
Ecology and Evolution. 2022;12:e9250.	 ﻿	   | 1 of 13
https://doi.org/10.1002/ece3.9250

www.ecolevol.org

Received: 21 April 2022  | Revised: 22 July 2022  | Accepted: 5 August 2022
DOI: 10.1002/ece3.9250  

R E S E A R C H  A R T I C L E

Occupancy data improves parameter precision in spatial 
capture–recapture models

José Jiménez1  |   Francisco Díaz-Ruiz2  |   Pedro Monterroso3,4  |   Jorge Tobajas1,5  |   
Pablo Ferreras1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Instituto de Investigación en Recursos 
Cinegéticos (IREC, CSIC-UCLM-JCCM), 
Ciudad Real, Spain
2Departamento de Biología Animal, 
Facultad de Ciencias, Universidad de 
Málaga, Málaga, Spain
3CIBIO, Centro de Investigacão em 
Biodiversidade e Recursos Genéticos, 
InBIO Laboratório Associado, 
Universidade do Porto, Vairão, Portugal
4BIOPOLIS Program in Genomics, 
Biodiversity and Land Planning, CIBIO, 
Vairão, Portugal
5Departamento de Botánica, Ecología 
y Fisiología Vegetal, Universidad de 
Córdoba, Córdoba, Spain

Correspondence
José Jiménez, Instituto de Investigación 
en Recursos Cinegéticos (IREC, CSIC-
UCLM-JCCM), Ronda de Toledo 12, 13071 
Ciudad Real, Spain.
Email: jose.jimenez@uclm.es

Funding information
FCT/MCTES, Grant/Award Number: 
UID/BIA/50027/2021; Organismo 
Autónomo Parques Nacionales, Grant/
Award Number: 202120021008 and 
OAPN 352/2011; Universidad de Málaga, 
Grant/Award Number: FJCI-2015-24949; 
University of Castilla La Mancha

Abstract
Population size is one of the basic demographic parameters for species management 
and conservation. Among different estimation methods, spatially explicit capture–
recapture (SCR) models allow the estimation of population density in a framework 
that has been greatly developed in recent years. The use of automated detection de-
vices, such as camera traps, has impressively extended SCR studies for individually 
identifiable species. However, its application to unmarked/partially marked species 
remains challenging, and no specific method has been widely used. We fitted an SCR-
integrated model (SCR-IM) to stone marten Martes foina data, a species for which 
only some individuals are individually recognizable by natural marks, and estimate 
population size based on integration of three submodels: (1) individual capture his-
tories from live capture and transponder tagging; (2) detection/nondetection or “oc-
cupancy” data using camera traps in a bigger area to extend the geographic scope of 
capture–recapture data; and (3) telemetry data from a set of tagged individuals. We 
estimated a stone marten density of 0.352 (SD: 0.081) individuals/km2. We simulated 
four dilution scenarios of occupancy data to study the variation in the coefficient of 
variation in population size estimates. We also used simulations with similar charac-
teristics as the stone marten case study, comparing the accuracy and precision ob-
tained from SCR-IM and SCR, to understand how submodels' integration affects the 
posterior distributions of estimated parameters. Based on our simulations, we found 
that population size estimates using SCR-IM are more accurate and precise. In our 
stone marten case study, the SCR-IM density estimation increased the precision by 
37% when compared to the standard SCR model as regards to the coefficient of vari-
ation. This model has high potential to be used for species in which individual recogni-
tion by natural markings is not possible, therefore limiting the need to rely on invasive 
sampling procedures.
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1  |  INTRODUC TION

Population size is one of the key demographic parameters for species 
management and conservation. While many methods for estimat-
ing wildlife population size have been proposed, capture–recapture 
(CR) models have long been considered the gold standard (Otis 
et al., 1978; Pollock, 1976). However, under the conventional CR for-
mulation, the area to which the population size estimate should be 
allocated is unknown and arbitrarily defined because of ambiguity in 
the criteria for delimiting the effective sampling area to which cap-
tures should be referenced (Efford, 2004). Recently, a set of spatial 
capture–recapture (SCR)-based models have been developed that 
explicitly incorporate spatial information into abundance calcula-
tions, and thus allow proper density estimates (Efford, 2004; Royle 
et al.,  2014). These include spatial mark-resight (SMR) methods, 
which were purposely developed to deal with partially marked popu-
lations (both natural and human-derived marks) (Sollmann, Gardner, 
Chandler, et al.,  2013; Sollmann, Gardner, Parsons, et al.,  2013). 
Alongside these analytical developments, the widespread use of 
camera traps for wildlife research, combined with the use of SCR 
models, has allowed density estimation for species whose individ-
uals are individually identifiable. Likewise, genetic analyses have 
generalized the use of SCR with genotype-based identification (e.g., 
Gardner et al., 2010; Kéry et al., 2011).

