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Abstract
Challenges associated with the current screening and diagnostic process for autism
spectrum disorder (ASD) in the US cause a significant delay in the initiation of
evidence-based interventions at an early age when treatments are most effective.
The present study shows how implementing a second-order diagnostic measure to
high risk cases initially flagged positive from screening tools can further inform
clinical judgment and substantially improve early identification. We use two
example measures for the purposes of this demonstration; a saliva test and eye-
tracking technology, both scalable and easy-to-implement biomarkers recently
introduced in ASD research. Results of the current cost-savings analysis indicate
that lifetime societal cost savings in special education, medical and residential care
are estimated to be nearly $580,000 per ASD child, with annual cost savings in
education exceeding $13.3 billion, and annual cost savings in medical and residen-
tial care exceeding $23.8 billion (of these, nearly $11.2 billion are attributable to
Medicaid). These savings total more than $37 billion/year in societal savings in
the US. Initiating appropriate interventions faster and reducing the number of
unnecessary diagnostic evaluations can decrease the lifetime costs of ASD to soci-
ety. We demonstrate the value of implementing a scalable highly accurate diag-
nostic in terms of cost savings to the US.

Lay Summary: This paper demonstrates how biomarkers with high accuracy for
detecting autism spectrum disorder (ASD) could be used to increase the efficiency
of early diagnosis. Results also show that, if more children with ASD are identi-
fied early and referred for early intervention services, the system would realize
substantial costs savings across the lifespan.
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INTRODUCTION

Autism spectrum disorder (ASD) is an etiologically and
phenotypically heterogeneous disorder with two symp-
tom domains, social communication/interaction and
restricted/repetitive behavior. It is frequently accompa-
nied by co-occurring medical and mental health condi-
tions and results in variable but lifelong functional
impairments and challenges, particularly in social

behavior. Over the last two decades, the prevalence of
ASD has increased dramatically: in 2000, the prevalence
in the US was estimated to be 1 in 150 children, and as
recently as 2019, the prevalence was estimated to be 1 in
54 children (Centers for Disease Control and
Prevention, 2020).

Caring for an individual with ASD affects all aspects
of a family unit, requires considerable use of community
resources and results in substantial costs to the family
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and society (Hyman et al., 2020). The cost of caring for
Americans with ASD was estimated to be $268 billion in
2015 (Leigh & Du, 2015), of which $191 billion was
attributable to adults with ASD. By 2025, total annual
costs are expected to be $461 billion (Leigh & Du, 2015).
Medical care represents a significant component of these
costs and is 4–6 times higher for individuals with ASD
than those without ASD (Shimabukuro et al., 2008).

Early accurate diagnosis followed by appropriate early
and intensive intervention has the potential to significantly
decrease lifetime cost while improving functioning and
well-being. Randomized controlled trials indicate that a
significant proportion of children with ASD who have
access to early intensive behaviorally-based interventions,
including naturalistic developmental and behavioral inter-
ventions, starting in the 2nd or 3rd year of life (hereafter
EIBI for simplicity) show substantial cognitive and func-
tional gains and symptom improvement relative to eclectic
or treatment as usual conditions (Dawson et al., 2010;
Eldevik et al., 2009; Granpeesheh et al., 2009; Green
et al., 2017; Hardan et al., 2015; Howard et al., 2005;
Howlin et al., 2009; Kasari et al., 2008; Lovaas, 1987;
Mohammadzaheri et al., 2014; National Research Council
Division of Behavioral and Social Sciences
Education, 2001; Peters-Scheffer et al., 2011). Associated
with these cognitive and functional gains are significant
reductions in ongoing costs, including special education
and medical care (Dawson & Bernier, 2013).

The current average age of ASD diagnosis in the US is
4 years old (Centers for Disease Control and
Prevention, 2019), significantly reducing the ability to pos-
itively influence early developmental trajectories. To
address the growing need to identify children with ASD
early, the American Academy of Pediatrics (AAP) devel-
oped and published a Surveillance and Screening Algo-
rithm for ASD (Johnson & Myers, 2007) and in 2020
released an updated clinical report with consistent recom-
mendations for physicians in primary care to screen all
children for ASD (Hyman et al., 2020). Despite the clear
guidance to universally screen for ASD in primary care
settings, fewer than 60% of pediatricians administer an
ASD-specific screening tool at the 18- and 24-month pre-
ventative care visit (Siu et al., 2016). Limited screening
adherence causes physicians to refer for diagnostic evalua-
tions when symptoms fully manifest at older ages, contrib-
uting to a delay in final diagnosis and access to services
(Siu et al., 2016). Yet, fully implementing recommenda-
tions would only further inundate specialty care clinics
and limit access to comprehensive diagnostic evaluation.

After a child is identified as “at risk” using a screening
tool, there are significant wait times in clinics due to the
abundance of time needed to properly conduct the evalu-
ation per patient (e.g., sometimes multiple visits 2–3 h
each). CDC Pathways Survey data from 1420 families of
children with ASD reported an average wait time of
3 years between parents’ first concerns and receiving a
diagnosis of ASD (Oswald et al., 2017).

