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Abstract
Population	size	is	one	of	the	basic	demographic	parameters	for	species	management	
and	 conservation.	 Among	 different	 estimation	methods,	 spatially	 explicit	 capture–	
recapture	 (SCR)	models	allow	 the	estimation	of	population	density	 in	a	 framework	
that	has	been	greatly	developed	in	recent	years.	The	use	of	automated	detection	de-
vices,	such	as	camera	traps,	has	 impressively	extended	SCR	studies	for	 individually	
identifiable	 species.	However,	 its	application	 to	unmarked/partially	marked	species	
remains	challenging,	and	no	specific	method	has	been	widely	used.	We	fitted	an	SCR-	
integrated	model	 (SCR-	IM)	 to	 stone	marten	Martes foina	 data,	 a	 species	 for	which	
only	 some	 individuals	 are	 individually	 recognizable	 by	 natural	marks,	 and	 estimate	
population	size	based	on	 integration	of	 three	submodels:	 (1)	 individual	capture	his-
tories	from	live	capture	and	transponder	tagging;	(2)	detection/nondetection	or	“oc-
cupancy”	data	using	camera	traps	in	a	bigger	area	to	extend	the	geographic	scope	of	
capture–	recapture	data;	and	(3)	telemetry	data	from	a	set	of	tagged	individuals.	We	
estimated	a	stone	marten	density	of	0.352	(SD:	0.081)	individuals/km2.	We	simulated	
four	dilution	scenarios	of	occupancy	data	to	study	the	variation	in	the	coefficient	of	
variation	in	population	size	estimates.	We	also	used	simulations	with	similar	charac-
teristics	as	the	stone	marten	case	study,	comparing	the	accuracy	and	precision	ob-
tained	from	SCR-	IM	and	SCR,	to	understand	how	submodels'	integration	affects	the	
posterior	distributions	of	estimated	parameters.	Based	on	our	simulations,	we	found	
that	population	size	estimates	using	SCR-	IM	are	more	accurate	and	precise.	 In	our	
stone	marten	case	study,	the	SCR-	IM	density	estimation	increased	the	precision	by	
37%	when	compared	to	the	standard	SCR	model	as	regards	to	the	coefficient	of	vari-
ation.	This	model	has	high	potential	to	be	used	for	species	in	which	individual	recogni-
tion	by	natural	markings	is	not	possible,	therefore	limiting	the	need	to	rely	on	invasive	
sampling	procedures.
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1  |  INTRODUC TION

Population	size	is	one	of	the	key	demographic	parameters	for	species	
management	 and	 conservation.	While	many	methods	 for	 estimat-
ing	wildlife	population	size	have	been	proposed,	capture–	recapture	
(CR)	 models	 have	 long	 been	 considered	 the	 gold	 standard	 (Otis	
et al., 1978;	Pollock,	1976).	However,	under	the	conventional	CR	for-
mulation,	the	area	to	which	the	population	size	estimate	should	be	
allocated	is	unknown	and	arbitrarily	defined	because	of	ambiguity	in	
the	criteria	for	delimiting	the	effective	sampling	area	to	which	cap-
tures	should	be	referenced	(Efford,	2004).	Recently,	a	set	of	spatial	
capture–	recapture	 (SCR)-	based	models	 have	 been	 developed	 that	
explicitly	 incorporate	 spatial	 information	 into	 abundance	 calcula-
tions,	and	thus	allow	proper	density	estimates	(Efford,	2004;	Royle	
et al., 2014).	 These	 include	 spatial	 mark-	resight	 (SMR)	 methods,	
which	were	purposely	developed	to	deal	with	partially	marked	popu-
lations	(both	natural	and	human-	derived	marks)	(Sollmann,	Gardner,	
Chandler, et al., 2013;	 Sollmann,	 Gardner,	 Parsons,	 et	 al.,	 2013).	
Alongside	 these	 analytical	 developments,	 the	 widespread	 use	 of	
camera	 traps	 for	wildlife	 research,	 combined	with	 the	use	of	 SCR	
models,	has	allowed	density	estimation	 for	species	whose	 individ-
uals	 are	 individually	 identifiable.	 Likewise,	 genetic	 analyses	 have	
generalized	the	use	of	SCR	with	genotype-	based	identification	(e.g.,	
Gardner	et	al.,	2010;	Kéry	et	al.,	2011).

The	convenience	of	using	all	available	data	to	improve	inferences,	
avoiding	discarding,	for	example,	imperfect	identifications,	has	mo-
tivated	the	development	of	specific	models	to	deal	with	these	prob-
lems.	Spatial	partial	identity	models	(SPIMs)	(Augustine	et	al.,	2018, 
2019, 2020)	extended	the	domain	of	SCR	to	populations	or	observa-
tion	systems	that	do	not	always	allow	for	individual	identity	to	be	de-
termined	with	certainty,	while	the	random	thinning	SCR	model	was	
developed	as	evolutions	of	 the	 standard	SCR	models	 to	deal	with	
incompletely	identified	data	(Jiménez	et	al.,	2021).	The	latter	model	
allows	 incorporating	detection	events	with	unknown	marking	 sta-
tus,	which	are	discarded	in	standard	SCR	and	SMR	approaches.	To	
avoid	violating	the	assumption	from	SMR	that	marked	and	unmarked	
populations	 have	 the	 same	 encounter	 probabilities,	 Whittington	
et al. (2017)	 developed	 the	 generalized	 spatial	 mark-	resight	 (gen-	
SMR)	model,	that	involved	the	integration	of	data	obtained	from	dif-
ferent	sampling	methods,	using	 live-	trapping	capture	histories	and	
camera-	trapping	resighting	histories.	Although	this	integration	was	
primarily	aimed	at	overcoming	 the	assumption	of	equal	encounter	
probabilities,	its	data	integration	also	improved	the	precision	of	the	
estimated	parameters	by	accommodating	additional	sources	of	data	
(Schaub	&	Kéry,	2012;	Whittington	et	al.,	2017).	The	generalized	spa-
tial	mark-	resight	model	with	incomplete	identification	(gen-	SMR-	ID:	
Jiménez,	Chandler,	et	al.,	2019)	was	developed	as	a	natural	evolu-
tion	 of	 the	 gen-	SMR	 model	 that	 allows	 integrating	 live-	trapping,	