The convenience of using all available data to improve inferences, 
avoiding discarding, for example, imperfect identifications, has mo-
tivated the development of specific models to deal with these prob-
lems. Spatial partial identity models (SPIMs) (Augustine et al., 2018, 
2019, 2020) extended the domain of SCR to populations or observa-
tion systems that do not always allow for individual identity to be de-
termined with certainty, while the random thinning SCR model was 
developed as evolutions of the standard SCR models to deal with 
incompletely identified data (Jiménez et al., 2021). The latter model 
allows incorporating detection events with unknown marking sta-
tus, which are discarded in standard SCR and SMR approaches. To 
avoid violating the assumption from SMR that marked and unmarked 
populations have the same encounter probabilities, Whittington 
et al.  (2017) developed the generalized spatial mark-resight (gen-
SMR) model, that involved the integration of data obtained from dif-
ferent sampling methods, using live-trapping capture histories and 
camera-trapping resighting histories. Although this integration was 
primarily aimed at overcoming the assumption of equal encounter 
probabilities, its data integration also improved the precision of the 
estimated parameters by accommodating additional sources of data 
(Schaub & Kéry, 2012; Whittington et al., 2017). The generalized spa-
tial mark-resight model with incomplete identification (gen-SMR-ID: 
Jiménez, Chandler, et al., 2019) was developed as a natural evolu-
tion of the gen-SMR model that allows integrating live-trapping, 

photo-trapping, and telemetry data in a single unified modeling 
approach. Both gen-SMR and gen-SMR-ID approaches are paradig-
matic of the improvement in population estimates obtained by data 
integration under the SCR (or SMR) modeling framework. However, 
the origins of data integration in SCR and SMR models regard to the 
improvement of the half-normal scale parameter (� ) that describes 
how detectability decreases with distance from the center of activ-
ity of each individual. The integration of telemetry data was a natu-
ral way of improving � estimates, in both SCR (Jiménez et al., 2017; 
Linden et al., 2018) and SMR (Jiménez, Chandler, et al., 2019; Royle 
et al., 2014; Sollmann, Gardner, Parsons, et al., 2013), and indirectly 
change the estimates of the baseline detection rate (�0) since both 
parameters are related in the structure of the detection submodel 
(Dey et al., 2019; Efford & Mowat, 2014). In the field of dynamic 
models, integrated population models (IPMs) are a whole family of 
demographic models that include multiple sources of data to esti-
mate different demographic parameters (Schaub & Kéry,  2022). 
IPMs represent a remarkable methodological advancement (Schaub 
& Kéry, 2012), and have proved useful in improving our ecological 
understanding of population processes, and in improving manage-
ment decisions (e.g., Bled et al., 2017; Rushing et al., 2017). IPMs in 
spatial capture–recapture combine, for example, SCR and distance 
sampling data (Chandler et al., 2018), and SCR and dead recovery 
data (Dupont et al., 2021). IPMs allow combining “cheap and risky” 
data (e.g. detection/non-detection) with more “expensive and reli-
able” data sets (e.g. capture–recapture), reconciling potential spatial 
and temporal misalignments with a unified modeling structure that 
explicitly describes each component (i.e., dataset). While usually less 
informative, “cheap” data are generally easier to collect and allow 
for larger spatiotemporal sampling scales. Conversely, “expensive” is 
more informative but tends to be logistically challenging and/or ex-
pensive to obtain, which typically constrains the sampling approach 
to a smaller spatial or temporal scale. When combined, these data-
sets may mitigate each other's weaknesses, allowing for an increase 
in the scope of inference (Kéry & Royle, 2021, chapter 10).

Despite this highly prolific decade in model development, an “in-
tegrated model” (IM) specifically aimed at improving the estimation 
of the state parameters, that is abundance, was first introduced in 
an SCR model by Kéry and Royle  (2021). The model described by 
these authors relies on a joint likelihood for multiple data sets de-
scribing a shared state process but different observation processes. 
Two different spatial capture–recapture integrated models were 
presented, and tested with simulated data: (1) the integrated SCR-
Counts model, which integrates capture histories and count data 
without identification, and (2) the integrated SCR-Occ model, which 
integrates of SCR and “occupancy” (detection/nondetection) data. 
The SCR-Counts model was used by Ferreras et al.  (2021) to esti-
mate European wildcat Felis silvestris population size in Cabañeros 
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National Park (Spain), demonstrating its applicability in extremely 
low densities. To the best of our knowledge, the SCR-Occ was only 
tested on simulated data, and therefore requires an implementation 
with real-life datasets (Kéry & Royle, 2021). Here, we use the SCR-
Occ model, and an extended version of it that includes a telemetry 
submodel, fit them to a real stone marten Martes foina dataset, and 
quantify their benefits in improving parameter precision when com-
pared to the standard SCR model.

Stone marten density is relatively understudied in Mediterranean 
habitats, and more so using SCR models, probably by the difficulties 
in individual identification (but see Jiménez et al.,  2017; Jiménez, 
Nuñez-Arjona, et al., 2019). Stone martens have very subtle indi-
vidual markings, which make them difficult to individually identify. 
As described for the American marten Martes americana (Sirén 
et al., 2016), stone marten's individual throat patch pattern is hardly 
visible in ordinary camera-trapping images. Alternative sampling 
procedures allowing the use of SCR models are tagging-based, and 
included live capture and tagging with collars, ear tags, or passive in-
tegrated transponders (henceforth transponders). However, accord-
ing to our preliminary tests with this species, the durability of collars 
and ear tags in stone marten is minimal and the loss of marks could 
bias population estimates. Conversely, transponder tagging would 
require a large live trap sampling grid, which would entail a prohibi-
tively expensive and invasive sampling operation. To overcome the 
above-mentioned limitations, we implemented a modification of the 
SCR-Occ model described by Kéry and Royle (2021) by adding a te-
lemetry submodel to it (Royle et al., 2014, p. 516). Thus, the goals 
of this paper were: (i) making a proof of concept of the SCR-Occ 
model with a real data; (ii) using simulations with similar values to our 
real dataset and outputs, calculate bias and precision in all models 
estimates; (iii) quantify changes in precision of the parameters esti-
mates when compared to standard SCR models in our case study; (iv) 
evaluate the feasibility of using this approach to species with very 
subtle individual markings; and (v) generating new estimates of den-
sity for a widespread and ecologically important species, for which 
estimates of such vital rates are typically absent.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and species

The study was carried out in Cabañeros National Park (henceforth 
Cabañeros) located in central Spain (39°24′N; 4°29′W). With alti-
tudes between 560 and 1448 m, the park features 40,000 ha of well-
preserved Mediterranean ecosystems. Climate is Mediterranean, 
with moderately rainy springs and autumns (annual rainfall 450–
750 mm) and hot dry summers and mild winters. Vegetation is domi-
nated by scrublands of rockrose Cistus spp, Phillyrea angustifolia, 
strawberry trees, and Erica spp., and the tree layer is dominated 
by holm (Quercus rotundifolia), gall (Quercus faginea), and cork oaks 
(Quercus suber). The central area of Cabañeros (known as “raña”) is a 
savanna-like open tree layer with scattered holm, gall, and cork oaks.