Given these limitations, scalable, easy-to-implement
diagnostic measures, used in an evidence-based medicine
framework (Guyatt et al., 2002; Youngstrom et al., 2017)
and applied to individuals identified at “elevated risk” by
current screening measures, could substantially improve
the efficiency of ASD identification. A scalable test
would be implemented widely into the healthcare system
and would need to be highly feasible, efficiently
implemented, and cost-effective. Differentiation of ASD
from non-ASD cases is also a key consideration for any
tool implemented after screening because the majority of
false positive screens will be children with other develop-
mental or neuropsychiatric conditions (e.g., anxiety, lan-
guage/communication disorder, ADHD, oppositional
defiant disorder, etc.).

Recent progress investigating a saliva based test
(Hicks, Rajan, et al., 2018) and remote eye gaze tracking
(Frazier et al., 2018) holds promise in ASD diagnostics.
Researchers demonstrated that molecules in saliva are
highly accurate in differentiating children with ASD from
at-risk children aged 18 months to 83 months (area under
the curve or AUC = 0.88) in a large clinical study
(n = 451; Hicks, Rajan, et al., 2018). In 2019, this tech-
nology was released commercially to use in clinical prac-
tice as a diagnostic aid (Geddes, 2020). Similarly, eye
tracking measures have shown consistent validity in dif-
ferentiating ASD and non-ASD individuals responding
to social and nonsocial stimuli (Frazier et al., 2017).
Recent studies have supported high levels of validity
when measurements are aggregated across stimuli and
paradigms (Frazier et al., 2016; Pierce et al., 2011), and a
recent remote eye gaze tracking assessment indicated
high diagnostic accuracy (area under the curve or
AUC = 0.86) when an aggregate index was trained and
tested in study of 201 children (91 with ASD and
110 non-ASD) (Frazier et al., 2018).

The addition of a second order diagnostic aid to the
screening process but prior to comprehensive evaluation
has the potential to substantially increase the efficiency
of ASD identification and lead to more rapid referral
for early intervention services. Evidence-based assess-
ment, including the use of multi-level diagnostic likeli-
hood ratios, provides a method by which scalable,
diagnostic aids with good accuracy could be applied to
screen positive cases. Specifically, test scores at levels
that decrease the likelihood of ASD could be combined
with the postscreening probability to rule out false posi-
tives flagged from screening tools. Similarly, test scores
at levels that increase the likelihood of diagnosis could
be combined with the postscreening probability to iden-
tify cases at highest priority and need for evaluation,
and, with very high score levels, rule-in patients with a
very high probability of ASD that do not need an expen-
sive and time-consuming ASD evaluation prior to treat-
ment initiation (Figure 1). Furthermore, parents of
children with and without ASD have demonstrated
strong interest in an objective diagnostic aid for ASD
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(Wagner et al., 2019), suggesting that adding an objec-
tive diagnostic measure into the current diagnostic pro-
cess can increase parental acceptance of the diagnosis
and decrease the perceived necessity of seeking addi-
tional second opinions.

The first aim of the present study is to demonstrate
how a scalable diagnostic evaluation tool used in an
evidence-based assessment framework (Guyatt
et al., 2002; Sackett et al., 2000) to further triage and
inform clinical judgment for high risk cases can substan-
tially improve early ASD identification. Specifically, the
paper demonstrates how test scores on scalable diagnos-
tics could be used individually or jointly across a range of

postscreening settings to determine whether additional
evaluation is needed (test/no-test threshold) or whether
treatment might be initiated (treatment threshold)
(Frazier & Youngstrom, 2006; Guyatt et al., 2002;
Jenkins et al., 2012; Sackett et al., 2000; Youngstrom
et al., 2017). Improvements to the diagnostic process may
ultimately lead to a decrease in lifetime costs of ASD by
allowing appropriate interventions to be initiated faster
and reducing the number of unnecessary diagnostic eval-
uations. Consequently, the second aim of the present
study is to show the cost savings to the US by facilitating
an early accurate diagnosis of ASD leading to appropri-
ate early intervention.

F I GURE 1 Clinical flow diagram. Results of a biomarker diagnostic determine whether additional evaluation is needed (test/no-test threshold)
and whether treatment might be initiated (treatment threshold). These thresholds are not fixed and are often dependent on additional considerations
such as how important it is to identify the condition. Ultimately, exact thresholds are based on the clinical setting and determined by the clinician in
consultation with the patient. If the first biomarker results is between thresholds (above the test/no-test threshold but below the treatment threshold),
the second biomarker (whichever was not administered first) would be administered. In this case, Table 5 (see above) would be used to generate the
final post-test probability for use of two biomarkers if results correspond to the presented outcomes (low-low, high-high, etc.). However, if some other
combination of results were observed, the likelihood ratio values from Tables 1 and 2 could be applied in iterative fashion using Bayes theorem to
generate a final post-test probability based on both biomarkers
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METHODS

Diagnostic measure validation samples

To illustrate the potential utility of ASD diagnostic bio-
markers implemented after primary care screening, two
distinct measures were utilized—one based on molecular
data (Hicks, Rajan, et al., 2018; Table 1) and a second
based on data from remote eye gaze tracking (Frazier
et al., 2018; Table 2) to demonstrate to readers that the
approach is measure-agnostic as long as the diagnostic
tool being considered is highly scalable and has good
validity for ASD and non-ASD case differentiation.
These measures were chosen because they have shown
promise in initial development and replication studies

(Frazier et al., 2016, 2017, 2018; Hicks et al., 2016;
Hicks, Rajan, et al., 2018; Hicks, Uhlig, et al., 2018) and
are likely to provide incremental validity by evaluating
different neurophysiological processes.

