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Distinguish between typical 
non‑Hermitian quantum systems 
by entropy dynamics
Chao Zheng* & Daili Li

Non-Hermitian (NH) quantum systems attract research interest increasingly in recent years, among 
which the PT-symmetric, P-pseudo-Hermitian and their anti-symmetric counterpart systems are 
focused much more. In this work, we extend the usage of entropy to distinguish time-evolutions of 
different classes and phases of typical NH-systems. In detail, we investigate the entropy dynamics of 
two-level NH-systems after quantum decoherence induced by single-qubit projective measurements, 
finding that it depends on both the initial states and the selection of the computational bases of 
the measurements. In a general case, we show how to distinguish all the eight phases of the above 
NH-systems step by step, in which process three different initial states are necessary if the basis of 
measurement is fixed. We propose how the distinguishing process is realized in quantum simulation, 
in which quantum tomography is not needed. Our investigations can be applied to judge phase 
transitions of non-Hermitian systems.

In recent years, research on non-Hermitian quantum systems1–20 becomes a hot area, in that it extends the con-
ventional quantum mechanics to non-standard quantum theory1–6, provides links to open- and dissipative-quan-
tum systems21–25, and has novel properties in application8,26–32. Among them are four classes of PT-symmetric 
systems33–50, P-pseudo-Hermitian systems51–56 and their anti-symmetric counterpart18,19,57–66. One important 
motivation studying non-Hermitian systems is that, in conventional quantum mechanics, Hermiticity is treat 
as a fundamental postulate to ensure that Hamiltonians have real energy eigenvalues. However, it is found to be 
a sufficient but not a necessary condition. One attractive extension is the PT-symmetry1–3. Instead of providing 
by the Hermitian symmetry, the eigenvalues of a PT-symmetric Hamiltonian are real if the system is in the exact 
PT-symmetric phase, which is separated from the PT-broken phase by the exceptional points (EPs)67. Further, 
Bender et al. defined a new inner product to develop the PT-symmetric quantum mechanics2,3, in which the 
evolution still satisfies Schrödinger’s equation. Therefore, a novel phenomenon of fast evolution with a minimal 
time arbitrary to zero in a PT-symmetric system is investigated both in theory8 and in an NMR experiment9. 
Pseudo-Hermiticity is pointed out to be a sufficient and necessary condition keeping the spectrum of Hamilto-
nians real4–6, extending the classes of NH-systems and attracting investigations19,51–55.

The anti-symmetric counterparts of the two classes of NH-systems start to attract interest for their appealing 
features, e.g., optical materials with anti-PT-photonic structures having balanced positive and negative index57, 
anti-PT-optical systems with constant refraction62, a diffusive system with anti-PT-symmetry66, etc. The exact 
PT (or PT-unbroken) and PT-broken phases exist in an anti-PT-symmetric system, and the phase transition 
occurs at the EPs, leading to many counter-intuitive phenomena. E.g., abnormal energy-difference conserving 
dynamics63, a breakdown of adiabaticity68, the information flow changing the direction when passing the EPs18, 
etc. Quantum simulations of anti-symmetric counterparts are also investigated16,17,19.

The concept of entropy is introduced by Boltzmann in the thermodynamics at first, and Shannon referred it 
and developed in the classical information theory. Shannon entropy is then generalized to a quantum version 
by von Neumann, which is still consistent with the former one for a classical uncertain state. The von Neumann 
entropy is well defined to the conventional Hermitian quantum system, and becomes one of the mathematical 
foundation of quantum information science69. For non-Hermitian systems, the original definition of entropy can-
not be calculated directly in that the evolution is not unitary to get a non-normalized final state. Recently, Sergi 
et al. generalize the von Neumann entropy further70,71 to non-Hermitian case as a try. Wang et al. investigate the 
entropic uncertainty in open system72–76. Now that the entropy is widely used to study the disorder of a system as 
an important quantity, it is meaningful to discover other usages of the entropy. In this work, we extend the usage 
of the entropy dynamics to distinguish different phases of the four classes of non-Hermitian Hamiltonians, i.e., 
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the PT-symmetric, P-pseudo-Hermitian, and their anti-symmetric systems of two-dimensions. We will show how 
to achieve the distinguishing process step by step, and propose how to realize our method in quantum simulation.