The stone marten has a wide distribution, extending over al-
most the entire mainland Europe and some parts of Asia (Abramov 
et al., 2016). Its ecological adaptability deems it present in a wide 
variety of habitats (Abramov et al., 2016; Virgós et al., 2012). It has a 
remarkable ecological role in the dispersal of multiple fleshy fruited 
plants (such as strawberry tree, Arbutus unedo) in Mediterranean 
ecosystems (Burgos et al., 2022; Herrera, 1989; Virgós et al., 2010), 
where stone martens play a potential role as ecosystem engineer. 
Their ecological importance coupled with its drastic decline where 
the Iberian lynx Lynx pardinus has settled after its reintroduction in 
the Iberian Peninsula (Jiménez, Nuñez-Arjona, et al., 2019), justify 
the need to accurately quantify stone martens' population sizes, as 
a key step toward a deeper understanding of the seed dispersal pro-
cesses in which it is involved, and the consequences of intraguild 
relationships in those processes. Given their wide geographic range, 
understanding their ecological role has relevance across vast regions 
and ecosystems.

Red deer (Cervus elaphus) and wild boar (Sus scrofa) were at high 
densities at the study area, although no population estimates were 
available. The mammalian carnivore community is dominated by red 
fox, which is the most abundant species, with 0.947 (SD: 0.156) in-
dividuals/km2 (Jiménez, 2021). Other species present are the com-
mon genet (Genetta genetta), the European badger (Meles meles), the 
Egyptian mongoose (Herpestes ichneumon), the otter (Lutra lutra), the 
least weasel (Mustela nivalis), the polecat (Mustela putorius), and the 
wildcat (Ferreras et al., 2016, 2017).

2.2  |  Live capture and tagging

Stone martens were captured using box traps, including Tomahawk 
(Model 208, Tomahawk Live Trap, WI, USA) and two models (Jauteco 
and Alvega) of wire mesh traps from local dealers, with the required 
animal care permits for live captures (approved code PR-2013-05-04 
from the Ethical Committee on Animal Testing of Castilla-La Mancha 
University). Traps were baited either with dead bait (chicken) or with 
live red-legged partridges (Alectoris rufa) or house pigeons (Columba 
sp.). Live baits were placed in an independent chamber inaccessi-
ble to captured carnivores, provided with water and food ad libitum 
and covered with small branches to protect them from inclement 
weather, following EU recommendations regarding animal welfare. 
We deployed a total of 60 box traps (Figure 1) in two trapping cam-
paigns between March 3th and July 4th 2014 (Figure S1). Box traps 
were placed within an envelope (rectangular area encompassing 
all the traps) of 5652 ha in locations potentially suitable for stone 
martens according to our knowledge of the species, at an aver-
age intertrap distance of 177 m (range 4–2499 m). Because of the 
nocturnal activity of stone martens (Monterroso et al., 2014), box 
traps were checked daily after sunrise to minimize animal stress. 
Captured stone martens were immobilized with a combination of 
medetomidine hydrochloride (Medetor, Virbac, Spain) and ketamine 
hydrochloride (Imalgene 1000, Merial, Spain) with average dosages 
of 0.07 mg/kg and 9.55 mg/kg, respectively. We used atipamezole 
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(Antisedan, Pfizer, Spain) at a dose of 0.35 mg/kg to reverse the ef-
fects of medetomidine and accelerate recovery (Gunkel & Lafortune, 
2007). All captured stone martens were tagged with a microtran-
sponder (ID-100A, Trovan) injected subcutaneously in the neck side 
for its identification in subsequent recaptures. Four stone martens 
were also equipped with VHF-GPS radio collars (66 g, model TGB-
316, Telenax, Mexico). Stone martens were released where captured 
once fully recovered from anesthesia, always within three hours 
after capture. Fixes for the radio-tagged stone martens were at-
tempted daily through triangulation of the VHF signal and retrieved 
from the GPS units.

2.3  |  Camera-trapping

We deployed 40 camera-trapping stations (one camera per station) 
between January 15 and April 22, 2014 (Figure 1). Stations were in 
a grid distribution such that each camera, on average, was 1267 m 
from its nearest neighbor (range: 712–2143 m), covering a geometri-
cal envelope of 12,174 ha. The camera-trapping grid partially over-
lapped the live-trapping grid (Figure  1), covering the same habitat 
types, but not colocated with live traps avoiding data dependence 
(Clare et al.,  2017). We used two low-glow infrared camera-trap 
models, namely, ScoutGuard SG550 and SG570 (HCO Outdoor 
Products), with similar performing features (e.g., 1.2–1.3 s trigger 
speed). Cameras were secured inside metal boxes, locked with a 
cable lock and attached to a tree approximately 50 cm above ground. 
As attractant, we placed Iberian lynx urine and valerian extract in 
separate vials, a combination proved effective for Iberian mesocar-
nivores including stone martens (Ferreras et al., 2018; Monterroso 
et al., 2011), at a distance of 2–3 m from the camera traps. We pro-
grammed cameras to shoot a burst of three photos when triggered, 
with medium sensitivity and minimal delay time (0 s). Camera traps 
remained active between 52 and 98 days (Figure S1). Consecutive 
photo-captures of stone martens in a given camera within a 30-min 
interval were considered as the same event (Jiménez et al., 2017).

