maintained at 600 �C for 4 hours at heating rate of 5 �Cmin�1 to
obtain the prepared nanocomposite. SrCO3 and melamine were
also treated as the forward route for making comparison.

2.2 Characterization

X-ray diffraction (XRD, Shimadzu, XRD-6100) patterns were
detected with Cu Ka radiation (40 kV, 30 mA, 2q ¼ 10–80�) to
investigate the crystal structures of the samples. Fourier trans-
form infrared spectra (FT-IR, Shimadzu, IR Prestige-21), were
recorded in the range of 4500–400 cm�1, using KBr technique to
analyze the functional groups on the surface of the composite.
Scanning electron microscope (SEM, JEOL, JSM-7800F) and
Transmission Electron Microscopy (TEM, JEOL, JEM-2100) were
used to observe the morphologies and the microstructures of
the samples. The N2 adsorption apparatus (Micromeritics, ASAP
2020) were used to obtain the Brunauer–Emmett–Teller (BET)
surface area of the samples. X-ray photoelectron spectroscopy
(XPS, Thermo Scientic, ESCALAB 250xi) was used to determine
the binding energy.

2.3 Adsorption experiments

The concentration of CV in the solution was determined at the
maximum absorbance (lmax ¼ 580 nm) by UV-vis spectropho-
tometer (UV-vis spectrometer, Tianmei, UV1102). For high
concentration, the samples were diluted before measurements.
And the initial pH of the dye solution was measured by pH
meter (pH meter, Sartorius, PB10).

The adsorption experiments were conducted by a batch
method. All experiments were conducted at 7.0 pH value, except
those that investigated the effect of initial pH of dye solution.
6316 | RSC Adv., 2018, 8, 6315–6325
And 0.08 g adsorbent was dispersed in 80 mL CV solution,
except that were used to study the effect of the dosage. Similarly,
the initial concentration is 1600 mg L�1, except those that
investigate the same parameters. The pH of the initial dye
solution was adjusted with HCL (0.1 mol L�1) and NaOH
(0.1 mol L�1). The kinetic experiments were carried out at the
initial concentration of 500, 1000, 1200, 1400, and 1600 mg L�1.
It performed on an air bathed shaker. The solution was sepa-
rated by centrifugation at 5000 rpm for 5 min.

The adsorption capacity at time t qt (mg g�1) and removal
rate (%) were calculated using the following equation:

qt ¼ ðC0 � CtÞ � V

m
(1)

Removal rate ð%Þ ¼ C0 � Ct

C0

� 100 (2)

where C0 and Ct are the liquid-phase concentrations of the CV
(mg L�1) at initial time and time t, respectively. V is the volume
of the solution (mL) and m is the mass of the used adsorbent
(mg).
3 Results and discussion
3.1 Characterization of the samples

The XRD patterns of the prepared samples are shown in Fig. 1.
The g-C3N4 displayed a typical diffraction peaks at 27.46� and
12.96�, corresponding to the (002) and (100) diffraction planes,
which represented the interlayer stacking reection and in-
plane structure of aromatic system, respectively.66,67 This indi-
cated that the g-C3N4 was synthesized by polycondensation
approach with pure melamine. Meanwhile, the observed
diffraction peaks of calcined SrCO3 are located at 2q angles ¼
25.28�, 25.91�, 29.73�, 31.62�, 34.64�, 35.22�, 36.64�, 41.42�,
44.18�, 45.74�, 46.68�, 47.80�, 50.03� which correspond to the
planes of (111), (021), (002), (012), (102), (200), (130), (220),
(221), (041), (202), (132), (113), respectively. It could be unam-
biguously indexed to the orthorhombic phase of SrCO3 (JCPDS
card no. 05-0418).68,69 There is no observation of the typical
This journal is © The Royal Society of Chemistry 2018
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diffraction of g-C3N4 in the synthesized composite, the diffrac-
tion peaks were mostly the same as the SrCO3, but the feature
peaks positions of SrCO3 shied slightly toward a lower
diffraction angle. And the impure peaks of the composite might
be the carbonization of the raw materials or the melamine did
not condense completely.