Shannon and von Neumann entropy
While the Shannon entropy is introduced to quantify the information unpredictability of a classical system, von 
Neumann entropy is a general version been valid to quantum. In fact, von Neumann entropy is well defined for 
a pure quantum-system, a pure classical-system, and a quantum-classical hybrid-system. Therefore, it indicates 
the von Neumann entropy when we mention the entropy thereafter. Given that the two definitions are consist-
ent with each other especially for classical probability distributions (e.g., states after quantum decoherence), the 
ellipsis of Shannon or von Neumann before entropy is unambiguous.

In a general case, no matter for a normalized or non-normalized density matrix ρ , von Neumann entropy 
can be written as

Consider a scenario how a classical probability distribution is obtained after quantum decoherence induced by 
quantum measurement. If a quantum pure state, ρ , is projected onto the computational bases by a measurement 
{�k} ( k = 1, 2, . . . , n , where n is the dimensions of the state vector), it will collapse into one of the n compu-
tational bases, say |k� . If we read out the result, the system is still in a pure state. We can realize the quantum 
decoherence if we do not read out the measurement result, and we will obtain a mixed state ρM with a classical 
probability distribution. For experimental realization, we can either repeat the process a plenty of times for one 
qubit or measure an ensemble of qubits at one time to obtain the probability distribution. It is not difficult to get 
the state after quantum decoherence induced by quantum measurement as

and n is the dimension of the quantum state. Therefore, the entropy of state ρM can be written as

In the single-qubit case, i.e., n = 2 , the relevant ρ and ρM become two 2-dimensional matrices with and without 
non-zero off-diagonal elements, respectively. The entropy of ρM consists two terms

Noting that ρ11 and ρ22 may vary as time t, we introduce a variable

which is the ratio of the two diagonal elements of ρM . Then S(ρM(t)) , which is a function of time t, can be 
rewritten as:

Notice that Eq. (6) is more useful than Eq. (4), because it is well defined for both normalized and non-normalized 
density matrices. In the later parts, we will apply Eq. (6) to calculate the entropy of non-Hermitian systems of 
which the evolved density matrices are non-normalized.

Four typical NH‑systems
PT-symmetric and P-pseudo-Hermitian (PPH) systems, together with their anti-symmetric counterparts, are 
the most investigated NH systems for reasons that have been shown in the introduction part. We will describe 
the two-dimensional NH-systems in detail, which can be treat as the mathematical preparations and theoretical 
models to distinguish between them by their entropy dynamics after time evolutions and measurement-induced 
quantum decoherences.

PT‑ and anti‑PT‑symmetric two‑level systems.  PT-symmetric Hamiltonians HPT obey the commuta-
tion with the joint operation of the parity and time-reversal operators

whereas its anti-symmetric counterpart satisfies the anti-commutation

where HAPT is an anti-PT-symmetric (anti-PT or APT) Hamiltonian. In two-dimensional cases, the explicit 
forms of the two Hamiltonians can be written as

(1)S = −tr[(ρ/trρ) log2(ρ/trρ)].

(2)ρMkj = δkjρkj , where δkj =

{

1, k = j
0, k �= j

, k, j = 1, 2, . . . , n,

(3)S(ρM) = −

n
∑

k=1

[tr(ρ�k)/trρ] log2 [tr(ρ�k)/trρ] = −

n
∑

k=1

(ρkk/

n
∑

j=1

ρjj) log2(ρkk/

n
∑

j=1

ρjj)

(4)S(ρM) = −[ρ11/(ρ11 + ρ22)] log2 [ρ11/(ρ11 + ρ22)]− [ρ22/(ρ11 + ρ22)] log2 [ρ22/(ρ11 + ρ22)].