2.4  |  Statistical modeling

We tested if the use of dead vs. live bait in box traps changed the 
baseline detection rate (�0) in the SCR model (Royle et al.,  2014) 
using a trap-level covariate:

where �0 was the intercept and �1 was the bait effect (death vs. live 
bait) by trap, and b (bait) was a vector with two possible values: 0 (dead 
bait) and 1 (live bait). We used reversible jump MCMC (RJMCMC) in 
NIMBLE version 0.12.2 (NIMBLE Development Team, 2019) to decide 
whether or not to include this covariate, which is a natural application in 
Bayesian variable selection problems (see BUGS code, in Appendix S1).

After this preliminary model selection, we used an SCR-IM com-
bining three data sources: (i) capture histories with three dimensions 
(individual-trap-occasion) from live trapping in a core area, (ii) detec-
tion/nondetection data with two dimensions (trap-occasion) from 
camera traps in a larger area (Kéry & Royle, 2021, p. 636); and (iii) 
telemetry data from VHF-  and GPS-tagged individuals (Sollmann, 
Gardner, Parsons, et al., 2013; Royle et al., 2014, p. 516).

The SCR and occupancy submodels shared the same underlying 
point process by which we assumed that individual activity centers 
i = 1, 2, … ,N are distributed over a state space (S) and that indi-
viduals are exposed to sampling by detector traps with location xj 
within S. We assumed the distribution of individuals' activity centers 
si =

(
si1 ,si2

)
 to be described by a homogeneous point process such 

that si ∼Uniform(S) that does not change during the k sampling occa-
sions. The function describing the encounter rate �ij of individual i  
having activity center si, in trap j, is defined as:

where dij is the Euclidean distance between trap location xj and ac-
tivity center of the individual si, and � is the spatial scale parameter 

logit
(
�0j

)
= �0 + �1 × b

�ij = �
(
si ,xj

)
= �0 ⋅ exp

(
−

d2
ij

2�2

)

F I G U R E  1 Spatial arrangement of 
camera traps (blue crosses) and live traps 
(black triangles) and their respective 
geographical envelopes (blue and black 
dashed rectangles, respectively); thinned 
GPS telemetry positions (violet, red, blue, 
and green) for four stone martens at the 
South of Cabañeros National Park (gray 
shadowed area). Bottom-left, location of 
the study area in Spain.
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of the half-normal detection function that describes the animal move-
ment. This implies that the detection probability of a given individual in 
each trap declines monotonically with the trap's distance to its activity 
center.

We “quantized” (Royle et al., 2014, p. 249) individual encounter 
frequencies (truncating to binary observations by transforming daily 
counts to 0/1) to avoid violating the independence assumption be-
cause counts in camera traps are usually unrelated to the fundamen-
tal space usage process that underlies the genesis of SCR data (Royle 
et al., 2014, section 9.1.3), and we used a Bernoulli model in SCR and 
occupancy submodels of the SCR-Occ. Thus, encounter histories for 
SCR data are binary such that:

where the observed data yijk is the realization of a Bernoulli process 
with probability pscr

ijk
, which is the detection probability defined by a 

complementary log–log link function that relates it to the detection 
rate �ijk as:

Under a Bayesian approach to capture–recapture with unknown 
N, “data augmentation” can be used to estimate the number of unob-
served individuals (Royle et al., 2014). We added to the n-observed 
encounter histories a collection of M − n “all-zero” histories, choos-
ing an M value such that M ≫ N. The likelihood for the zero-inflated 
true encounter frequencies is then modified by a partially latent bi-
nary indicator variable zi that describes the membership of individual 
i  to the population. Under this specification, Pr

(
zi = 1

)
= 1 for the n 

observed individuals, and zi ∼Bernoulli(�) for the entire collection of 
M individuals. Population size can then be derived from the sum of 
indicators, N =

∑
zi (realized N) or from the product M ⋅ � (expected 

N), and density can be derived by dividing population size by the 
surface area of the state space, D = N∕‖S‖.

The occupancy submodel for detection/nondetection data occjk 
is defined as:

This model states that detection occurs at camera trap j at oc-
casion k if at least one individual in the population is detected, but 
the identity of the individual is unknown. pocc

ijk
 is analogous to pscr

ijk
 

but with latent identity of individuals, while �0 is different between 
detection methods (box traps and camera traps). The SCR and oc-
cupancy submodels of the SCR-IM share the same Poisson point 
process (si) over the state space S and the scale parameter � of the 
detection function, following the key principle of a typical IM: “same 
process, different observation model” (Kéry & Royle, 2021, p. 636).