photo-	trapping,	 and	 telemetry	 data	 in	 a	 single	 unified	 modeling	
approach.	Both	gen-	SMR	and	gen-	SMR-	ID	approaches	are	paradig-
matic	of	the	improvement	in	population	estimates	obtained	by	data	
integration	under	the	SCR	(or	SMR)	modeling	framework.	However,	
the	origins	of	data	integration	in	SCR	and	SMR	models	regard	to	the	
improvement	of	the	half-	normal	scale	parameter	 (� )	 that	describes	
how	detectability	decreases	with	distance	from	the	center	of	activ-
ity	of	each	individual.	The	integration	of	telemetry	data	was	a	natu-
ral	way	of	improving	�	estimates,	in	both	SCR	(Jiménez	et	al.,	2017; 
Linden et al., 2018)	and	SMR	(Jiménez,	Chandler,	et	al.,	2019;	Royle	
et al., 2014;	Sollmann,	Gardner,	Parsons,	et	al.,	2013),	and	indirectly	
change	the	estimates	of	the	baseline	detection	rate	(�0)	since	both	
parameters	are	related	 in	the	structure	of	the	detection	submodel	
(Dey	 et	 al.,	2019;	 Efford	&	Mowat,	2014).	 In	 the	 field	 of	 dynamic	
models,	 integrated	population	models	(IPMs)	are	a	whole	family	of	
demographic	models	 that	 include	multiple	sources	of	data	 to	esti-
mate	 different	 demographic	 parameters	 (Schaub	 &	 Kéry,	 2022).	
IPMs	represent	a	remarkable	methodological	advancement	(Schaub	
&	Kéry,	2012),	and	have	proved	useful	 in	 improving	our	ecological	
understanding	of	population	processes,	and	 in	 improving	manage-
ment	decisions	(e.g.,	Bled	et	al.,	2017;	Rushing	et	al.,	2017).	IPMs	in	
spatial	capture–	recapture	combine,	for	example,	SCR	and	distance	
sampling	data	 (Chandler	et	 al.,	2018),	 and	SCR	and	dead	 recovery	
data	(Dupont	et	al.,	2021).	IPMs	allow	combining	“cheap	and	risky”	
data	 (e.g.	detection/non-	detection)	with	more	 “expensive	and	 reli-
able”	data	sets	(e.g.	capture–	recapture),	reconciling	potential	spatial	
and	temporal	misalignments	with	a	unified	modeling	structure	that	
explicitly	describes	each	component	(i.e.,	dataset).	While	usually	less	
informative,	 “cheap”	data	 are	 generally	 easier	 to	 collect	 and	 allow	
for	larger	spatiotemporal	sampling	scales.	Conversely,	“expensive”	is	
more	informative	but	tends	to	be	logistically	challenging	and/or	ex-
pensive	to	obtain,	which	typically	constrains	the	sampling	approach	
to	a	smaller	spatial	or	temporal	scale.	When	combined,	these	data-
sets	may	mitigate	each	other's	weaknesses,	allowing	for	an	increase	
in	the	scope	of	inference	(Kéry	&	Royle,	2021,	chapter	10).

Despite	this	highly	prolific	decade	in	model	development,	an	“in-
tegrated	model”	(IM)	specifically	aimed	at	improving	the	estimation	
of	the	state	parameters,	that	 is	abundance,	was	first	 introduced	in	
an	SCR	model	by	Kéry	and	Royle	 (2021).	 The	model	described	by	
these	authors	relies	on	a	 joint	 likelihood	for	multiple	data	sets	de-
scribing	a	shared	state	process	but	different	observation	processes.	
Two	 different	 spatial	 capture–	recapture	 integrated	 models	 were	
presented,	and	tested	with	simulated	data:	 (1)	the	 integrated	SCR-	
Counts	 model,	 which	 integrates	 capture	 histories	 and	 count	 data	
without	identification,	and	(2)	the	integrated	SCR-	Occ	model,	which	
integrates	 of	 SCR	 and	 “occupancy”	 (detection/nondetection)	 data.	
The	SCR-	Counts	model	was	used	by	Ferreras	et	al.	 (2021)	 to	esti-
mate	European	wildcat	Felis silvestris	population	size	 in	Cabañeros	
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National	 Park	 (Spain),	 demonstrating	 its	 applicability	 in	 extremely	
low	densities.	To	the	best	of	our	knowledge,	the	SCR-	Occ	was	only	
tested	on	simulated	data,	and	therefore	requires	an	implementation	
with	real-	life	datasets	(Kéry	&	Royle,	2021).	Here,	we	use	the	SCR-	
Occ	model,	and	an	extended	version	of	it	that	includes	a	telemetry	
submodel,	fit	them	to	a	real	stone	marten	Martes foina dataset, and 
quantify	their	benefits	in	improving	parameter	precision	when	com-
pared	to	the	standard	SCR	model.

Stone	marten	density	is	relatively	understudied	in	Mediterranean	
habitats,	and	more	so	using	SCR	models,	probably	by	the	difficulties	
in	 individual	 identification	 (but	 see	 Jiménez	 et	 al.,	 2017;	 Jiménez,	
Nuñez-	Arjona,	 et	 al.,	2019).	 Stone	martens	 have	 very	 subtle	 indi-
vidual	markings,	which	make	them	difficult	to	 individually	 identify.	
As	 described	 for	 the	 American	 marten	 Martes americana	 (Sirén	
et al., 2016),	stone	marten's	individual	throat	patch	pattern	is	hardly	
visible	 in	 ordinary	 camera-	trapping	 images.	 Alternative	 sampling	
procedures	allowing	the	use	of	SCR	models	are	tagging-	based,	and	
included	live	capture	and	tagging	with	collars,	ear	tags,	or	passive	in-
tegrated	transponders	(henceforth	transponders).	However,	accord-
ing	to	our	preliminary	tests	with	this	species,	the	durability	of	collars	
and	ear	tags	in	stone	marten	is	minimal	and	the	loss	of	marks	could	
bias	 population	 estimates.	Conversely,	 transponder	 tagging	would	
require	a	large	live	trap	sampling	grid,	which	would	entail	a	prohibi-
tively	expensive	and	invasive	sampling	operation.	To	overcome	the	
above-	mentioned	limitations,	we	implemented	a	modification	of	the	
SCR-	Occ	model	described	by	Kéry	and	Royle	(2021)	by	adding	a	te-
lemetry	submodel	 to	 it	 (Royle	et	al.,	2014,	p.	516).	Thus,	 the	goals	
of	 this	 paper	were:	 (i)	making	 a	 proof	 of	 concept	 of	 the	 SCR-	Occ	
model	with	a	real	data;	(ii)	using	simulations	with	similar	values	to	our	
real	dataset	and	outputs,	calculate	bias	and	precision	in	all	models	
estimates;	(iii)	quantify	changes	in	precision	of	the	parameters	esti-
mates	when	compared	to	standard	SCR	models	in	our	case	study;	(iv)	
evaluate	the	feasibility	of	using	this	approach	to	species	with	very	
subtle	individual	markings;	and	(v)	generating	new	estimates	of	den-
sity	for	a	widespread	and	ecologically	important	species,	for	which	
estimates	of	such	vital	rates	are	typically	absent.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and species