(5)m = m(t) = ρ11/ρ22,

(6)S(t) = S(ρM(t)) =

(

m

1+m

)

log2

(

1+
1

m

)

+

(

1

1+m

)

log2(1+m).

(7)[PT ,HPT ] = PTHPT −HPTPT = 0,

(8){PT ,HAPT } = PTHAPT +HAPTPT = 0,
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and

where r, s, w and θ are four independent real dynamic parameters. The parity operator P is set as 
(

0 1
1 0

)

 , while T 

has the effect of complex conjugate. The eigenvalues of HPT and HAPT are ε± = r cos θ ±
√

w2 + s2 − r2 sin2 θ  
and iε± , respectively. Thus, the energy differences of the two systems are

which are either purely real or imaginary.
For PT- or anti-PT-symmetric systems, the Hamiltonian may be exact or spontaneously broken, depend-

ing on whether the eigenstates of the Hamiltonian are also invariant under the PT-symmetry transformation 
or not. In the theoretical model of (anti-)PT-symmetry, we treat the two cases as PT-unbroken and PT-broken 
phases, which are separated by the EPs ( �PT or �APT is equal to zero). Figures 1(a) and 2(a) show the two phases 
and EPs for the PT- and anti-PT-symmetric two-level systems, respectively. To be consistent with the (anti)
P-pseudo-Hermitian systems in the next subsection, we classify the phases of this two Hamiltonians by whether 
the difference of eigenvalues are real or imaginary. For convenience, we denote the PT-unbroken (or broken) 
phase of the PT- and anti-PT-symmetric Hamiltonians as PT(real) or PT(imaginary) and anti-PT(imaginary) 
or antiPT(real), respectively.

P‑pseudo Hermitian two‑level system and the anti‑symmetric counterpart.  P-pseudo Hermi-
tian (PPH) and anti-P-pseudo Hermitian (anti-PPH or APPH) Hamiltonians, i.e. HPPH and HAPPH satisfy

and

respectively. In two-dimensional cases, the explicit forms of them are

(9)HPT =

(

reiθ s + wi
s − wi re−iθ

)

(10)HAPT = i

(

reiθ s + wi
s − wi re−iθ

)

,

(11)�PT = 2
√

w2 + s2 − r2 sin2 θ = �APT/i,

(12)P HPPH
†P = HPPH

(13)P HAPPH
†P = −HAPPH ,

(14)HPPH =

(

reiθ v
u re−iθ

)

Figure 1.   Parameter spaces of PT-symmetric and P-pseudo-Hermitian systems. From Eqs. (9) and (14), both 
the PT and PPH systems contain four parameters. Here we use the parameter space to illustrate the phase 
diagram of the two NH systems. (a) PT-symmetric systems. The parameter space is described by s, w and θ 
(here we set r = 2 ). There are PT(unbroken/real) and PT(broken/imaginary) phases, EPs (the curved surface 
satisfying �PT = 0 ), and intersections with PPH (the yellow plane of w = 0 ) and Hermitian (pink planes of 
θ = 0 or π ) systems. (b) P-pseudo-Hermitian systems. The parameter space is described by u, v and θ (here 
we set r = 2 ). The saddle surface are of EPs ( �PPH = 0 ), separating HPPH ’s with real or imaginary eigenvalues 
which we denote as PPH(imaginary) and PPH(real) phases in the main text. The yellow plane of u = v is the 
intersection of PPH and PT-symmetric systems.
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and

where r, u, v and θ are four independent real parameters; P is still the parity operator. The eigenvalues of HPPH and 
HAPPH are ε′± = r cos θ ±

√

uv − r2 sin2 θ  and iε′± , respectively. The energy differences of the two systems are

which are either purely real or imaginary. So we classify them into two phases of the (anti-)P-pseudo-Hermitian 
systems, denoting as PPH(real), PPH(imaginary), anti-PPH(real) and anti-PPH(imaginary), referring Figs. 1(b) 
and 2(b). The two phases are separated by the EPs, i.e., points lead to Eq. (16) being zero. In fact, (anti-)PT-
symmetric and (anti-)P-pseudo-Hermitian systems have intersections, which is shown in Figs. 1 and 2.