For computational efficiency, we assumed no temporal variation 
in the detection process, and consequently aggregated the binary 
encounter histories from SCR and occupancy submodels over Kj—a 

vector of sampling occasions of each trap—and recorded the total 
number of encounters out of Kj (see BUGS codes, in Appendix S1). 
Therefore, in SCR, yscr ij values are assumed as mutually independent 
outcomes of a binomial random variable such that:

And similarly, for occupancy model:

As our detection function is half-normal function, we can relate the pa-
rameters � and si directly to those from a bivariate normal (BVN) move-
ment model, where the mean is si, the variance—in both dimensions—is 
�2, and covariance is 0 (Sollmann, Gardner, Parsons, et al., 2013). If Ri 
locations Ii (of coordinates lirx and liry) of individual i  can be represented 
as:

and we can estimate � and si from telemetry data of the m tagged indi-
viduals' R locations, using:

Information on the locations of tagged individuals collected by 
telemetry tags were also added to our model to further improve es-
timates of SCR-Occ parameters. We assumed that telemetry data 
regards to thinned outcomes of a movement model with a stationary 
bivariate normal utilization distribution (Royle et al., 2013). Temporal 
dependence among telemetry locations may cause underestimation 
of the variance of � and population density (Murphy et al., 2019; 
Sollmann, Gardner, Parsons, et al.,  2013). Therefore, it was mini-
mized by thinning to one randomly selected location per survey day 
for each tagged stone marten.

As real density, sigma and baseline detection rate are not known, 
we assess model performance by the precision of parameters esti-
mates, using the coefficient of variation (CV, defined as the poste-
rior standard deviation divided by the posterior mean) for the four 
models: SCR-occupancy-telemetry (SCR-Occ-Tel), SCR-occupancy 
(SCR-Occ), SCR-telemetry (SCR-Tel), and conventional SCR. We “de-
graded” the capture histories SCR data to detection/no-detection 
and fitted a site-occupancy model to these data for comparison 
with site-occupancy outputs from camera trapping data. We then 
quantified the overlap of posterior parameters distribution from 
both occupancy under the assumption that occupancy is related to 
abundance (Efford & Dawson, 2012; Gaston & Blackburn, 2003), but 
see Steenweg et al. (2018). Minimal or not overlap of posterior pa-
rameters distribution would indicate different ecological processes. 

yijk
∼Bernoulli

(
pscr
ijk

)

pscr
ijk

= 1 − exp
(
− �ijk

)

occjk
∼Bernoulli

(
1 −

M∏
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(
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(
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)
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(
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(
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(
1 − pocc

ij
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(
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2
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)

[
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[
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Telemetry data were analyzed in the same way. We also “diluted” our 
occupancy data by randomly removing 20%, 40%, 60%, and 80% of 
the total detections, using 77, 58, 38, and 19 events, respectively, to 
evaluate the relationship between occupancy sample size and CV 
reduction in population size estimates. For each category, we sim-
ulated 100 different datasets, using a binomial distribution for data 
dilution and fixing the number of detections.

To test the performance of each model, we carried out a simulation 
study to compare the SCR, SCR-Occ, SCR-Tel and SCR-Occ-Tel using 
the same camera traps and box traps deployment coordinates used in 
the stone marten proof-of-concept approach. We based our simulation 
scenarios on the following: (i) similar density and sigma values as esti-
mated from our proof-of-concept model (see results section below); (ii) 
combined baseline detection rate and number of sampling occasions to 
get 21 captures in box traps; (iii) fixed 4 telemetry-tagged individuals 
(20 locations each); (iv) similar number of camera trapping detections 
as obtained in our empirical data set (mean 97; range: 72–117); and 
(v) same priors and data augmentation parameters as in our proof-of-
concept model. Using these specifications, we generated activity cen-
ter distributions over 100 simulated scenarios, to which we fitted all 
four models (see Appendix S1). We then compared the results through 
relative bias and root-mean-square error (RMSE), using the R package 
SimDesign (Chalmers & Adkins, 2020).

We used the goodness-of-fit (GoF) of the SCR-IM model to diag-
nose severe violations to model assumptions, and hence reduce the 
risk of drawing erroneous inference (Pradel et al., 2005), by computing 
the Bayesian p-value (BPV) based on measuring the systematic dissim-
ilarity between observed data and posterior predictive distribution of 
the data (Gelman et al., 1996). Thus, the computation of BPVs requires 
specifying a discrepancy measure by choosing the aspects of the model 
to be checked. Following Royle et al. (2014) (p. 232), we selected three 
statistics to evaluate the observation model: (1) Individual per detector 
frequencies; (2) Individual encounter frequencies, and (3) Trap encoun-
ter frequencies. We fit all models in NIMBLE version 0.12.2 (NIMBLE 
Development Team, 2019) (see BUGS codes, in Appendix S1) in R ver-
sion 4.1.3 (R Core Team, 2022). We ran three chains of 50,000 itera-
tions after an initial 10,000 as a burn-in for all models. We ran three 
chains of 6000 iterations after an initial 1000 as burn-in for all simu-
lations. We assessed model convergence by visually examining trace 
plots and using estimates of effective sample size and split-chain Rhat, 
which can be used to better diagnose convergence failure of MCMC 
chains (Vehtari et al., 2020). All modeling outputs are presented as pos-
terior mode (SD; standard deviation), unless clearly stated otherwise.

3  |  RESULTS

3.1  |  Sampling

We captured 14 stone martens 21 times (nine individuals, once; four 
individuals, twice, and one individual, four times) in 1034 sampling 
days using box traps (03/03/2014–04/07/2014) (Figure  S1). We 
recorded 4 spatial recaptures (captures of the same individual at 

different traps). In camera traps, we recorded 101 independent de-
tections out of 3670 camera-sampling days (Figure S2), and retained 
96 camera-trap detections after the quantizing procedure. We col-
lared four stone marten individuals from the box-trapping cohort. 
After data thinning, telemetry produced 12, 9, 21, and 14 usable lo-
cations (Figure 1).