The	study	was	carried	out	in	Cabañeros	National	Park	(henceforth	
Cabañeros)	 located	 in	 central	 Spain	 (39°24′N;	4°29′W).	With	 alti-
tudes	between	560	and	1448 m,	the	park	features	40,000 ha	of	well-	
preserved	 Mediterranean	 ecosystems.	 Climate	 is	 Mediterranean,	
with	 moderately	 rainy	 springs	 and	 autumns	 (annual	 rainfall	 450–	
750 mm)	and	hot	dry	summers	and	mild	winters.	Vegetation	is	domi-
nated	 by	 scrublands	 of	 rockrose	 Cistus spp, Phillyrea angustifolia, 
strawberry	 trees,	 and	 Erica	 spp.,	 and	 the	 tree	 layer	 is	 dominated	
by	holm	(Quercus rotundifolia),	gall	 (Quercus faginea),	and	cork	oaks	
(Quercus suber).	The	central	area	of	Cabañeros	(known	as	“raña”)	is	a	
savanna-	like	open	tree	layer	with	scattered	holm,	gall,	and	cork	oaks.

The	 stone	 marten	 has	 a	 wide	 distribution,	 extending	 over	 al-
most	the	entire	mainland	Europe	and	some	parts	of	Asia	(Abramov	
et al., 2016).	 Its	ecological	adaptability	deems	 it	present	 in	a	wide	
variety	of	habitats	(Abramov	et	al.,	2016;	Virgós	et	al.,	2012).	It	has	a	
remarkable	ecological	role	in	the	dispersal	of	multiple	fleshy	fruited	
plants	 (such	 as	 strawberry	 tree,	Arbutus unedo)	 in	 Mediterranean	
ecosystems	(Burgos	et	al.,	2022;	Herrera,	1989;	Virgós	et	al.,	2010),	
where	 stone	martens	play	a	potential	 role	 as	ecosystem	engineer.	
Their	ecological	importance	coupled	with	its	drastic	decline	where	
the	Iberian	lynx	Lynx pardinus	has	settled	after	its	reintroduction	in	
the	 Iberian	Peninsula	 (Jiménez,	Nuñez-	Arjona,	 et	 al.,	2019),	 justify	
the	need	to	accurately	quantify	stone	martens'	population	sizes,	as	
a	key	step	toward	a	deeper	understanding	of	the	seed	dispersal	pro-
cesses	 in	which	 it	 is	 involved,	 and	 the	 consequences	 of	 intraguild	
relationships	in	those	processes.	Given	their	wide	geographic	range,	
understanding	their	ecological	role	has	relevance	across	vast	regions	
and	ecosystems.

Red deer (Cervus elaphus)	and	wild	boar	(Sus scrofa)	were	at	high	
densities	at	the	study	area,	although	no	population	estimates	were	
available.	The	mammalian	carnivore	community	is	dominated	by	red	
fox,	which	is	the	most	abundant	species,	with	0.947	(SD:	0.156)	in-
dividuals/km2	(Jiménez,	2021).	Other	species	present	are	the	com-
mon	genet	(Genetta genetta),	the	European	badger	(Meles meles),	the	
Egyptian	mongoose	(Herpestes ichneumon),	the	otter	(Lutra lutra),	the	
least weasel (Mustela nivalis),	the	polecat	(Mustela putorius),	and	the	
wildcat (Ferreras et al., 2016, 2017).

2.2  |  Live capture and tagging

Stone	martens	were	captured	using	box	traps,	including	Tomahawk	
(Model	208,	Tomahawk	Live	Trap,	WI,	USA)	and	two	models	(Jauteco	
and	Alvega)	of	wire	mesh	traps	from	local	dealers,	with	the	required	
animal	care	permits	for	live	captures	(approved	code	PR-	2013-	05-	04	
from	the	Ethical	Committee	on	Animal	Testing	of	Castilla-	La	Mancha	
University).	Traps	were	baited	either	with	dead	bait	(chicken)	or	with	
live	red-	legged	partridges	(Alectoris rufa)	or	house	pigeons	(Columba 
sp.).	 Live	 baits	were	 placed	 in	 an	 independent	 chamber	 inaccessi-
ble	to	captured	carnivores,	provided	with	water	and	food	ad	libitum	
and	 covered	with	 small	 branches	 to	 protect	 them	 from	 inclement	
weather,	 following	EU	recommendations	regarding	animal	welfare.	
We	deployed	a	total	of	60	box	traps	(Figure 1)	in	two	trapping	cam-
paigns	between	March	3th	and	July	4th	2014	(Figure	S1).	Box	traps	
were	 placed	 within	 an	 envelope	 (rectangular	 area	 encompassing	
all	 the	 traps)	 of	 5652 ha	 in	 locations	 potentially	 suitable	 for	 stone	
martens	 according	 to	 our	 knowledge	 of	 the	 species,	 at	 an	 aver-
age	 intertrap	 distance	 of	 177 m	 (range	 4–	2499 m).	 Because	 of	 the	
nocturnal	 activity	of	 stone	martens	 (Monterroso	et	al.,	2014),	box	
traps	 were	 checked	 daily	 after	 sunrise	 to	 minimize	 animal	 stress.	
Captured	 stone	martens	were	 immobilized	with	 a	 combination	 of	
medetomidine	hydrochloride	(Medetor,	Virbac,	Spain)	and	ketamine	
hydrochloride	(Imalgene	1000,	Merial,	Spain)	with	average	dosages	
of	 0.07 mg/kg	 and	9.55 mg/kg,	 respectively.	We	used	 atipamezole	
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(Antisedan,	Pfizer,	Spain)	at	a	dose	of	0.35 mg/kg	to	reverse	the	ef-
fects	of	medetomidine	and	accelerate	recovery	(Gunkel	&	Lafortune,	
2007).	All	 captured	 stone	martens	were	 tagged	with	 a	microtran-
sponder	(ID-	100A,	Trovan)	injected	subcutaneously	in	the	neck	side	
for	its	identification	in	subsequent	recaptures.	Four	stone	martens	
were	also	equipped	with	VHF-	GPS	radio	collars	 (66 g,	model	TGB-	
316,	Telenax,	Mexico).	Stone	martens	were	released	where	captured	
once	 fully	 recovered	 from	 anesthesia,	 always	 within	 three	 hours	
after	 capture.	 Fixes	 for	 the	 radio-	tagged	 stone	 martens	 were	 at-
tempted	daily	through	triangulation	of	the	VHF	signal	and	retrieved	
from	the	GPS	units.