The FT-IR spectra of the prepared materials are shown in
Fig. 2. For the calcined melamine, the typical adsorption peaks
in the 1200–1700 cm�1 range and at 808 cm�1 of g-C3N4 could
be observed. They are assigned to the typical skeletal stretching
vibrations of armomatic C–N heterocycles and the out-of-plane
bending vibration of tri-s-triazine rings, respectively.70,71 The
peaks at 698, 858, 1070, 1458 and 1774 cm�1 corresponding to
the CO3

2� of the calcined SrCO3 were observed.50 In case of the
SrCO3/g-C3N4, the typical skeletal stretching vibrations of tri-s-
triazine were hardly observed; it might be the adsorption
intense of SrCO3 was so strong in order to impede the peaks of
g-C3N4. Meanwhile, the peak at 808 cm�1 presented in g-C3N4

shied to 821 cm�1, the peak at 856 cm�1 presented in SrCO3

shied to 858 cm�1, the peaks at 1070 cm�1 and 1774 cm�1

were disappeared, these might due to the strong interactions
Fig. 2 FT-IR spectra of the g-C3N4, SrCO3 and SrCO3/g-C3N4.

Fig. 3 XRD patterns (a) and FT-IR spectra (b) of the HCl-treated SrCO3/

This journal is © The Royal Society of Chemistry 2018
between the carbonate of SrCO3 and tri-s-triazine rings of g-
C3N4. Furthermore, the new peak at 2112 cm�1 corresponding
to C^N groups appeared aer calcination indicating that the
incorporation of SrCO3 has intense interaction during the
condense process of melamine.72

To make further investigation of the constitution of the
prepared composite, the calcined product was treated with HCl
(0.5 mol L�1) and deionized water, because g-C3N4 possessed
fascinating acid stability. The treatment was terminated until
the pH value was neutral, and then the treated nanocomposite
was dried at 60 �C for 24 h. The XRD patterns and FT-IR spectra
of the HCl-treated product are characterized in Fig. 3. The
feature diffraction peak of g-C3N4, indicating the interlayer
stacking, changed from 27.46� to 27.92� is explicitly observed in
Fig. 3a. The change of the diffraction peak was corresponded to
the stacking distance reduced from 0.325 to 0.319 nm. The
above results implied that the interlayer stacking order was
improved. And FT-IR spectra of the product were well matched
with the pure g-C3N4 except the weak intensity (Fig. 3b). So, it
could be indicated that the SrCO3/g-C3N4 was formed with the
raw materials SrCO3 and melamine.

SEM and TEM images of the calcined samples are displayed
in Fig. 4. It revealed the morphology and microstructure of
SrCO3/g-C3N4. In Fig. 4a, it could be seen the calcinedmelamine
was predominantly composed of plate-like sheets,73 and the
morphology of calcined SrCO3 was irregular polyhedrons with
smooth surface is shown in Fig. 4b. In Fig. 4c, it could be seen
clearly that the g-C3N4 covered on the SrCO3 incompletely.
Further structural details of SrCO3/g-C3N4 are shown in Fig. 4d.
There were some step edges of the layered g-C3N4 and rods-like
SrCO3 with some parts overlapping. It might be the amount of g-
C3N4 was not enough to disperse on the entire surface of SrCO3;
and some areas cannot be wrapped by the g-C3N4. The SEM and
TEM image could reveal that there existed some interactions
between these two materials. Meanwhile, the specic surface
areas of the clained samples were measured. As shown in
Table 1, compared with g-C3N4 the composite BET surface area
gets smaller with the addition of SrCO3, this might be the SrCO3

interacted with the stacking structure of g-C3N4. These results
g-C3N4.

RSC Adv., 2018, 8, 6315–6325 | 6317



Fig. 4 SEM images of the g-C3N4 (a), SrCO3 (b) and SrCO3/g-C3N4 (c); TEM images of the SrCO3/g-C3N4 (d).

Table 1 Textural properties of g-C3N4, SrCO3 and SrCO3/g-C3N4
a

Sample SBET (m2 g�1) Vtotal (cm
3 g�1) D (nm)

g-C3N4 27.4 0.126 17.5
SrCO3 1.93 0.003 8.72
SrCO3/g-C3N4 5.86 0.016 9.69

a SBET: BET surface area, Vtotal: total pore volume, D: average pore
diameter calculated using BJH method.
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consistent with SEM results which could further prove that
there have been some interactions between SrCO3 and g-C3N4.