3.2  |  Previous test and SCR models

The RJMCMC revealed a very low probability (0.021) of including lure 
as a model covariate, and therefore we decided to use the null SCR 
model in subsequent analyses. Posterior occupancy estimates from 
box traps (�̂ = 0.78; SD: 0.14) and camera traps 

(
�̂ = 0.66; SD:0.08

)
 

distribution originated from the camera traps. The posterior esti-
mates from each submodel (SCR, occupancy and telemetry) largely 
overlapped for all parameters (Figure 2).

The SCR-Occ-Tel, with a CV = 0.22 (Table 1) led to the highest 
reduction in the CV by 37% and 76% in density and sigma estimates, 
respectively, compared with the standard SCR model. The second-
best performing model regarding CV reduction was the integrated 
SCR-Occ, which accounted for a 19% and 26% CV reduction for the 
same parameters. The SCR-Tel still provided a 13% and 76% CV re-
duction (Table 1 and Figure 2). The CV for � estimates was lower in 
models that integrated telemetry data (Table 1). This improvement 
was propagated to their baseline detection rate (�0.trap) estimate 
(37% and 41% of CV reduction for the SCR-Occ-Tel and SCR-Tel 
models, respectively) and only to a small degree (13% for the SCR-
Tel model) to the density estimate (Figure 2 and Table 1). Change due 
to occupancy submodel was similar for all parameters (ca. 20%), and 
the CV reduction in �0.cam is similar to �0.trap from the SCR-Occ to the 
SCR-Occ-Tel model. We found a pattern of lower density estimates 
with occupancy data integration, and higher sigma estimates when 
telemetry data are included.

The GoF test did not detect lack of model fit for the SCR-Occ-Tel, 
as the BPVs are not close to 0 or 1 for the first and second compo-
nents. However, we detected a relative lack of fit in the third com-
ponent of the GoF, suggesting that capture frequency per trap is 
not well explained by this model (Figure 3). We found sample size 
in the occupancy model to be negatively correlated with the coef-
ficient of variation for density estimates (Figure 4), indicating that a 
higher number of detections leads to increased precision of param-
eter estimates under the SCR-Occ-Tel approach. In our case study, 
CVn=19 = 0.32 (SD: 0.03) and CVn=77 = 0.24 (SD: 0.01).

Our simulation study revealed better accuracy in population size 
and � estimates using SCR-Occ-Tel when compared to the standard 
SCR (Table 2).

4  |  DISCUSSION

Our results support that, among all models fitted, the SCR-Occ-Tel 
provides the most precise parameter estimates. We demonstrate 
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that integrating occupancy (detection/nondetection) data improve 
precision in the estimation of D, and that integrating telemetry data 
further contributed to increase precision in estimating the detection 
parameters �, �0.trap, and �0.cam. Furthermore, our simulation study 
also support that apart from more precise, the integrated SCR-
Occ-Tel model also provides more accurate parameter estimates. 
Therefore, all combined data sources lead to a more reliable esti-
mate of stone marten population density, even with limited sample 
sizes. In fact, the precision obtained for our SCR-Occ-Tel density 
estimate approaches the 20% CV threshold suggested by Pollock 
et al.  (1990) for precise wildlife studies, and this achievement is a 
consequence of data integration. The improvement provided by the 
occupancy submodel regards to the wider state space encompassed 
by the camera trapping survey when compared to our box-trap de-
ployment. The latter might have been insufficient to capture the full 
extent of the marked stone martens' movement. While an integrated 

SCR-Counts model could also provide auxiliary information on � 
(Chandler & Royle, 2013), our reduced number of camera traps and 
their scattered deployment prevented the collection of detection re-
cords with required spatial correlation (Kéry & Royle, 2021, p. 633). 
Therefore, telemetry data were needed for a precise � estimate, as 
further supported by the results of our simulation exercise (Table 2). 
On the other hand, we found that adding telemetry data alone to the 
SCR model improved the precision of the detection parameters, but 
its efficacy to improve D precision estimate was limited. Accordingly, 
if: (i) SCR detectors (box traps) are spatially deployed allowing to 
capture the full extent of animal movement, and (ii) the effort re-
quired to obtain enough spatial recaptures does not lead to violation 
of population closure assumptions, it would be preferable to design a 
camera-trap sampling scheme focused in increasing occupancy data, 
instead of devoting an equivalent effort to telemetry tagging a small 
subset of animals. A distance of 1.5� − 2� (970–1300 m in our study 

F I G U R E  2 Density probabilities for models' parameters: baseline detection rate (�0.cam) in camera traps; baseline detection rate (�0.trap) 
in box traps; scale parameter for half-normal detection function (�), and density (D). In gray, SCR model alone, using data histories from box 
traps (SCR); in gold, SCR and occupancy data (SCR-Occ); in blue, SCR and telemetry data (SCR-Tel); and in green, full integration of SCR, 
occupancy, and telemetry data (SCR-Occ-Tel).
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for stone marten) between box traps (Efford, 2004; Sollmann et al., 
2012; Sun et al., 2014) would have improved the sampling design to 
cover the movement of the target species, and perhaps then, inte-
gration of telemetry data might have been unnecessary.

In general, the results of the simulations are consistent with those 
of the proof-of-concept approach. The models fitted to our simu-
lated datasets also show better accuracy of the SCR-Occ-Tel model 
in estimating population size when compared to the standard SCR 
model. Moreover, if we compare the relative contributions of the 
occupancy and the telemetry submodels, the improvement is simi-
lar in terms to the RMSE reduction, but the former provides higher 
bias reduction. As expected, the telemetry submodel led to an im-
portant RMSE improvement in sigma estimates, which is particularly 
evident in the SCR-Tel model. The larger �0.trap bias in SCR-Occ-Tel 
is probably due to the additional information in SCR-Occ coming 
from telemetry values—that induces higher and more realistic sigma 
values—since in SCR models � and �0 are structurally correlated, and 
changes in former parameter are compensated by reciprocal varia-
tion in the magnitude of detection (Efford & Mowat, 2014).