2.3  |  Camera- trapping

We	deployed	40	camera-	trapping	stations	(one	camera	per	station)	
between	January	15	and	April	22,	2014	(Figure 1).	Stations	were	in	
a	grid	distribution	such	that	each	camera,	on	average,	was	1267 m	
from	its	nearest	neighbor	(range:	712–	2143 m),	covering	a	geometri-
cal	envelope	of	12,174 ha.	The	camera-	trapping	grid	partially	over-
lapped	 the	 live-	trapping	grid	 (Figure 1),	 covering	 the	 same	habitat	
types,	but	not	colocated	with	 live	traps	avoiding	data	dependence	
(Clare et al., 2017).	 We	 used	 two	 low-	glow	 infrared	 camera-	trap	
models,	 namely,	 ScoutGuard	 SG550	 and	 SG570	 (HCO	 Outdoor	
Products),	 with	 similar	 performing	 features	 (e.g.,	 1.2–	1.3 s	 trigger	
speed).	 Cameras	 were	 secured	 inside	 metal	 boxes,	 locked	 with	 a	
cable	lock	and	attached	to	a	tree	approximately	50 cm	above	ground.	
As	attractant,	we	placed	 Iberian	 lynx	urine	and	valerian	extract	 in	
separate	vials,	a	combination	proved	effective	for	Iberian	mesocar-
nivores	including	stone	martens	(Ferreras	et	al.,	2018;	Monterroso	
et al., 2011),	at	a	distance	of	2–	3 m	from	the	camera	traps.	We	pro-
grammed	cameras	to	shoot	a	burst	of	three	photos	when	triggered,	
with	medium	sensitivity	and	minimal	delay	time	(0 s).	Camera	traps	
remained	 active	between	52	 and	98 days	 (Figure	S1).	Consecutive	
photo-	captures	of	stone	martens	in	a	given	camera	within	a	30-	min	
interval	were	considered	as	the	same	event	(Jiménez	et	al.,	2017).

2.4  |  Statistical modeling

We	tested	if	the	use	of	dead	vs.	 live	bait	 in	box	traps	changed	the	
baseline	 detection	 rate	 (�0)	 in	 the	 SCR	model	 (Royle	 et	 al.,	 2014)	
using	a	trap-	level	covariate:

where �0 was the intercept and �1	was	the	bait	effect	(death	vs.	 live	
bait)	by	trap,	and	b	(bait)	was	a	vector	with	two	possible	values:	0	(dead	
bait)	and	1	(live	bait).	We	used	reversible	jump	MCMC	(RJMCMC)	in	
NIMBLE	version	0.12.2	(NIMBLE	Development	Team,	2019)	to	decide	
whether	or	not	to	include	this	covariate,	which	is	a	natural	application	in	
Bayesian	variable	selection	problems	(see	BUGS	code,	in	Appendix	S1).

After	this	preliminary	model	selection,	we	used	an	SCR-	IM	com-
bining	three	data	sources:	(i)	capture	histories	with	three	dimensions	
(individual-	trap-	occasion)	from	live	trapping	in	a	core	area,	(ii)	detec-
tion/nondetection	 data	with	 two	 dimensions	 (trap-	occasion)	 from	
camera	traps	in	a	 larger	area	(Kéry	&	Royle,	2021,	p.	636);	and	(iii)	
telemetry	 data	 from	 VHF-		 and	 GPS-	tagged	 individuals	 (Sollmann,	
Gardner,	Parsons,	et	al.,	2013;	Royle	et	al.,	2014,	p.	516).

The	SCR	and	occupancy	submodels	shared	the	same	underlying	
point	process	by	which	we	assumed	that	individual	activity	centers	
i = 1, 2, … ,N	 are	 distributed	 over	 a	 state	 space	 (S) and that indi-
viduals	are	exposed	to	sampling	by	detector	 traps	with	 location	xj 
within S.	We	assumed	the	distribution	of	individuals'	activity	centers	
si =

(
si1 ,si2

)
	 to	be	described	by	a	homogeneous	point	process	such	

that si ∼Uniform(S)	that	does	not	change	during	the	k	sampling	occa-
sions.	The	function	describing	the	encounter	rate	�ij	of	individual	 i  
having	activity	center	si, in trap j,	is	defined	as:

where dij	 is	 the	Euclidean	distance	between	 trap	 location	 xj and ac-
tivity	center	of	 the	 individual	si, and �	 is	 the	spatial	 scale	parameter	

logit
(
�0j

)
= �0 + �1 × b

�ij = �
(
si ,xj

)
= �0 ⋅ exp

(
−

d2
ij

2�2

)

F I G U R E  1 Spatial	arrangement	of	
camera	traps	(blue	crosses)	and	live	traps	
(black	triangles)	and	their	respective	
geographical	envelopes	(blue	and	black	
dashed	rectangles,	respectively);	thinned	
GPS	telemetry	positions	(violet,	red,	blue,	
and	green)	for	four	stone	martens	at	the	
South	of	Cabañeros	National	Park	(gray	
shadowed	area).	Bottom-	left,	location	of	
the	study	area	in	Spain.
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of	the	half-	normal	detection	function	that	describes	the	animal	move-
ment.	This	implies	that	the	detection	probability	of	a	given	individual	in	
each	trap	declines	monotonically	with	the	trap's	distance	to	its	activity	
center.

We	“quantized”	(Royle	et	al.,	2014,	p.	249)	individual	encounter	
frequencies	(truncating	to	binary	observations	by	transforming	daily	
counts	to	0/1)	to	avoid	violating	the	independence	assumption	be-
cause	counts	in	camera	traps	are	usually	unrelated	to	the	fundamen-
tal	space	usage	process	that	underlies	the	genesis	of	SCR	data	(Royle	
et al., 2014,	section	9.1.3),	and	we	used	a	Bernoulli	model	in	SCR	and	
occupancy	submodels	of	the	SCR-	Occ.	Thus,	encounter	histories	for	
SCR	data	are	binary	such	that:

where	the	observed	data	yijk	 is	the	realization	of	a	Bernoulli	process	
with	probability	pscr

ijk
,	which	 is	 the	detection	probability	defined	by	a	

complementary	 log–	log	 link	 function	 that	 relates	 it	 to	 the	detection	
rate �ijk as:

Under	a	Bayesian	approach	to	capture–	recapture	with	unknown	
N,	“data	augmentation”	can	be	used	to	estimate	the	number	of	unob-
served	individuals	(Royle	et	al.,	2014).	We	added	to	the	n-	observed	
encounter	histories	a	collection	of	M − n	“all-	zero”	histories,	choos-
ing an M	value	such	that	M ≫ N.	The	likelihood	for	the	zero-	inflated	
true	encounter	frequencies	is	then	modified	by	a	partially	latent	bi-
nary	indicator	variable	zi	that	describes	the	membership	of	individual	
i 	to	the	population.	Under	this	specification,	Pr

(
zi = 1

)
= 1	for	the	n 

observed	individuals,	and	zi ∼Bernoulli(�)	for	the	entire	collection	of	
M	individuals.	Population	size	can	then	be	derived	from	the	sum	of	
indicators, N =

∑
zi	(realized	N)	or	from	the	product	M ⋅ �	(expected	

N),	 and	 density	 can	 be	 derived	 by	 dividing	 population	 size	 by	 the	
surface	area	of	the	state	space,	D = N∕‖S‖.