Entropy dynamics and distinguishability
The dynamic evolution of an NH system initialized in a density matrix ρ(0) is governed by

where Ĥ can be one of the NH Hamiltonians in Eqs. (9), (10), (14) and (15). Given that the evolution operator 
e−i t

�
H is not unitary for the usual Hilbert-Schmidt inner product, the evolved final density matrix

is non-normalized, where the computational basis is chosen as logic |0� and |1� without loss of generality. While 
ρ(t) can be normalized by using ρ11 + ρ22 dividing each elements, the relative probabilities or the ratio of the 
diagonal elements are equal. If we perform a projective measurement of a qubit in computational basis |0� and 
|1� on the two-level NH system, the density matrix after the measurement-induced quantum decoherence will 
become

of which the entropy dynamics S(ρM(t)) will be investigated as a function of time t. In fact, it can be calculated 
directly by substituting ρ11 and ρ22 in Eq. (18) into Eq. (6). However, the characters of the entropy dynamics 
vary as the input density matrix ρ(0) . We characterize four different cases detail in the Supplementary Informa-
tion when the inputs are pure quantum states |+� , |−� , |0� and |1� , respectively. The general patterns of entropy 

(15)HAPPH = i

(

reiθ v
u re−iθ

)

,

(16)�PPH = 2
√

uv − r2 sin2 θ = �APPH/i,

(17)ρ(t) =
e−i t

�
Hρ(0)ei

t
�
H†

tr [e−i t
�
Hρ(0)ei

t
�
H†

]
,

(18)ρ(t) =

(

ρ11 ρ12
ρ21 ρ22

)

(19)ρM(t) = (ρ11 + ρ22)
−1

(

ρ11 0
0 ρ22

)

,

Figure 2.   Parameter spaces of anti-PT-symmetric and anti-P-pseudo-Hermitian systems. From Eqs. (10) 
and (15), both the anti-PT and anti-PPH systems contain four parameters. Here we use the parameter space to 
illustrate the phase diagram of the two NH systems. (a) Anti-PT systems. The parameter space is described by 
s, w and θ (here we set r = 2 ). There are anti-PT(unbroken/imaginary) and anti-PT(broken/real) phases, EPs 
(the curved surface satisfying �APT = 0 ), and intersections with anti-PPH (the yellow plane of w = 0 ) systems. 
(b) Anti-P-pseudo-Hermitian systems. The parameter space is described by u, v and θ (here we set r = 2 ). The 
saddle surface are of EPs ( �APPH = 0 ), separating HAPPH ’s with imaginary and real eigenvalue-differences 
which we denote as anti-PPH(imaginary) and anti-PPH(real) phases in the main text. The yellow plane of u = v 
is the intersection of anti-PPH and anti-PT systems, while the red line indicates the intersection of anti-PPH and 
Hermitian systems.
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dynamics of the NH systems in different phases are shown in Fig. 3. Although the illustrations in the figures are 
with specific parameters, the patterns have general validities which can be referred to our proofs in the Supple-
mentary Information. In the four figures in the left column Fig. 3, the patterns are periodic because their energy 
difference are real, and only one period is drawn there. Therefore, we denote the NH systems in their NH(real) 
phases when the energy difference is real, and we set the four systems have the same energy difference. Instead 
of the left-column subfigures in Fig. 3, patterns in the four figures in the right column of Fig. 3 have asymptotes 
but no period, because their energy difference are imaginary. We denote the NH systems in their NH(imaginary) 
phases when their energy differences are imaginary, and set the energy differences of eigenvalues the same.