To further study the chemical state of SrCO3/g-C3N4, the XPS
measurements were carried out. Fig. 5a is the general XPS
Fig. 5 XPS survey spectra of g-C3N4, SrCO3 and SrCO3/g-C3N4 (a) and
high-resolution XPS spectrum: C 1s (b), N 1s (c), O 1s (d) and Sr 3d (e).
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spectra of calcined materials, indicating the presence of C, N, O
and Sr in SrCO3/g-C3N4. The XPS spectra of C 1s are shown in
Fig. 5b. For pristine g-C3N4 the peaks at 284.2 eV, 287.7 eV were
corresponding to sp2-hybridized carbon in C–C group or the
adventitious hydrocarbon74 and sp2-bond carbon in form of C–
C]N.75 But aer the blended calcinations, the peak at 284.2 eV
shied to 284.6 eV. The N 1s spectra are shown in Fig. 5c. The
peak at 398.2 eV was attributed to sp2-hybridized nitrogen in N
atom aromatic rings in form of C–N]C,76 and the nearly peaks
at 399.3 eV and 401.0 eV were regarded as tertiary nitrogen (N-
(C)3) and amino functional groups, respectively.77 Aer incor-
poration, the binding energy peaks slightly shied. The peaks at
531.1 eV and 533.2 eV of O 1s spectra corresponding to the
SrCO3 have no signicant change in Fig. 5d. The XPS spectra of
Sr 3d at 133.1 eV and 134.6 eV for calcined SrCO3 were observed
in Fig. 5e. These peaks was corresponding to the Sr 3d5/2 and Sr
3d3/2, and the peak at 134.6 eV shied to 134.7 eV aer calci-
nation. All these changes aer co-calcination suggested that
there were strong interactions between the two raw materials.
Therefore, according to the analysis of XPS and the above
results of XRD, FT-IR, SEM, TEM and BET measurements, it
could be concluded that the SrCO3/g-C3N4 was synthesized
using SrCO3 and melamine by one-step calcination.
3.2 The selective adsorption of CV

In our previous study, cationic dyes MB, RhB and CV were
chosen as the target dye to conduct the adsorption experiments.
We found that SrCO3/g-C3N4 appeared efficient adsorption
capacity for CV except for the other dye solutions. To make
further investigation of the selectivity of SrCO3/g-C3N4, mixed
solutions of CV/MB, CV/RhB and CV/MB/RhB with equal
volume ratio were prepared. The concentration of each dye
solution was 10 mg L�1, and dosage ratio of SrCO3/g-C3N4 and
mixed solutions was 1 g L�1. The adsorption experiments were
carried out under ambient temperature and different pH value
for 120 min.

The optical pictures and UV-vis measurements of the
adsorption process are shown in Fig. 6. It could be apparently
seen that CV was decolorized aer the test (Fig. 6b), but in the
MB and RhB groups the color slightly changed (Fig. 6a–c). In
Fig. 6d, the color of CV/MB mixed solution was changed from
dark blue to incipient blue (the color corresponding to the MB).
For the CV/RhB group, the end color is very close to RhB
This journal is © The Royal Society of Chemistry 2018



Fig. 6 Optical photographs of single adsorption of MB (a), CV (b) and RhB (c); the selective adsorption of CV from CV/MB (d) and CV/RhB (e)
mixture, UV-vis spectra of CV/MB (f),CV/RhB (g) and CV/MB/RhB (h) mixture before and after adsorption.
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(Fig. 6e). It suggested that CV in these two mixtures was selec-
tively captured. However, the color in group CV/MB/RhB did not
change, because the color of MB and RhB mixed solution is the
same as that of CV. To further investigate the selective adsorp-
tion of CV, the UV-vis spectra were conducted for the tested
groups. In the case of CV/MB, the UV-vis adsorption peaks of CV
and MB were at 580 nm and 664 nm before adsorption,
respectively. Aer adsorption, the peak of CV was dropped down
drastically while the MB peak was almost unchanged (Fig. 6f).
The same situation happened in the CV/RhB group (Fig. 6g).
Although the optical of CV/MB/RhB group did not change, but
the UV-vis adsorption curve appeared the same situation with
the other two mixed groups (Fig. 6h). It could be concluded that
the SrCO3/g-C3N4 performed selective adsorption of CV from
CV/MB/RhB.
Fig. 7 Effect of the initial pH of mixed dye solution CV/MB (a), CV/RhB

This journal is © The Royal Society of Chemistry 2018
Furthermore, we also evaluated the effect of the initial pH of
the dye solution. Fig. 7 shows the tested results. It could be seen
that the initial pH (ranged from 4 to 10) of mixed dye solution
did not signicantly inuence the adsorption process in each
tested group.