The	occupancy	submodel	for	detection/nondetection	data	occjk 
is	defined	as:

This	model	states	that	detection	occurs	at	camera	trap	 j at oc-
casion k	if	at	least	one	individual	in	the	population	is	detected,	but	
the	 identity	 of	 the	 individual	 is	 unknown.	pocc

ijk
	 is	 analogous	 to	pscr

ijk
 

but	with	latent	identity	of	individuals,	while	�0	is	different	between	
detection	methods	 (box	traps	and	camera	traps).	The	SCR	and	oc-
cupancy	 submodels	 of	 the	 SCR-	IM	 share	 the	 same	 Poisson	 point	
process (si)	over	the	state	space	S	and	the	scale	parameter	�	of	the	
detection	function,	following	the	key	principle	of	a	typical	IM:	“same	
process,	different	observation	model”	(Kéry	&	Royle,	2021,	p.	636).

For	computational	efficiency,	we	assumed	no	temporal	variation	
in	 the	detection	process,	 and	consequently	 aggregated	 the	binary	
encounter	histories	from	SCR	and	occupancy	submodels	over	Kj— a 

vector	of	sampling	occasions	of	each	 trap—	and	recorded	 the	 total	
number	of	encounters	out	of	Kj	 (see	BUGS	codes,	in	Appendix	S1).	
Therefore,	in	SCR,	yscr ij	values	are	assumed	as	mutually	independent	
outcomes	of	a	binomial	random	variable	such	that:

And	similarly,	for	occupancy	model:

As	our	detection	function	is	half-	normal	function,	we	can	relate	the	pa-
rameters	� and si	directly	to	those	from	a	bivariate	normal	(BVN)	move-
ment	model,	where	the	mean	is	si,	the	variance—	in	both	dimensions—	is	
�2,	and	covariance	is	0	(Sollmann,	Gardner,	Parsons,	et	al.,	2013).	If	Ri 
locations Ii	(of	coordinates	lirx and liry)	of	individual	i 	can	be	represented	
as:

and	we	can	estimate	� and si	from	telemetry	data	of	the	m tagged indi-
viduals'	R	locations,	using:

Information	on	the	 locations	of	tagged	 individuals	collected	by	
telemetry	tags	were	also	added	to	our	model	to	further	improve	es-
timates	of	 SCR-	Occ	parameters.	We	assumed	 that	 telemetry	data	
regards	to	thinned	outcomes	of	a	movement	model	with	a	stationary	
bivariate	normal	utilization	distribution	(Royle	et	al.,	2013).	Temporal	
dependence	among	telemetry	locations	may	cause	underestimation	
of	 the	 variance	 of	�	 and	 population	 density	 (Murphy	 et	 al.,	2019; 
Sollmann,	 Gardner,	 Parsons,	 et	 al.,	 2013).	 Therefore,	 it	 was	 mini-
mized	by	thinning	to	one	randomly	selected	location	per	survey	day	
for	each	tagged	stone	marten.

As	real	density,	sigma	and	baseline	detection	rate	are	not	known,	
we	assess	model	performance	by	the	precision	of	parameters	esti-
mates,	using	the	coefficient	of	variation	(CV,	defined	as	the	poste-
rior	standard	deviation	divided	by	the	posterior	mean)	for	the	four	
models:	 SCR-	occupancy-	telemetry	 (SCR-	Occ-	Tel),	 SCR-	occupancy	
(SCR-	Occ),	SCR-	telemetry	(SCR-	Tel),	and	conventional	SCR.	We	“de-
graded”	 the	 capture	 histories	 SCR	data	 to	 detection/no-	detection	
and	 fitted	 a	 site-	occupancy	 model	 to	 these	 data	 for	 comparison	
with	 site-	occupancy	outputs	 from	camera	 trapping	data.	We	 then	
quantified	 the	 overlap	 of	 posterior	 parameters	 distribution	 from	
both	occupancy	under	the	assumption	that	occupancy	is	related	to	
abundance	(Efford	&	Dawson,	2012;	Gaston	&	Blackburn,	2003),	but	
see	Steenweg	et	al.	(2018).	Minimal	or	not	overlap	of	posterior	pa-
rameters	distribution	would	indicate	different	ecological	processes.	

yijk
∼Bernoulli

(
pscr
ijk

)

pscr
ijk

= 1 − exp
(
− �ijk

)

occjk
∼Bernoulli

(
1 −

M∏

i=1

(
1 − pocc

ijk
⋅ zi

))

yscr ij
∼Binomial

(
Kj ,p
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ij

)

yoccj
∼Binomial

(
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(
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(
1 − pocc
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I
)
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Telemetry	data	were	analyzed	in	the	same	way.	We	also	“diluted”	our	
occupancy	data	by	randomly	removing	20%,	40%,	60%,	and	80%	of	
the	total	detections,	using	77,	58,	38,	and	19	events,	respectively,	to	
evaluate	 the	 relationship	 between	occupancy	 sample	 size	 and	CV	
reduction	 in	population	size	estimates.	For	each	category,	we	sim-
ulated	100	different	datasets,	using	a	binomial	distribution	for	data	
dilution	and	fixing	the	number	of	detections.

To	test	the	performance	of	each	model,	we	carried	out	a	simulation	
study	to	compare	the	SCR,	SCR-	Occ,	SCR-	Tel	and	SCR-	Occ-	Tel	using	
the	same	camera	traps	and	box	traps	deployment	coordinates	used	in	
the	stone	marten	proof-	of-	concept	approach.	We	based	our	simulation	
scenarios	on	the	following:	(i)	similar	density	and	sigma	values	as	esti-
mated	from	our	proof-	of-	concept	model	(see	results	section	below);	(ii)	
combined	baseline	detection	rate	and	number	of	sampling	occasions	to	
get	21	captures	in	box	traps;	(iii)	fixed	4	telemetry-	tagged	individuals	
(20	locations	each);	(iv)	similar	number	of	camera	trapping	detections	
as	obtained	 in	our	empirical	data	 set	 (mean	97;	 range:	72–	117);	 and	
(v)	same	priors	and	data	augmentation	parameters	as	in	our	proof-	of-	
concept	model.	Using	these	specifications,	we	generated	activity	cen-
ter	distributions	over	100	simulated	scenarios,	to	which	we	fitted	all	
four	models	(see	Appendix	S1).	We	then	compared	the	results	through	
relative	bias	and	root-	mean-	square	error	(RMSE),	using	the	R	package	
SimDesign	(Chalmers	&	Adkins,	2020).