Now we will show how to distinguish the eight NH systems in different phases step by step based on the 
entropy dynamics after time evolution and measurement-induced quantum decoherence. The quantum com-
putational basis of the measurement is fixed to logic |0� and |1�.

In the first step, (i) |+� is input (referring Fig. 4(a)). If the entropy dynamics is a constant 1, the system is 
either the general case of anti-PT-symmetric HAPT in PT-unbroken or -broken phase in Eq. (10) or some spe-
cial cases of PT-symmetric HPT in Eq. (9) when w = −r sin θ . Notice that if w = −r sin θ = 0 in Eq. (9), the 
Hamiltonian will become to a Hermitian one. (ii) Then we input |0� to decide that it is in anti-PT(real) phase 
(or PT spontaneously broken phase of anti-PT-symmetric system), anti-PT(imaginary) phase (or PT unbroken 
phase of anti-PT-symmetric system), some special PT-symmetric or Hermitian phases, which are illustrated 
in Fig. 4(b). (1) Both the patterns of entropy dynamics of the anti-PT(real) and a special Hermitian phases are 
periodic and are of even symmetry relevant to t = T/2 in each period. They can be distinguished with each other 
by whether the maximum reaches to 1 (the later one reaches while the former one does not). (2) The pattern of 
anti-PT(imaginary) phase is not periodic but increasingly approaches to 1 as the time tending to infinite. (3) 
the special PT-symmetric one, in which case w = −r sin θ �= 0 in Eq. (9), is also periodic because its energy dif-
ference is always real, but has no symmetric axis at T/2 in each period. Therefore, these four cases in which the 
entropy curves are constant 1 can be distinguished between each other. If the entropy dynamics is not a constant 
1 when the input state is |+� , the distinguishing process will continue.

Figure 3.   Entropy dynamics of NH systems with different input states. The computational bases are fixed as 
logic |0� and |1� . The red solid line, blue dashed-dotted line, green dashed line and black dotted line are related 
to the input states |0� , |1� , |+� and |−� , respectively. (a) The PT-symmetric system in PT-unbroken phase, or 
PT(real) phase; (b) The PT-symmetric system in PT-broken phase, or PT(imaginary) phase; (c) The anti-PT-
symmetric system in PT-unbroken phase, or anti-PT(imaginary) phase; (d) The anti-PT-symmetric system in 
PT-broken phase, or anti-PT(real) phase; (e) The P-pseudo-Hermitian system with real eigenvalue-difference, or 
PPH(real) phase; (f) The P-pseudo-Hermitian system with imaginary eigenvalue-difference, or PPH(imaginary) 
phase; (g) The anti-P-pseudo-Hermitian system with real eigenvalue-difference, or anti-PPH(real) phase; (h) 
The anti-P-pseudo-Hermitian system with imaginary eigenvalue-difference, or anti-PPH(imaginary) phase. 
Notice that only one period is drawn in the subfigures (a), (c), (e) and (g), while no period in the subfigures 
(b), (d), (f) and (h). We set the same energy difference of the four systems in their real or imaginary phases, 
respectively.
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In the second step, |−� is input which is illustrated in Fig. 4(c). The entropy dynamics with |+� and |−� 
inputs are identical only when the system is P-pseudo Hermitian. If the entropy dynamics has a periodic pat-
tern, the PPH system is in the PPH(real) phase. Otherwise, if the entropy dynamics is not periodic, it is in the 
PPH(imaginary) phase. If the entropy dynamics with |+� and |−� inputs have different patterns, the system may 
be either PT or anti-P-pseudo-Hermitian in different phases.