3.2.1 Effect of contact time. Fig. 8 shows the effect of
different contact time (0–160 min) in the adsorption process.
The initial concentration of CV is 1600, 1800 and 2000 mg L�1

and the dosage ratio of SrCO3/g-C3N4 and CV solution was 1 g
L�1. For all concentrations, the removal rate of CV became
constant aer 120 min. Meanwhile, the group of 1600 mg L�1

reached the equilibrium rstly and the removal rate was up to
the other concentration. So, the contact time of 120min and the
initial concentration of CV of 1600 mg L�1 were chosen for the
following investigation.
(b) and CV/MB/RhB (c).

RSC Adv., 2018, 8, 6315–6325 | 6319



Fig. 8 Effect of contact time.
Fig. 10 Effect of SrCO3/g-C3N4 dosage.
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3.2.2 Effect of initial concentration of CV. The effect of
initial concentration (50–2000 mg L�1) of CV is shown in Fig. 9.
From the obtained results, it was found that the removal effi-
ciency kept steadily before the initial dye concentration up to
1800 mg L�1. This might be attributed to the higher initial
concentration offered more numbers of dye molecules that
could contact easily with SrCO3/g-C3N4. However, the removal
rate was reduced at higher initial concentration indicating the
saturation of SrCO3/g-C3N4.

3.2.3 Effect of adsorbent dosage. The dosage of the adsor-
bents is one of the major parameter which inuences the
adsorption process; an appropriate amount of adsorbents is in
favor of the real industrial treatment. Fig. 10 shows the effect of
the adsorbent dosage (0.25, 0.50, 0.75, 1.00, 1.25, 1.50 g L�1) of
the CV. The removal rate increased with the increased amount
of the adsorbent. When the dosage ups to 1.00 g L�1, the
removal efficiency did not increase with the increasing dosage.
It might due to the binding of almost CV ions onto SrCO3/g-
C3N4, which made the equilibrium between solution and
adsorbents. So the amount of adsorbent 1.00 g L�1 was the
suitable dosage for the adsorption of CV.
Fig. 9 Effect of initial CV concentration.

6320 | RSC Adv., 2018, 8, 6315–6325
3.2.4 Effect of pH. The pH of initial dye solution is a key
factor in adsorption process, which could inuence the inter-
action between adsorbent and dye. In order to nd out the pH
effect, the adsorption test was conducted at initial solution pH
ranged from 4 to 10. The results in Fig. 11 show that the initial
pH of CV solution had little effect on the adsorption capacity.
This observation could demonstrate that SrCO3/g-C3N4 is suit-
able for removing CV in wastewater in a wide pH range, and
there is no need to adjust the initial solution pH before
treatment.

3.3 Adsorption kinetics

In order to study the characteristics of the adsorption process,
pseudo-rst-order and pseudo-second-order kinetics models
were carried out with different concentration (500, 1000, 1200,
1600 mg L�1). The pseudo-rst-order and pseudo-second-order
are expressed by eqn (3) and (4).78

ln(qe � qt) ¼ ln qe � k1t (3)

t

qt
¼ 1

k2qe2
þ t

qe
(4)
Fig. 11 Effect of the initial pH of CV.

This journal is © The Royal Society of Chemistry 2018



Fig. 13 Reusability of the adsorbent.
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where k1 (min�1) and k2 (g (mg�1 min�1)) are the rate constant
of pseudo-rst-order and pseudo-second-order model, respec-
tively; qe (mg g�1) and qt (mg g�1) are the adsorbed amount at
equilibrium time and time t.

The rate constant of adsorption could be calculated from the
slope of the plot in Fig. 12 and was listed in Table 2. R2 of
pseudo-second-order model is much higher than the other,
indicating that the pseudo-second order equation is more
suitable to describe the CV adsorption with SrCO3/g-C3N4. So
the chemisorptions or chemical sorption was the rate-
controlling step for the adsorption process.79

3.4 Desorption and reuse

In order to evaluate the reusability of SrCO3/g-C3N4, the regen-
eration process was performed. Adsorption experiment was
conducted at the optimal condition as ascribed above in
a 250 mL CV solution rstly, aer equilibrium the used adsor-
bent was regenerated by centrifugation and washed several
times with methanol and water at room temperature. Finally,
the regenerated composite was dried for 24 h at 60 �C for
reusing.

It could be seen that the removal rate gradually decreased
aer regeneration in Fig. 13. It might conclude that the
adsorption mechanism of this process is not due to the physical
adsorption.