We	used	the	goodness-	of-	fit	(GoF)	of	the	SCR-	IM	model	to	diag-
nose	severe	violations	 to	model	assumptions,	and	hence	 reduce	 the	
risk	of	drawing	erroneous	inference	(Pradel	et	al.,	2005),	by	computing	
the	Bayesian	p-	value	(BPV)	based	on	measuring	the	systematic	dissim-
ilarity	between	observed	data	and	posterior	predictive	distribution	of	
the	data	(Gelman	et	al.,	1996).	Thus,	the	computation	of	BPVs	requires	
specifying	a	discrepancy	measure	by	choosing	the	aspects	of	the	model	
to	be	checked.	Following	Royle	et	al.	(2014)	(p.	232),	we	selected	three	
statistics	to	evaluate	the	observation	model:	(1)	Individual	per	detector	
frequencies;	(2)	Individual	encounter	frequencies,	and	(3)	Trap	encoun-
ter	frequencies.	We	fit	all	models	in	NIMBLE	version	0.12.2	(NIMBLE	
Development	Team,	2019)	(see	BUGS	codes,	in	Appendix	S1)	in	R	ver-
sion	4.1.3	(R	Core	Team,	2022).	We	ran	three	chains	of	50,000	itera-
tions	after	an	initial	10,000	as	a	burn-	in	for	all	models.	We	ran	three	
chains	of	6000	iterations	after	an	initial	1000	as	burn-	in	for	all	simu-
lations.	We	assessed	model	convergence	by	visually	examining	trace	
plots	and	using	estimates	of	effective	sample	size	and	split-	chain	Rhat,	
which	can	be	used	to	better	diagnose	convergence	failure	of	MCMC	
chains	(Vehtari	et	al.,	2020).	All	modeling	outputs	are	presented	as	pos-
terior	mode	(SD;	standard	deviation),	unless	clearly	stated	otherwise.

3  |  RESULTS

3.1  |  Sampling

We	captured	14	stone	martens	21	times	(nine	individuals,	once;	four	
individuals,	twice,	and	one	individual,	four	times)	in	1034	sampling	
days	 using	 box	 traps	 (03/03/2014–	04/07/2014)	 (Figure	 S1).	 We	
recorded	 4	 spatial	 recaptures	 (captures	 of	 the	 same	 individual	 at	

different	traps).	In	camera	traps,	we	recorded	101	independent	de-
tections	out	of	3670	camera-	sampling	days	(Figure	S2),	and	retained	
96	camera-	trap	detections	after	the	quantizing	procedure.	We	col-
lared	 four	 stone	marten	 individuals	 from	 the	box-	trapping	 cohort.	
After	data	thinning,	telemetry	produced	12,	9,	21,	and	14	usable	lo-
cations (Figure 1).

3.2  |  Previous test and SCR models

The	RJMCMC	revealed	a	very	low	probability	(0.021)	of	including	lure	
as	a	model	covariate,	and	therefore	we	decided	to	use	the	null	SCR	
model	in	subsequent	analyses.	Posterior	occupancy	estimates	from	
box	traps	(�̂ = 0.78; SD: 0.14)	and	camera	traps	

(
�̂ = 0.66; SD:0.08

)
 

distribution	 originated	 from	 the	 camera	 traps.	 The	 posterior	 esti-
mates	from	each	submodel	(SCR,	occupancy	and	telemetry)	largely	
overlapped	for	all	parameters	(Figure 2).

The	SCR-	Occ-	Tel,	with	a	CV	= 0.22 (Table 1)	 led	to	the	highest	
reduction	in	the	CV	by	37%	and	76%	in	density	and	sigma	estimates,	
respectively,	compared	with	the	standard	SCR	model.	The	second-	
best	performing	model	regarding	CV	reduction	was	the	integrated	
SCR-	Occ,	which	accounted	for	a	19%	and	26%	CV	reduction	for	the	
same	parameters.	The	SCR-	Tel	still	provided	a	13%	and	76%	CV	re-
duction	(Table 1 and Figure 2).	The	CV	for	�	estimates	was	lower	in	
models	that	integrated	telemetry	data	(Table 1).	This	improvement	
was	 propagated	 to	 their	 baseline	 detection	 rate	 (�0.trap)	 estimate	
(37%	 and	 41%	 of	 CV	 reduction	 for	 the	 SCR-	Occ-	Tel	 and	 SCR-	Tel	
models,	respectively)	and	only	to	a	small	degree	(13%	for	the	SCR-	
Tel	model)	to	the	density	estimate	(Figure 2 and Table 1).	Change	due	
to	occupancy	submodel	was	similar	for	all	parameters	(ca.	20%),	and	
the	CV	reduction	in	�0.cam	is	similar	to	�0.trap	from	the	SCR-	Occ	to	the	
SCR-	Occ-	Tel	model.	We	found	a	pattern	of	lower	density	estimates	
with	occupancy	data	integration,	and	higher	sigma	estimates	when	
telemetry	data	are	included.

The	GoF	test	did	not	detect	lack	of	model	fit	for	the	SCR-	Occ-	Tel,	
as	the	BPVs	are	not	close	to	0	or	1	for	the	first	and	second	compo-
nents.	However,	we	detected	a	relative	lack	of	fit	in	the	third	com-
ponent	 of	 the	GoF,	 suggesting	 that	 capture	 frequency	 per	 trap	 is	
not	well	explained	by	this	model	 (Figure 3).	We	found	sample	size	
in	the	occupancy	model	to	be	negatively	correlated	with	the	coef-
ficient	of	variation	for	density	estimates	(Figure 4),	indicating	that	a	
higher	number	of	detections	leads	to	increased	precision	of	param-
eter	estimates	under	the	SCR-	Occ-	Tel	approach.	In	our	case	study,	
CVn=19 = 0.32 (SD: 0.03) and CVn=77 = 0.24 (SD: 0.01).

Our	simulation	study	revealed	better	accuracy	in	population	size	
and �	estimates	using	SCR-	Occ-	Tel	when	compared	to	the	standard	
SCR	(Table 2).