As expected, we found the baseline detection rate in cameras 
(�0.cam) to be higher than with box traps (�0.trap), which has important 
implications for planning further studies targeting stone martens. 
The baseline detection rate with box traps was half the baseline 
detection rate with camera traps (0.014; SD: 0.004). The relatively 
high detection rate via camera traps (0.027; SD: 0.007) is encour-
aging, as it suggests that obtaining suitable occupancy dataset for 
the integrated model should be relatively easy. The use of lures is 
widely used to improve the detection probability of carnivores in 

camera-trapping studies (e.g., Avrin et al., 2021; Holinda et al., 2020; 
Iannarilli et al., 2021), and lure selection can significantly affect the 
ability to detect rare and elusive species either by making them ap-
pearing sooner, moving closer or stay longer in the cameras field of 
view (Ferreras et al., 2018; Tourani et al., 2020). Therefore, an ap-
propriate selection of the most effective lures could contribute to 
optimizing camera-trapping sampling protocols (Figure 4) and lead to 
better precision in SCR-IM estimates (Gerber et al., 2011; Macaulay 
et al., 2020).

A key assumption when integrating different datasets into a 
single unified modeling approach (i.e., an IM) is that the underly-
ing state process being sampled is the same (Kéry & Royle, 2021). 
The remarkable overlap in occupancy estimates derived from box 
trapping and camera trapping do not provide grounds to suspect 
that different ecological processes were occurring across both spa-
tial extents, and do not refute the “same state process” hypothe-
sis. While we acknowledge that occupancy overlap may not suffice 
to ascertain the same underlying state process, we stress that the 
underlying processes of the data integrated in any IPM are rarely 
identical. However, because parameters are estimated as a weighted 
average based on the information from all the analyzed data sets 
combined (Kéry & Royle, 2021, p. 645; Schaub & Kéry, 2022, p. 239), 
IM's are relatively robust to discrepancies between its composing 
submodels (SCR, occupancy, and telemetry, in our case) and such an 
averaging may even be advantageous (Kéry & Royle, 2021, p. 645). 
We also found high overlap for all parameters estimated through the 
SCR, SCR-Occ, SCR-Tel, and SCR-Occ-Tel approaches, and thus none 
should have a disproportionate influence on the results. A point that 

TA B L E  1 Parameter estimates from stone marten using spatial capture–recapture-integrated model with detection/nondetection and 
telemetry data (SCR-Occ-Tel); spatial capture–recapture and detection/nondetection data (SCR-occupancy); spatial capture–recapture and 
telemetry data (SCR telemetry) and spatial capture–recapture (SCR) data alone. Population density (D̂; individuals/km2); scale parameter of 
the detection function (�̂; km); baseline detection rate for box traps (�̂0.trap) and camera traps (�̂0.cam) are compared.

Model Param. Mean Mode SD

95% CRI

CV Red. CV (%)q2.5 q97.5

SCR-occupancy-
telemetry)

D̂ 0.370 0.352 0.081 0.236 0.554 0.219 37.3

�̂ 0.657 0.652 0.043 0.579 0.748 0.065 76.2

�0.trap 0.015 0.014 0.004 0.008 0.025 0.267 52.8

�0.cam 0.029 0.027 0.007 0.018 0.044 0.241 37.0

SCR-occupancy D̂ 0.520 0.472 0.147 0.284 0.855 0.283 19.1

�̂ 0.419 0.383 0.085 0.300 0.635 0.203 26.3

�0.trap 0.036 0.028 0.016 0.014 0.075 0.444 21.4

�0.cam 0.059 0.048 0.021 0.029 0.109 0.356 —

SCR-telemetry D̂ 0.695 0.624 0.212 0.365 1.203 0.305 12.7

�̂ 0.671 0.659 0.044 0.593 0.764 0.066 76.2

�0.trap 0.012 0.010 0.004 0.005 0.022 0.333 41.0

SCR D̂ 0.747 0.607 0.261 0.344 1.362 0.349 —

�̂ 0.541 0.470 0.149 0.335 0.908 0.275 —

�0.trap 0.023 0.016 0.013 0.007 0.057 0.565

Note: We present for all parameters the 95% Bayesian credible intervals (CRI); coefficient of variation (CV = SD/mean), and reduction of CV from 
parameters of the SCR model, and the reduction of �0.cam CV from the SCR-occupancy model.
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need further studies is the integration with extra-binomial noise or 
unmodeled overdispersion of the datasets (Isaac et al., 2020).

Probably owing to the challenges involved in their individual 
identification, stone marten density estimates are lacking in the lit-
erature. Exceptions include Balestrieri et al.  (2021), who estimated 
0.95 (0.7 – 1.3) individuals/km2 in the Alpine areas of N Italy using the R 
package capwire (Pennell et al., 2013). To the best of our knowledge, 
only two studies reported stone marten density in Mediterranean 
region of Iberia, both in places of Extremadura (SW Spain) and esti-
mated D̂ = 0.24; SD: 0.08 and D̂ = 0.26; SD: 0.14 individuals/km2 for 
Valdecigüeñas (Jiménez et al.,  2017) and Matachel Valley (Jiménez, 
Nuñez-Arjona, et al.,  2019), respectively. These studies used SMR 
(Royle et al., 2014;  Sollmann, Gardner, Parsons, et al., 2013) and gen-
SMR (Whittington et al., 2017) models with integrated telemetry data, 
respectively, and consequently allowed estimating movement param-
eters �̂ = 0.82; SD: 0.05 (Jiménez et al.,  2017) and �̂ = 0.67; SD: 0.06 
km (Jiménez, Nuñez-Arjona, et al., 2019). Our estimate is the most pre-
cise among those published so far for stone martens in Mediterranean 
areas and conforms with expectations based on the conditions of 
the landscape. Density estimates in Cabañeros National Park, in the 
Mesomediterranean subhumid area (Rivas-Martínez, 1983) with exten-
sive areas of strawberry trees, would be consistent with previously ob-
tained densities in Mesomediterranean xeric areas (Valdecigüeñas and 