In the first sample, a molecular diagnostic panel was
derived and replicated using data from 451 patients
(238 children with ASD, 84 children with non-ASD
developmental delay, and 134 neurotypical children).
The panel had high overall accuracy for detecting ASD
(AUC = 0.88; Hicks, Rajan, et al., 2018). For the pur-
poses of this study, molecular diagnostic data for ASD
and all non-ASD cases are used because presumably a
mixture of healthy or neurodevelopmental non-ASD
cases will screen positive on the M-CHAT-RF given
recent positive predictive value estimates. In the second

TABLE 1 Multi-level likelihood ratios, post-test probabilities for base rates .10–.50, and sensitivity and specificity values for the molecular
diagnostic measure

Saliva diagnostic (AUC = 0.88)

Multi-level likelihood ratios (±95% CI)

Very low Low High Very high

Score range <.25 .26> <.50 .51> <.75 >.76

Likelihood ratio .16 (.06–.43) .185 (.08–.41) 7.27 (2.4–21.8) 14.5 (2.0–101.2)

PP (BR = .10) .02 .02 .45 .62

PP (BR = .20) .04 .04 .65 .78

PP (BR = .30) .06 .07 .76 .86

PP (BR = .40) .10 .11 .83 .91

PP (BR = .50) .14 .16 .88 .94

Sensitivity .92 .88 .64 .42

Specificity .50 .65 .91 .97

Note: Sensitivity and specificity values were based on the mid-point of the range for low, indeterminant, and high score ranges. LR− reported for low and very low score
ranges. LR+ reported for high and very high score ranges.
Abbreviations: BR, base rate; PP, posterior probability.

TABLE 2 Multi-level likelihood ratios, post-test probabilities for base rates .10–.50, and sensitivity and specificity values for the eye-tracking
diagnostic measure

Eye tracking diagnostic (AUC = 0.86)

Multi-level likelihood ratios (±95% CI)

Very low Low Indeterminant High Very high

Score range (based on z-score) <.0 .0> <.70 .70> <1.3 1.3> <2.0 >2.0

Likelihood ratio .09 (.04–.20) .39 (.17–.86) 1.47 (.8–2.8) 4.16 (1.6–1.7) 18.30 (5.8–56.4)

PP (BR = .10) .01 .04 .14 .32 .67

PP (BR = .20) .02 .09 .27 .51 .82

PP (BR = .30) .04 .14 .39 .64 .89

PP (BR = .40) .06 .21 .50 .74 .92

PP (BR = .50) .08 .28 .60 .81 .95

Sensitivity .96 .92 .77 .57 .48

Specificity .60 .68 .88 .95 .97

Note: Sensitivity and specificity values were based on the mid-point of the range for low, indeterminant, and high score ranges. LR− reported for low and very low score
ranges. LR+ reported for indeterminant, high, and very high score ranges.
Abbreviations: BR, base rate; PP, posterior probability.
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sample, remote eye gaze tracking to an audio-visual stim-
ulus was administered using seven distinct social stimulus
paradigms (�7-min total administration). An autism risk
index was empirically-developed and validated for differ-
entiating ASD (n = 90) and non-ASD neu-
rodevelopmental disorder cases (n = 110), with high
overall accuracy (AUC = 0.86; Frazier et al., 2018).

Applying evidence-based assessment

Evidence-based assessment methods focus on utilizing
available research to select the choice of measures and to
guide the assessment process. Importantly, evidence-
based assessment allows the clinician to more accurately
evaluate test results in relation to the base rate of the con-
dition and the predictive validity associated with a test
score. In the present context, the base rate provides the
pretest probability of an ASD diagnosis. Given that uni-
versal screening is recommended for ASD, that an
increasing proportion of children are being screened, and
that studies of the M-CHAT-RF have suggested positive
predictive values as low as 14.6%, the present demonstra-
tion assumes a range of initial base rates from .10 (imply-
ing 1 in 10 M-CHAT-RF screen positives have ASD) to
.50 (assuming 1 in 2 M-CHAT-RF screen positives have
ASD). The upper end of this range is provided to simu-
late specialty care clinics where base rates of ASD diag-
nosis often hover around 50% because many patients
receive both early screening and additional triage as a
result of parental or care provider concern.