4  |  DISCUSSION

Our	results	support	that,	among	all	models	fitted,	the	SCR-	Occ-	Tel	
provides	 the	 most	 precise	 parameter	 estimates.	We	 demonstrate	
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that	 integrating	occupancy	 (detection/nondetection)	 data	 improve	
precision	in	the	estimation	of	D,	and	that	integrating	telemetry	data	
further	contributed	to	increase	precision	in	estimating	the	detection	
parameters	�, �0.trap, and �0.cam.	 Furthermore,	 our	 simulation	 study	
also	 support	 that	 apart	 from	 more	 precise,	 the	 integrated	 SCR-	
Occ-	Tel	 model	 also	 provides	 more	 accurate	 parameter	 estimates.	
Therefore,	 all	 combined	data	 sources	 lead	 to	 a	more	 reliable	 esti-
mate	of	stone	marten	population	density,	even	with	limited	sample	
sizes.	 In	 fact,	 the	 precision	 obtained	 for	 our	 SCR-	Occ-	Tel	 density	
estimate	 approaches	 the	 20%	CV	 threshold	 suggested	 by	 Pollock	
et al. (1990)	 for	precise	wildlife	 studies,	 and	 this	 achievement	 is	 a	
consequence	of	data	integration.	The	improvement	provided	by	the	
occupancy	submodel	regards	to	the	wider	state	space	encompassed	
by	the	camera	trapping	survey	when	compared	to	our	box-	trap	de-
ployment.	The	latter	might	have	been	insufficient	to	capture	the	full	
extent	of	the	marked	stone	martens'	movement.	While	an	integrated	

SCR-	Counts	 model	 could	 also	 provide	 auxiliary	 information	 on	 � 
(Chandler	&	Royle,	2013),	our	reduced	number	of	camera	traps	and	
their	scattered	deployment	prevented	the	collection	of	detection	re-
cords	with	required	spatial	correlation	(Kéry	&	Royle,	2021,	p.	633).	
Therefore,	telemetry	data	were	needed	for	a	precise	�	estimate,	as	
further	supported	by	the	results	of	our	simulation	exercise	(Table 2).	
On	the	other	hand,	we	found	that	adding	telemetry	data	alone	to	the	
SCR	model	improved	the	precision	of	the	detection	parameters,	but	
its	efficacy	to	improve	D	precision	estimate	was	limited.	Accordingly,	
if:	 (i)	 SCR	 detectors	 (box	 traps)	 are	 spatially	 deployed	 allowing	 to	
capture	 the	 full	 extent	of	animal	movement,	 and	 (ii)	 the	effort	 re-
quired	to	obtain	enough	spatial	recaptures	does	not	lead	to	violation	
of	population	closure	assumptions,	it	would	be	preferable	to	design	a	
camera-	trap	sampling	scheme	focused	in	increasing	occupancy	data,	
instead	of	devoting	an	equivalent	effort	to	telemetry	tagging	a	small	
subset	of	animals.	A	distance	of	1.5� − 2�	(970–	1300	m	in	our	study	

F I G U R E  2 Density	probabilities	for	models'	parameters:	baseline	detection	rate	(�0.cam)	in	camera	traps;	baseline	detection	rate	(�0.trap)	
in	box	traps;	scale	parameter	for	half-	normal	detection	function	(�),	and	density	(D).	In	gray,	SCR	model	alone,	using	data	histories	from	box	
traps	(SCR);	in	gold,	SCR	and	occupancy	data	(SCR-	Occ);	in	blue,	SCR	and	telemetry	data	(SCR-	Tel);	and	in	green,	full	integration	of	SCR,	
occupancy,	and	telemetry	data	(SCR-	Occ-	Tel).
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for	stone	marten)	between	box	traps	(Efford,	2004;	Sollmann	et	al.,	
2012;	Sun	et	al.,	2014)	would	have	improved	the	sampling	design	to	
cover	the	movement	of	the	target	species,	and	perhaps	then,	inte-
gration	of	telemetry	data	might	have	been	unnecessary.

In	general,	the	results	of	the	simulations	are	consistent	with	those	
of	 the	proof-	of-	concept	 approach.	The	models	 fitted	 to	our	 simu-
lated	datasets	also	show	better	accuracy	of	the	SCR-	Occ-	Tel	model	
in	estimating	population	size	when	compared	to	the	standard	SCR	
model.	Moreover,	 if	we	 compare	 the	 relative	 contributions	 of	 the	
occupancy	and	the	telemetry	submodels,	the	improvement	is	simi-
lar	in	terms	to	the	RMSE	reduction,	but	the	former	provides	higher	
bias	reduction.	As	expected,	the	telemetry	submodel	led	to	an	im-
portant	RMSE	improvement	in	sigma	estimates,	which	is	particularly	
evident	 in	the	SCR-	Tel	model.	The	larger	�0.trap	bias	 in	SCR-	Occ-	Tel	
is	 probably	 due	 to	 the	 additional	 information	 in	 SCR-	Occ	 coming	
from	telemetry	values—	that	induces	higher	and	more	realistic	sigma	
values—	since	in	SCR	models	� and �0	are	structurally	correlated,	and	
changes	in	former	parameter	are	compensated	by	reciprocal	varia-
tion	in	the	magnitude	of	detection	(Efford	&	Mowat,	2014).

As	expected,	we	 found	 the	baseline	detection	 rate	 in	 cameras	
(�0.cam)	to	be	higher	than	with	box	traps	(�0.trap),	which	has	important	
implications	 for	 planning	 further	 studies	 targeting	 stone	martens.	
The	 baseline	 detection	 rate	 with	 box	 traps	 was	 half	 the	 baseline	
detection	rate	with	camera	traps	(0.014;	SD:	0.004).	The	relatively	
high	detection	 rate	via	 camera	 traps	 (0.027;	SD:	0.007)	 is	encour-
aging,	as	 it	suggests	 that	obtaining	suitable	occupancy	dataset	 for	
the	 integrated	model	should	be	relatively	easy.	The	use	of	 lures	 is	
widely	 used	 to	 improve	 the	 detection	 probability	 of	 carnivores	 in	

camera-	trapping	studies	(e.g.,	Avrin	et	al.,	2021;	Holinda	et	al.,	2020; 
Iannarilli et al., 2021),	and	lure	selection	can	significantly	affect	the	
ability	to	detect	rare	and	elusive	species	either	by	making	them	ap-
pearing	sooner,	moving	closer	or	stay	longer	in	the	cameras	field	of	
view (Ferreras et al., 2018;	Tourani	et	al.,	2020).	Therefore,	an	ap-
propriate	selection	of	 the	most	effective	 lures	could	contribute	to	
optimizing	camera-	trapping	sampling	protocols	(Figure 4)	and	lead	to	
better	precision	in	SCR-	IM	estimates	(Gerber	et	al.,	2011;	Macaulay	
et al., 2020).