In the third step, we recall the results in the first step with |+� input as shown in Fig. 5. (i) If the pattern of the 
entropy dynamics has a period T, and there is an axis of symmetry at t = T/2 , the system is of PT-symmetry in 
the unbroken phase referring the red curve in Fig. 5(a). (ii) If the pattern of the entropy dynamics has a period T, 
and there is no axis of symmetry in each period, the system is anti-P-pseudo Hermitian with real energy differ-
ence, referring the blue curve in Fig. 5(a). If the pattern of the entropy dynamics has no period but an asymptote, 

Figure 4.   Distinguishability of the entropy dynamics of the anti-PT-symmetric and PPH systems. (a) With 
|+� input in the first step, the anti-PT-symmetric system can be distinguished from other systems because the 
entropy dynamics are constant 1 in general cases (see the black solid lines with mark ’x’). In some cases, it can 
also lead the entropy dynamics to be a constant 1 when the system has PT-symmetry or Hermiticity, but they 
can be distinguished between each other and the anti-PT-symmetric systems in different phases by inputting 
|0� further as described in the main text and illustrated in (b). (b) Distinguishablity with |0� input. The patterns 
of the four cases are typical and distinguished. (c) With |−� input in the second step, the PPH system can be 
identified because the entropy dynamics are identical to that with |+� input, which can be apparently seen when 
comparing the green solid or dashed line with mark ’o’ in (a) and that in (c).

Figure 5.   Distinguishability between the PT(real), PT(imaginary), the anti-PPH(real) and anti-
PPH(imaginary) phases with |+� . (a) The PT-symmetric system in unbroken or PT(real) phase is relevant to 
the red line, while the anti-P-pseudo Hermitian system in anti-PPH(real) phase is relevant to the blue line. 
Both of the entropy patterns have period T and only one period are drawn here. But only the former one is of 
even symmetry at t = T/2 . (b) The PT-symmetric system in broken or PT(imaginary) phase is relevant to the 
red line, while the anti-P-pseudo Hermitian system in anti-PPH(imaginary) phase is relevant to the blue line. 
The two curves have no period but they are approaching to their respective asymptotes as the time tends to the 
infinite. They are distinguishable because the PT(imaginary) increasingly approaches to its asymptote, whereas 
the anti-PPH(imaginary) decreasingly approaches to.
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the system is in PT(imaginary) or anti-PPH(imaginary) phase. (iii) The system is in PT(imaginary) phase (PT 
broken), if the entropy approaches to the asymptote from below when the time tends to the infinite, referring 
the red curve in Fig. 5(b). (iv) The system is anti-P-pseudo Hermitian with imaginary energy difference, if the 
pattern approach to the asymptote from above, referring the blue curve in Fig. 5(b).

Quantum simulation and experiment proposals
Because the time-evolution operator e−i t

�
H of an NH system is nonunitary, we cannot apply the common method 

bing valid for a Hermitian system. One feasible method to simulate the time evolutions of NH systems is to use 
the linear combinations of unitaries (LCU) in the duality quantum computing scheme77. Quantum simulations 
of several NH systems have been achieved in this scheme9,12–16,18,19, including the four typical NH systems we 
investigate here. We show the schematic quantum circuit in Fig. 6, and the details can be referred in the relevant 
references.

We focus on how to link our investigation of entropy dynamics in this work to the previous works of quantum 
simulation and implementations here. We choose the logic |0� and |1� as the computational basis without loss the 
generality. The whole system is composed of an ancillary subsystem and a work qubit. In general, the ancillary 
subsystem always consists of one or two qubits, and is initialized into |0�a or |00�a . For convenience, we use |0�a 
for the two cases of the subsystem. The input state of the work qubit can be |+�e , |−�e , |0�e or |1�e following the 
steps in the former section to distinguish between the eight general cases of the four NH systems in different 
phases and some special PT-symmetric or Hermitian cases. Operated by the middle part of NH constructions, 
quantum measurements will be performed on the ancillary subsystems and the work qubit at last. If the ancil-
lary subsystem outputs |0�a , the work qubit will evolve as e−i t