In an evidence-based assessment framework, the pre-
dictive validity of a test score is often represented using a
likelihood ratio. For tests with continuous or quasi-
continuous scaling, multi-level likelihood ratios are rec-
ommended (Guyatt et al., 2002). Multi-level likelihood
ratios quantify the predictive value of test scores across
defined score ranges, in contrast to AUC values, which
estimate accuracy across the full range of scores. In the
case of ASD, multi-level likelihood ratios permit the artic-
ulation of score ranges that substantively decrease the
probability of diagnosis (and in the extreme case may rule
it out entirely) as well as score ranges that substantively
increase the probability of diagnosis (or in the extreme
case rule-in ASD). Multi-level likelihood ratios are supe-
rior to cut scores because they do not assume that all
scores below or above a particular cut score have the same
predictive validity. Furthermore, multi-level likelihood
ratios can be easily combined with base rates to under-
stand the probability of diagnosis. Generally, likelihood
ratios <.50 are considered useful for decreasing the proba-
bility of a condition and those <0.10 are typically strong
enough to rule out a diagnosis. Conversely, likelihood
ratios >2.0 are considered useful for increasing the proba-
bility of a diagnosis and those >10.0 may be strong
enough to rule-in the diagnosis. Likelihood ratios of 1.0
do not alter the probability of diagnosis.

By combining the most likely pretest probability with
the likelihood ratio of the observed score, it is possible to
generate a post-test or posterior probability. In an
evidence-based framework, post-test probabilities can be
used to grade clinical decision-making into more nuanced
options and are typically interpreted with reference to
two basic clinical decisions—the test/no test threshold and
the treatment threshold. The test/no test threshold defines
the probability of the disorder at which further evalua-
tion is recommended and provides a rational approach
for determining when to collect additional assessment
information. The treatment threshold defines the proba-
bility of the disorder at which treatment is recommended.
These thresholds are not fixed and are often dependent
on a multitude of considerations such as how important
it is to identify the condition. For example, the test/no
test threshold could be quite low for a condition with a
highly accurate, inexpensive, easily scaled, and readily
administered test, while the treatment threshold could be
very high for expensive, risky treatments. Ultimately, the
exact threshold is dependent on the clinician and the clin-
ical setting, and is often set in consultation with the
patient. For the present demonstration, we suggest that,
in most settings, screening generates at least a 10% post-
screening probability of ASD (in children who screen
positive) This probability is assumed to be sufficiently
high to pass the test/no test threshold and merit applica-
tion of scalable, easily-administered diagnostic measures,
particularly given that ASD is often associated with sig-
nificant lifelong disability and many cases show good
response to early intensive intervention. Furthermore, we
assume that probabilities below 10% (implying that addi-
tional testing has not supported the presence of ASD) are
sufficient to rule out additional evaluation.

The treatment threshold is more nuanced and will be
highly dependent on the family and patient situation.
However, for the purposes of this analysis, we assume
that probabilities >50% are sufficient to initiate less
intensive, scalable, insurance-billed treatments such as
parent-mediated intervention (Green et al., 2017) while
probabilities >80% are sufficient to rule-in ASD and initi-
ate therapeutic interventions and de-prioritize additional
expensive diagnostic evaluation (although evaluation for
treatment tailoring and other recommendations may ulti-
mately be needed). Finally, we assume that probabilities
between 10 and 50% suggest a very high need for addi-
tional specialty evaluation, as these individuals are not
yet recommended for any intervention, while probabili-
ties between 50 and 80% suggest the next level priority
for evaluation because they are recommended to receive
less intensive intervention, but may actually require more
intensive intervention.

Clinicians could adopt different probability levels or
even more nuanced actions. For example, a clinician
(in conjunction with the caregiver and patient) may
decide that probabilities between .05 and .10 are suffi-
ciently high that additional testing should still be
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considered, particularly if additional low-cost, easily-
acquired measures were available. Similarly, if EIBI were
to become more widely available and supported through
existing funding streams, the post-test probability level at
which intensive treatment could be considered might be
substantially lower.

Diagnostic efficiency analyses

Tables 1 and 2 present diagnostic efficiency statistics,
including multi-level likelihood ratios and posterior prob-
abilities across a range of potential base rates of ASD
observed postscreening for the molecular and eye-
tracking diagnostics, respectively. An upper base rate of
.50 is provided because this pretest probability is com-
mon in specialty care clinics where formal screening has
occurred and caregivers have decided to follow through
with making and keeping appointments. In this scenario,
the molecular and eye-tracking diagnostic are functioning
in the role of specialty care triage, which is analogous to
second-level screening. Multi-level likelihood ratios were
derived for each diagnostic measure using the Evidence-
Based Medicine Toolbox diagnostic test calculator
(https://ebm-tools.knowledgetranslation.net/calculator/
diagnostic/). For these calculations, score ranges for the
molecular and eye tracking diagnostic measures were sep-
arately identified that corresponded to “very low,” “low,”
“high,” and “very high” proportions of ASD relative to
non-ASD cases based on inspection of the score distribu-
tions. For the eye tracking diagnostic, an “indeterminant”
category was also used to demonstrate how multi-level
likelihood ratios could account for portions of the score
distribution with strong overlap between ASD and non-
ASD cases. This approach has been previously used
(Frazier et al., 2007), follows evidence-based medicine
recommendations (Frazier & Youngstrom, 2006; Sackett
et al., 2000), and typically generates score ranges with
likelihood ratios that are useful for substantially altering
the probability of a clinical diagnosis and informing the
test/no test and treatment thresholds.