Matachel Valley) both with a lower production of fleshy fruited plants. 
The ecological importance of the stone marten in Mediterranean en-
vironments is largely unknown, but it is assumed to play a key role as 
a fleshy fruit disperser (Pereira et al., 2019), potentially acting as an 
ecosystem engineer (González-Varo et al., 2013). Therefore, accurately 
estimating its density and the factors that govern it, such as the habitat 
and food availability, and intra-specific relationships (Jiménez, Nuñez-
Arjona, et al., 2019; Monterroso et al., 2020), are paramount from an 
ecological standpoint due to the multitrophic relationships and impli-
cations for ecosystem structure. Although density estimation of stone 
martens would be possible using SMR (incorporating information from 
box-trap captures into the gen-SMR model), the challenges involved in 
marking stone martens with reasonable mark permanence and easy 
recognition (e.g., using collars or ear tags) make the use of transponders 
more appropriate. However, maintaining a large enough box-trapping 
sampling grid targeting an SCR approach is laborious, expensive, and 
invasive for all captured individuals. Under these conditions, the use 
of the SCR-Occ-Tel is recommended because it allows working with a 
relatively small capture–recapture grid and handling smaller numbers 
of animals, while complementing it with detection (cheaper) data col-
lected over a larger area. As recaptures are based on transponder read-
ing, a possible methodological improvement would be the deployment 
of a network of automatic transponder readers (Charney et al., 2009) 

F I G U R E  3 Scatter plots of discrepancy 
measures for the replicate versus the 
actual data for the spatial capture–
recapture-integrated (SCR-IM) model. The 
Bayesian p-values are the proportion of 
points below the 1:1 equality line (black). 
Top left: Individual × trap frequencies, 
which summarizes the data by individual 
and detector aggregated over a single 
occasion. Top right: Individual encounter 
frequencies, which assess individual 
heterogeneity. Bottom: Detector 
(trap) frequencies, which is based on 
aggregating over individuals and replicates 
to form detector-encounter frequencies.
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as a new set of detectors, which would collect data to complement 
live captures in box traps and presence/absence in camera traps. This 
would require, however, including a new parameter in the model for 
baseline detection rate at transponder readers.

With this study, we provide a proof of concept of the SCR-
Occ-Tel model with real data, and of its applicability to an elusive 
species with near-absent natural markings by integrating multiple 
data sources with small sample size. Our results indicate that the 
SCR-Occ-Tel model could be used for other species in which indi-
vidual recognition in camera traps is not possible, minimizing in-
vasive sampling procedures. Possible extensions to this approach, 
for example, by combining occupancy and SCR with categorical co-
variates (Augustine et al., 2019) or random-thinning SCR (Jiménez 
et al., 2021), may allow additional improvements in the precision of 
the estimates. The integration possibilities are as many as the pos-
sible problems to be addressed, and we are only at the beginning of 
this journey.
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F I G U R E  4 Relationships between the coefficient of variation 
for population size and number of detections from the occupancy 
submodel, under four dilution scenarios and 100 simulated datasets 
per scenario: 20% (77 detections), 40% (58), 60% (38), and 80% 
(19). Violins represent the distribution of CVs in each dilution 
scenario.

0.20

0.25

0.30

0.35

0.40

20%
 77

40%
 58

60%
 38

80%
 19

Dilution scenarios for occupancy data in SCR−Occ−Tel model
Number of detection events in camera traps

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
of

 p
op

ul
at

io
n 

si
ze

TA B L E  2 Bias and precision of parameters estimate from (i) 
spatial capture–recapture, detection/nondetection, and telemetry 
data (SCR-occupancy-telemetry); (ii) spatial capture–recapture and 
detection/nondetection data (SCR-occupancy); (iii) spatial capture–
recapture and telemetry data (SCR telemetry); and (iv) spatial 
capture–recapture (SCR) data alone, in 100 simulated datasets. We 
used a similar of our proof-of-concept scenario: (i) the same box 
trap and camera trap deployments; (ii) similar detection numbers 
(97; range: 72–117); (iii) density of 0.35 individuals/km2; (iv) sigma 
of 0.6 km; (v) 4 telemetry-tagged individuals (20 locations each); 
and (vi) 21 captures. We used mode as point estimate. Parameters: 
population density (D̂; individuals/km2); spatial scale parameter of 
the detection function (�̂; km) and baseline detection rate for box 
traps (�̂0.trap).

Model
Parameter 
(mode)

Relative 
bias RMSE

SCR-occupancy-
telemetry

D̂ −0.102 0.099

�̂ −0.032 0.061

�0.trap −0.121 0.008

SCR-occupancy D̂ −0.114 0.105

�̂ −0.085 0.122

�0.trap −0.105 0.010

SCR-telemetry D̂ −0.192 0.110

�̂ −0.025 0.060

�0.trap −0.026 0.010

SCR D̂ −0.249 0.126

�̂ −0.044 0.127

�0.trap −0.082 0.012
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