3.5 Adsorption mechanism of crystal violet

To further study the adsorption performance of CV, the
adsorption experiments were conducted with the calcined
SrCO3, g-C3N4 and SrCO3/g-C3N4 rstly. 0.08 g tested materials
Fig. 12 Pseudo-first-order (a), and pseudo-second-order (b) kinetic plo

Table 2 Kinetic parameters of different initial CV concentration

C0 (mg L�1)

Pseudo-rst-order Pseudo-se

qe (cal) (mg g�1) k1 (min�1) R2 qe (exp) (m

1600 16.91 0.014 0.5357 1576.9
1800 28.33 0.016 0.7481 1378.6
2000 29.53 0.024 0.7822 1143.4

This journal is © The Royal Society of Chemistry 2018
were dispersed in 80 mL CV solution (10 mg L�1), respectively.
Aer 2 h adsorption process, the removal rate of CV for tested
materials is exhibited in Fig. 14. It could be seen obviously that
the removal ability of g-C3N4 and SrCO3 to CV is much smaller
than that of the nanocomposite. The removal rate of g-C3N4,
SrCO3 and SrCO3/g-C3N4 were 31.30%, 17.30% and 97.46%,
respectively. The adsorption mechanism of g-C3N4 might be
attributed to p–p interaction between the g-C3N4 and CV, and
that for the SrCO3, the electrostatic attraction between the
carbonate generated from the hydrolytic of SrCO3 and the
cationic chromogenic groups of CV. And for the SrCO3/g-C3N4,
the synergistic effect of p–p interaction and electrostatic
attraction highly improved the adsorption properties of the
ts for adsorption.

cond-order

g g�1) qe (cal) (mg g�1) k2 (g (mg�1 min�1)) � 10�5 R2

1666.7 3.67 0.9425
1428.5 3.53 0.9577
1250.0 8.10 0.9902

RSC Adv., 2018, 8, 6315–6325 | 6321



Fig. 14 Comparisons of the adsorption effect of the SrCO3, g-C3N4,
and SrCO3/g-C3N4.

RSC Advances Paper
nanocomposite on CV.50 According to the above results and the
crystal structures, we could deduce that superb adsorption
capacity of CV might attribute to the synergistic interaction of
the conjugation of g-C3N4 and the electrostatic attraction of
SrCO3.

Furthermore, the FT-IR spectra of SrCO3/g-C3N4 before and
aer CV adsorption were recorded. As shown in Fig. 15, the peak
at 2112 cm�1 assigned to the nitrile groups shied to the
2107 cm�1 and the peak at 1319 cm�1 assigned to aromatic C–N
heterocycles observed clearly. These results indicate that the
previously mentioned groups are involved in the adsorption
process. Moreover, the intensity of the peak 1458 cm�1 corre-
sponding to C–N heterocycle aromatic became stronger, that
was for the CV was adsorbed onto the SrCO3/g-C3N4. All the
changes of the FT-IR spectra of the SrCO3/g-C3N4 before and
aer adsorption could indicate that there have been intense
interactions between dye molecules and SrCO3/g-C3N4.
Furthermore, the result of desorption test might indicate that
there has been intense chemical adsorption between the
composite and CV. It could deduced that SrCO3/g-C3N4 per-
formed selective adsorption of CV might due to the chemical
Fig. 15 FT-IR spectra of SrCO3/g-C3N4 before and after adsorption.

6322 | RSC Adv., 2018, 8, 6315–6325
structure of CV is more symmetrical and conjugation degree is
higher thanMB and RhB. On the basis of the above analysis, the
conjugation and electrostatic interaction would be the driving
force for the selective adsorption of CV.

4 Conclusions

In summary, a new SrCO3/g-C3N4 composite adsorbent was
rstly synthesized with SrCO3 and melamine via a simple one-
step calcination method. The SrCO3/g-C3N4 performed high
and specic selective adsorption for CV. The experiment data
was well described by the pseudo-second-order model. Accord-
ing to the crystal structural feature of SrCO3/g-C3N4 and the FT-
IR analysis of SrCO3/g-C3N4 before and aer adsorption of CV, it
could be deduced that the synergies of p conjugation and
electrostatic interaction would be the mechanism for the
selective adsorption of CV. Our ndings indicate that g-C3N4

based composite SrCO3/g-C3N4 could be a promising adsorbent
which can potentially be applied for the removal of CV pollut-
ants from aqueous solution.
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