Case examples with low and high scores are presented
to demonstrate how biomarkers can be used to facilitate
ASD identification, both individually or jointly (through
iterative application). AUC values and sensitivity and
specificity values at corresponding cut scores are also
presented to connect familiar cut score approaches to
interpretation.

Cost savings from accurate early diagnosis and
intervention

Using an evidence-based assessment approach with scalable
biomarkers should result in a substantial proportion of chil-
dren having sufficiently high post-test probabilities to initi-
ate treatment and a large proportion of children having

sufficiently low post-test probabilities to rule-out additional
evaluation. Thus, cost savings analyses conservatively
assume, based on the biomarker accuracy estimates
AUC = 0.86–0.88 (Frazier et al., 2018; Hicks, Rajan,
et al., 2018), that at least 86% of screened ASD cases will
be appropriately triaged. We use 86% in our cost-savings
analysis as indication of how often ASD-affected children
who receive a scalable postscreening diagnostic test will
receive appropriate intervention services.

To estimate US cost savings associated with
(i) facilitating an early accurate diagnosis of ASD and
(ii) early identification leading to appropriate early intensive
behavioral interventions, an analysis was conducted to fore-
cast estimates of costs associated with (a) special education
(including federal, state and local district expenses for spe-
cial education) and (b) medical and residential care
expenses (including federal and state Medicaid expenses).

This cost–benefit analysis acknowledges the
following:

1. Predictors of reduced severity of ASD symptoms as a
result of EIBI include age at intervention enrollment,
cognitive functioning, and initial ASD symptom
severity (Landa, 2018).

2. The proportion of children who become functionally
indistinguishable from their peers is probably lower
than the proportion often reported in the literature
(just under 50% [Lovaas, 1987]). Among children with
ASD who receive competently delivered EIBI,
between 20 and 50% will be functionally indistinguish-
able from age-matched peers; between 20 and 40%
will achieve meaningful but moderate gains; and
10–40% will continue to require intensive special edu-
cation and adult services. For this financial model, we
use the results of a meta-analysis and assume that
29% achieve age-appropriate functional behavior,
34% achieve meaningful but moderate gains, and 37%
require intensive special education and adult services
(Peters-Scheffer et al., 2012).

3. Without EIBI the majority of children with ASD will
manifest enduring dependency on special education
and adult developmental disability services: among
children with ASD who have not received EIBI, a
meta-analysis suggests that only 11% will achieve age
appropriate functional behavior, 8% will achieve
meaningful but moderate gains, and 81% will require
intensive special education and adult services (Peters-
Scheffer et al., 2012).

For these reasons, this cost–benefit analysis is framed
in terms of marginal gains as well as the attainment of
age appropriate functional behavior.

Additional assumptions in this analysis include the
following:

1. Children who are diagnosed with ASD have access
to EIBI services. Children who are not identified
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early as having ASD could still receive interventions;
however, these interventions would either be non-
specific to the treatment of core symptoms of autism
(e.g., occupational therapy, physical therapy), and/or
would be related but balanced between the EIBI and
no EIBI scenarios (e.g., speech therapy), and/or
would likely be much lower intensity.

2. The costs for EIBI services is assumed to be a repre-
sentative average for both center-based and home-
based services (average of $45,000/year, given that
children with ASD receive 20–40 h/week of EIBI
(Reichow et al., 2018), we used 30 h/week and
50 weeks/year as a conservative estimate and
assumed $30/hour (the average hourly rate of a
board certified behavior analyst)).

3. The average duration of EIBI is assumed to be
3 years (Jacobson et al., 1998).

4. Consistent with prior literature estimates, 31% of
children with ASD are assumed to also have an intel-
lectual disability (ID) (Centers for Disease Control
and Prevention, 2014).

5. Children with ASD who achieve age-appropriate
functional behavior are assumed to use family sup-
port services only during participation in EIBI; those
who make moderate gains or realize minimal effects
are assumed to use 18 years of services.

6. All savings shown are net of the expense of providing
EIBI (which is assumed to be a medical expense).

7. Children with ASD who ultimately become function-
ally indistinguishable from their peers are assumed
to participate in regular education and have normal
medical expenses thereafter; those who make moder-
ate gains are assumed to participate in special educa-
tion (Peters-Scheffer et al., 2012) and have medical
expenses associated with ASD children who have
other comorbid conditions(Peacock et al., 2012); and
children who make minimal gains are assumed to
participate in intensive special education (Peters-
Scheffer et al., 2012) and have medical expenses
associated with ASD children who have other
comorbid conditions including intellectual disabil-
ities (Peacock et al., 2012).

8. Cost estimates which include the adult years are made
only to age 54, consistent with the average age of
mortality in ASD (Hirvikoski et al., 2016). This
assumption is conservative since there is a high

likelihood that future generations will live beyond
54 with improved medical care and awareness
of ASD.