�
H , where H can be one of the NH Hamiltonians in 

Eq. (9), (10), (12) or (13). If the outputs other than |0�a is obtained, the result will be discarded and the simula-
tion will be started over. The entropy at time t will be measured by an ensemble of the quantum simulations, in 
which the ratio of the frequencies of the outputs of |0�a|0�e and |0�a|1�e can be seen as the experimental values of 
m(t) = ρ11/ρ22 in Eq. (5). Substituting the two values into Eq. (6), we will get S(ρM(t)) at the moment t. There-
fore, the entropy dynamics after quantum decoherence can be drawn by repeating this process for each moment t.

For experimental implementations, take the nuclear-magnetic-resonance (NMR) quantum simulator as an 
example, the nuclei of spin-1/2 can be treated as a qubit. The spatial-averaging method78 can be adopted to 
initialize the whole system in |0�a|0�e at the beginning, and a series of magnetic pulse sequences can realize the 
relevant quantum gates. Specifically, a single qubit rotation can be realized by hard pulses, whereas a controlled 
two-qubit gate can be achieved by the free evolutions of the two nuclei of spin-12 in a period9.

Quantum optics can be another candidate, and the two orthogonal polarized directions of a photon takes a 
role of qubit. A single-qubit gate can be realized by a series of half-wave plates and quarter-wave plates79. While 
it is possible to realize a jointly two-qubit gate using measurement induced nonlinearity80, the efficiency is low 
in practice and improvement with the assistance of location degree of freedom should be considered81.

Our protocol can also be realized experimentally in other quantum devices, such as superconductor qubits, 
two energy levels of ultracold atoms, ion-trap systems, and etc. By noticing an interesting work82 to compress 
quantum information recently, our protocol may be realized on the IBM QE 5-qubit quantum processor using 
the similar method.

Figure 6.   Schematic of quantum simulation to measure the entropy dynamics. The whole system is composed 
of an ancillary subsystem and a work qubit. For convenience, we use |0�a to denote the initial state of the 
subsystems that may consist one or two qubits depending on different cases. The work qubit is initialized in |0�a 
and can be rotated into one of the |0�e , |1�e or |±�e as needed to distinguish the NH systems in different phases. 
In the middle part, one of the NH systems will be constructed in an indeterministic way basted on the first 
quantum measurement. The basis of the two measurements are chosen as the logic |0� and |1� . If the first output 
is |0�a , the result will be recorded, in which case the evolution of the work qubit is governed by one of the NH 
Hamiltonians. The second measurement is performed on the work qubit, and either |0�e or |0�e will be output. 
By repeating the process or inputting an ensemble of qubits, the ratio of the frequencies of outputs |0�a|0�e and 
|0�a|1�e are the experimental values of m = ρ11/ρ22 , calculating the entropy by Eqs. (5) and (6).
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Conclusions
We investigate quantum entropy dynamics of typical non-Hermitian systems in different phases, i.e., the PT- and 
anti-PT-symmetric two-level systems in PT-unbroken and -broken phases, the P-pseudo Hermitian and its anti-
symmetric systems in real- and imaginary-eigenvalue phases. When the computational bases of the quantum 
measurement is fixed, three different input states are necessary to be used during the distinguishing progress in 
general, while less input states are enough in some special cases. Theoretically, we need to obtain the classically 
uncertain mixed-state by measuring the system without reading out the results. In practice, a plenty of Identi-
cal measurements will be performed to obtain the probabilities collapsing into the two computational basis as 
the diagonal element of the normalized density matrix of the mixed state. Because quantum tomography is not 
essential, our method can be realized easily in quantum simulation process by qubit-ensembles, such as an NMR 
system. We expect the experimental implementations in the near future. Since our method is able to distinguish 
eight different kinds of typical NH systems, it can be applied to judge the phase transitions of NH systems, and 
it maybe provide novel encoding methods for quantum communications, quantum secret sharing, and etc.
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