9. Cost estimates are based on the article by Buescher
et al., 2014 (Buescher et al., 2014): for Medical and
Residential Care, see Table 3; for special education
and intensive special education for preschool chil-
dren (ages 2–5), 2012 cost estimates were $31,460,
and $62,920, respectively; for special education and
intensive special education for school age children
(ages 6–21), 2012 cost estimates were $13,980 and
$27,961, respectively. Resent costs (year 2020) were
derived from historic cost estimates (year 2012),
using annual rates of inflation for Medical Services
or Elementary and High School Tuition and Fees, as
appropriate (see Table 4).

10. Calculated present-day costs are assumed to increase
annually at the prior 10-year average annual rate of
inflation for Medical Services or Elementary and
High School Tuition and Fees, as appropriate (see
Table 4).

11. Future costs are discounted to present value at a rate
equivalent to the 30-year US Treasury yield (1.56%
on March 5, 2020; U.S. Department of the
Treasury, 2020).

Using the assumptions outlined above, cost
savings estimates were derived using the specific
methodology detailed in Supporting Information

The present value of cost savings derived from this analy-
sis are apportioned between federal, state and local tax-
payers using the following methodology:

1. According to a CSEF Report on State Special Educa-
tion Finance Systems, support for special education
programs is provided by approximately 45% from
states, 46% from local districts, and 9% through federal
IDEA funding (Dragoo, 2018; Parrish et al., 2003)

2. Medicaid and CHIP cover about half (47%) of Ameri-
can children with special health care needs
(Musumeci & Chidambaram, 2019)

3. The federal government contributes at least $1 in
matching funds for every $1 a state spends on

TABLE 3 Annual medical and residential care cost estimates for individuals with autism spectrum disorder

Marginal costs without intellectual disability Marginal costs with intellectual disability

Starting ages (years) Starting ages (years)

Cost category (year 2012) 2 6 18 2 6 18

Residential care (Medicaid) $952 $4758 $18,080 $1903 $9516 $36,161

Medical services (excluding autism-specific
behavioral therapies)

$6467 $9053 $13,580 $12,933 $18,106 $27,159
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Medicaid. The fixed percentage the federal govern-
ment pays, known as the “FMAP,” varies by state,
with poorer states receiving larger amounts for each
dollar they spend than wealthier states. The national
average of 76.5% (KFF, 2020) was used in this
analysis.

Avalere Health conducted an independent examina-
tion of the underlying assumptions associated with this

cost savings analysis (included in Supporting
Information).

RESULTS

Improving ASD identification

For both diagnostic measures, low and very low scores
show good sensitivity, while high and very high scores
show good specificity. However, sensitivity and specific-
ity values do little to guide clinical judgment as the clini-
cian needs to know what the probability of ASD
diagnosis is after utilizing one or both of these measures.
This requires the application of likelihood ratios under
realistic base rate conditions. As shown in Tables 1 and
2, both the molecular and eye tracking diagnostics have
multi-level LRs that fall in the clinical useful ranges for
decreasing (LR <.50) and increasing (LR >2.0) the prob-
ability of diagnosis. For example, both measures individ-
ually produce very low posterior probabilities when very
low scores are observed, even under the postscreening
high base rate scenario. Thus, very low scores on either
measure are likely sufficient to rule out ASD and either
avoid additional testing or re-focus the priority for evalu-
ation on other issues (e.g., speech language evaluation;
see Figure 1 scenario A). While low scores on either mea-
sure alone are insufficient to rule out ASD (except in the
lowest base rate conditions BR <.20), jointly observing
low scores on these measures is sufficient, even under the
highest base rate condition, to rule out ASD and avoid
additional testing (Table 5). In Figure 1, this scenario is
represented by the path where the first biomarker pro-
duces a between threshold result but administration of
the second biomarker results in a rule out (middle branch
followed by left-sided branch—scenario B).

Very high scores on either measure generate post-test
probabilities indicating it is more likely than not (PPs
>.60 in all base rate conditions) that the patient being
evaluated has ASD. Given the potential benefit and low
risks of early behavioral intervention approaches, this

TABLE 4 Annual rates of inflation

Year
Elementary and high school
tuition and fees (%)

Medical
services (%)

2000 6.90 4.29

2001 6.49 4.79

2002 6.92 5.07

2003 6.65 4.47

2004 6.73 5.02

2005 6.54 4.78

2006 5.81 4.14

2007 5.52 5.33

2008 5.77 4.24

2009 5.22 3.21

2010 4.01 3.50

2011 3.78 3.06

2012 3.57 3.90

2013 3.66 3.10

2014 3.89 2.38

2015 3.86 2.45

2016 3.51 3.91

2017 3.59 2.43

2018 4.12 2.17

2019 3.43 3.31

Inflation estimate
(10-year average)

3.74 3.02

Note: Source: Consumer Price Index, Bureau of Labor Statistics.

TABLE 5 Post-test probabilities across base rates .10–.50 for very low, low, high, and very high molecular and eye-tracking diagnostic score
pairings

Very low—Very low scores Low—Low scores High—High scores Very high—Very high scores

Molecular likelihood ratio .16 .19 7.27 14.50

Eye-tracking likelihood ratio .09 .39 4.16 18.30

PP (BR = .10) <.01 <.01 .77 .97

PP (BR = .20) <.01 .02 .88 .99

PP (BR = .30) <.01 .03 .93 .99

PP (BR = .40) .01 .05 .95 .99

PP (BR = .50) .01 .07 .97 >.99

Note: Score combinations were chosen to represent extreme and middle combinations (absent indeterminant values for the eye tracking diagnostic measure). For score
combinations, likelihood ratios are used in an iterative fashion and assuming no substantive correlation (r <.40) between the molecular diagnostic and the eye tracking
diagnostic. If the actual correlation between two measures used iteratively is higher, posterior probabilities will be inflated.
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information is likely sufficient to recommend initiating
treatment in many circumstances (scenario C). At mini-
mum, this information could be used to prioritize individ-
uals for specialty care evaluation (scenario D). High
scores on one measure are probably not sufficient to
assume ASD is present and recommend expensive inter-
ventions, but may be sufficient to recommend less expen-
sive approaches such as parent-mediated intervention or
outpatient social skills training. However, high scores on
both measures yield posterior probabilities that suggest
EIBI should be initiated (PPs ≥.77 in all base rate condi-
tions), if deemed clinically appropriate for the child
(Table 5).

Overall, under most realistic base rate conditions, even
when assuming only one postscreening diagnostic measure
can be used, many evaluated cases are likely to have poste-
rior probabilities that either rule out ASD or that increase
the probability of ASD sufficiently that recommending
intervention is warranted, substantially reducing the num-
ber of cases that require a specialty care evaluation and
improving prioritization of the remaining cases.

Cost savings from second order diagnostic aid

In prior research, the cost differential estimated over the
lifetime for an ASD child relative to a neurotypical child
ranges from $1.4 to $2.4 million per child (Buescher
et al., 2014). Due to a range of improvements resulting
from EIBI, the societal cost savings in (i) special educa-
tion and (ii) medical and residential care associated with
the recommended changes are estimated to average
nearly $580,000 per ASD child (after accounting for a
projected accuracy of at least 86% for each of the newly
developed eye-tracking and molecular diagnostic tools);
as seen in Figure 2, with approximately 65,000 new chil-
dren diagnosed as ASD each year in the United States,
this cost savings totals over $37 billion/year. Annual cost

savings in education exceeds $13.3 billion, with savings
of approximately $1.2 billion, $6.0 billion, and $6.1 bil-
lion achieved by federal, state and local school districts,
respectively. Annual cost savings in medical and residen-
tial care exceeds $23.8 billion, with savings of approxi-
mately, $8.5 billion and $2.6 billion in Federal Medicaid
and State Medicaid spending, respectively. Variations of
key model parameters (high and low estimates) were used
to estimate the sensitivity of cost savings to different
inputs. Results of this sensitivity analysis indicate that
even under the most conservative conditions, substantial
costs savings are achieved in education (the most conser-
vative model estimates over $5.6 billion saved). Not sur-
prisingly, less conservative estimates yield even greater
savings (the least conservative model estimates over
$24.6 billion saved). This holds true for costs associated
with Medicaid as well (the most conservative model esti-
mates $3.0 billion saved; the least conservative model
estimates $19.3 billion saved; see Table S1).

DISCUSSION

The current ASD screening and diagnostic process is very
inefficient, causing large proportions of children with
ASD to experience a delay in diagnosis and miss an
opportunity to initiate treatment at an early age when it
is most effective. There are significant wait times for
diagnostic evaluations, contributing to a large gap of
time between when children are first identified as “at
risk” using screening methods to when interventions are
initiated (average age of diagnosis in the US is
4 years old).

The present study demonstrates that using scalable
diagnostic measures coupled with an evidence-based
assessment framework could substantially improve ASD
identification by: (i) ruling out, de-prioritizing, or re-
focusing the type of evaluation needed for likely non-

F I GURE 2 Average cumulative
cost savings per ASD child. Average
cumulative cost savings per ASD
child. The blue shaded area provides
an estimate of the cumulative cost
savings (or outlays) in real dollars
(RD) for each ASD child who
experiences early intervention as a
consequence of early detection. The
dotted lines indicate the same
amount adjusted for different
inflation estimates across time (±1
standard deviation). The solid line
indicates the present value (PV) of
real dollar savings (or outlays)
experienced through the age
indicated. Note that there is a net
positive savings in both real dollar
and present value terms beginning at
age 11 years
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ASD cases with low post-test probabilities,
(ii) identifying cases at the highest need for specialty care
evaluation (reducing wait lists for these clinics),
(iii) immediately initiating low cost interventions for
ASD cases with moderate to high probability, and
(iv) immediately initiating EIBI for very high probability
cases (Figure 1). While accuracy remains the most impor-
tant feature to consider when assessing new diagnostic
tests, several other strengths suggest that these measures
will translate well into a clinical setting, including: rapid
administration (<10 min), noninvasive testing methods,
results containing quantitative information that is objec-
tive and not influenced by rater perceptions, inexpensive
equipment, and applicability to a wide range of ages and
symptom severities. Parents are often unsatisfied with the
measures currently used to evaluate ASD and in many
cases, parents do not accept the diagnosis, creating a bar-
rier to access treatment (Crane et al., 2015; Makino
et al., 2017).

Secondarily, this study conducted a cost analysis to
estimate savings associated with the use of evidence-
based, postscreening diagnostic tools. Results indicated
that substantial cost savings are achievable. Specifically,
cost/benefit analysis yielded three major findings: (1) the
present value of lifetime societal cost savings in special
education, medical and residential care associated with
implementing one or more scalable postscreening diag-
nostic measures is estimated to average nearly $580,000
per ASD child; (2) with approximately 65,000 new chil-
dren diagnosed with ASD each year in the US, annual
cost savings in education would exceed $13.3 billion and
annual cost savings in medical and residential care would
exceed $23.8 billion; and (3) a total of more than $37 bil-
lion/year would be saved when combining cost-savings
for education, medical and residential care. In the first
several years following implementation, costs savings
may significantly exceed these estimates due to existing
pent-up demand for ASD diagnostic services. More
importantly, these changes will positively impact the
quality of life for ASD children and their families. To
date, approximately one-fourth of children under age
8 with ASD go undiagnosed, most of which belong to a
minority population or are children living in census tracts
with lower socioeconomic development, having reduced
access to appropriate diagnostic services and therefore
not receiving the support they need (Durkin et al., 2017;
Wiggins et al., 2020); these children and families will
likely benefit most from the recommended changes.

Here, we demonstrate the positive clinical and finan-
cial influences that implementing an ASD diagnostic
measure can have, reinforcing the need to continue devel-
opment of highly accurate, scalable biomarkers for ASD.
Once promising measures are identified, funding mecha-
nisms are needed to ensure that these tools can be
clinically- implemented and that widespread adoption
can be achieved even in low resource settings. As these
tools are validated and widely implemented, it will be key

to incorporate them into the existing ASD identification
processes and practice guidelines. The present results also
emphasize the need to make early intervention programs,
including less intensive and cost-effective parent-
mediated interventions, as well as more-intensive and
costly EIBI and developmental and behavioral interven-
tion packages, more widely available. Rapid progress in
scalable biomarker identification and validation, includ-
ing one measure that is already commercially available
and several that are likely to become available in the
coming years, means that many more children with ASD
will receive an early accurate diagnosis. This deluge of
early diagnosis will only be useful if individuals can
receive appropriately calibrated early interventions.

While Medicaid and private medical insurance may
pay for some portion of EIBI (this varies by insurer and
by state), access to EIBI remains dependent on ASD
symptoms being identified early, and financial access to
these services is often delayed pending a clinical ASD
diagnosis. Incorporating a scalable diagnostic measure
into the ASD diagnostic process to allow more children
with ASD to be identified in early childhood when treat-
ment is most efficacious is a goal consistent with that of
Early and Periodic Screening, Diagnostic, and Treatment
(EPSDT), a child health service of Medicaid for benefi-
ciaries under age 21, that requires coverage for all health
care services (e.g., preventative and treatment services)
that are found to be medically necessary to “discover and
treat childhood health conditions before they become
serious or disabling” (California’s Healthcare
Foundation, 2015; Center for Medicaid & Medicare
Services, 2014; Medicaid.gov., 2019). In the fiscal year
2014, over 40 million children were eligible for EPSDT,
suggesting a strong need for validated scalable diagnostic
measures to aid identification of a significant number of
children in the US with ASD.

Limitations and future directions

Demonstration of an evidence-based assessment
approach was intentionally presented in a measure-
agnostic fashion, so that any well-validated, scalable
diagnostic measures for ASD could be applied using this
framework. We chose two measures that were developed
and validated in large samples, but also encourage all
emerging ASD diagnostics, including the two used as
examples, to continue to build predictive validity evi-
dence, particularly across settings and sub-populations. It
is crucial that ASD diagnostic biomarkers be validated in
the most stringent fashion by comparison to both healthy
controls and to non-ASD developmental disability or
developmental neuropsychiatric controls who often
mimic ASD presentations and frequently screen positive
during the initial screening process. Furthermore, valida-
tion should examine low resource and race/ethnic sub-
populations to ensure that existing validity evidence
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appropriately generalizes. And, finally, we would not
suggest using even well-validated ASD biomarkers with-
out first implementing the recommended first-level ques-
tionnaire screening tools as these tools provide an
inexpensive and rapid method for altering the post-test
probability prior to a more expensive or time-consuming
biomarker data collection. Instead, it is optimal if bio-
markers are used only for screen-positives and within the
context of evidence-based evaluation to leverage existing
screeners.

The cost–benefit analysis also makes several
assumptions—many consistent with prior cost savings
analyses (Ganz, 2007; Leigh & Du, 2015). It is important
to note that even if fewer ASD cases are accurately iden-
tified than assumed, cost savings remains substantial.
Furthermore, modest variations in assumptions were
found not to impact the overall message that early accu-
rate identification followed by effective early intervention
will generate massive savings.

In conclusion, application of scalable ASD diagnostic
biomarkers using an evidence-based assessment frame-
work is likely to substantially enhance early ASD identi-
fication and provide support for more nuanced clinical
recommendations. As a result of substantially improved
early ASD identification, substantial lifetime costs sav-
ings can be realized as a result of a greater proportion of
ASD-affected children receiving appropriate early
intervention.
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