A	 key	 assumption	 when	 integrating	 different	 datasets	 into	 a	
single	 unified	modeling	 approach	 (i.e.,	 an	 IM)	 is	 that	 the	 underly-
ing	state	process	being	sampled	 is	 the	same	(Kéry	&	Royle,	2021).	
The	 remarkable	overlap	 in	 occupancy	 estimates	derived	 from	box	
trapping	 and	 camera	 trapping	 do	 not	 provide	 grounds	 to	 suspect	
that	different	ecological	processes	were	occurring	across	both	spa-
tial	 extents,	 and	 do	 not	 refute	 the	 “same	 state	 process”	 hypothe-
sis.	While	we	acknowledge	that	occupancy	overlap	may	not	suffice	
to	ascertain	the	same	underlying	state	process,	we	stress	that	the	
underlying	processes	of	 the	data	 integrated	 in	 any	 IPM	are	 rarely	
identical.	However,	because	parameters	are	estimated	as	a	weighted	
average	 based	on	 the	 information	 from	 all	 the	 analyzed	 data	 sets	
combined	(Kéry	&	Royle,	2021,	p.	645;	Schaub	&	Kéry,	2022,	p.	239),	
IM's	 are	 relatively	 robust	 to	discrepancies	between	 its	 composing	
submodels	(SCR,	occupancy,	and	telemetry,	in	our	case)	and	such	an	
averaging	may	even	be	advantageous	(Kéry	&	Royle,	2021,	p.	645).	
We	also	found	high	overlap	for	all	parameters	estimated	through	the	
SCR,	SCR-	Occ,	SCR-	Tel,	and	SCR-	Occ-	Tel	approaches,	and	thus	none	
should	have	a	disproportionate	influence	on	the	results.	A	point	that	

TA B L E  1 Parameter	estimates	from	stone	marten	using	spatial	capture–	recapture-	integrated	model	with	detection/nondetection	and	
telemetry	data	(SCR-	Occ-	Tel);	spatial	capture–	recapture	and	detection/nondetection	data	(SCR-	occupancy);	spatial	capture–	recapture	and	
telemetry	data	(SCR	telemetry)	and	spatial	capture–	recapture	(SCR)	data	alone.	Population	density	(D̂;	individuals/km2);	scale	parameter	of	
the	detection	function	(�̂;	km);	baseline	detection	rate	for	box	traps	(�̂0.trap)	and	camera	traps	(�̂0.cam)	are	compared.

Model Param. Mean Mode SD

95% CRI

CV Red. CV (%)q2.5 q97.5

SCR-	occupancy-	
telemetry)

D̂ 0.370 0.352 0.081 0.236 0.554 0.219 37.3

�̂ 0.657 0.652 0.043 0.579 0.748 0.065 76.2

�0.trap 0.015 0.014 0.004 0.008 0.025 0.267 52.8

�0.cam 0.029 0.027 0.007 0.018 0.044 0.241 37.0

SCR-	occupancy D̂ 0.520 0.472 0.147 0.284 0.855 0.283 19.1

�̂ 0.419 0.383 0.085 0.300 0.635 0.203 26.3

�0.trap 0.036 0.028 0.016 0.014 0.075 0.444 21.4

�0.cam 0.059 0.048 0.021 0.029 0.109 0.356 — 

SCR-	telemetry D̂ 0.695 0.624 0.212 0.365 1.203 0.305 12.7

�̂ 0.671 0.659 0.044 0.593 0.764 0.066 76.2

�0.trap 0.012 0.010 0.004 0.005 0.022 0.333 41.0

SCR D̂ 0.747 0.607 0.261 0.344 1.362 0.349 — 

�̂ 0.541 0.470 0.149 0.335 0.908 0.275 — 

�0.trap 0.023 0.016 0.013 0.007 0.057 0.565

Note:	We	present	for	all	parameters	the	95%	Bayesian	credible	intervals	(CRI);	coefficient	of	variation	(CV	=	SD/mean),	and	reduction	of	CV	from	
parameters	of	the	SCR	model,	and	the	reduction	of	�0.cam	CV	from	the	SCR-	occupancy	model.
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need	further	studies	is	the	integration	with	extra-	binomial	noise	or	
unmodeled	overdispersion	of	the	datasets	(Isaac	et	al.,	2020).

Probably	 owing	 to	 the	 challenges	 involved	 in	 their	 individual	
identification,	 stone	marten	 density	 estimates	 are	 lacking	 in	 the	 lit-
erature.	 Exceptions	 include	 Balestrieri	 et	 al.	 (2021),	 who	 estimated	
0.95	(0.7 – 1.3)	individuals/km2	in	the	Alpine	areas	of	N	Italy	using	the	R	
package capwire	(Pennell	et	al.,	2013).	To	the	best	of	our	knowledge,	
only	 two	 studies	 reported	 stone	 marten	 density	 in	 Mediterranean	
region	of	 Iberia,	both	 in	places	of	Extremadura	 (SW	Spain)	and	esti-
mated	 D̂ = 0.24; SD: 0.08 and D̂ = 0.26; SD: 0.14	 individuals/km2	 for	
Valdecigüeñas	 (Jiménez	 et	 al.,	 2017)	 and	Matachel	 Valley	 (Jiménez,	
Nuñez-	Arjona,	 et	 al.,	 2019),	 respectively.	 These	 studies	 used	 SMR	
(Royle	et	al.,	2014;		Sollmann,	Gardner,	Parsons,	et	al.,	2013)	and	gen-	
SMR	(Whittington	et	al.,	2017)	models	with	integrated	telemetry	data,	
respectively,	and	consequently	allowed	estimating	movement	param-
eters �̂ = 0.82; SD: 0.05	 (Jiménez	et	 al.,	 2017)	 and	 �̂ = 0.67; SD: 0.06 
km	(Jiménez,	Nuñez-	Arjona,	et	al.,	2019).	Our	estimate	is	the	most	pre-
cise	among	those	published	so	far	for	stone	martens	in	Mediterranean	
areas	 and	 conforms	 with	 expectations	 based	 on	 the	 conditions	 of	
the	 landscape.	Density	estimates	 in	Cabañeros	National	Park,	 in	the	
Mesomediterranean	subhumid	area	(Rivas-	Martínez,	1983)	with	exten-
sive	areas	of	strawberry	trees,	would	be	consistent	with	previously	ob-
tained	densities	in	Mesomediterranean	xeric	areas	(Valdecigüeñas	and	

Matachel	Valley)	both	with	a	lower	production	of	fleshy	fruited	plants.	
The	ecological	importance	of	the	stone	marten	in	Mediterranean	en-
vironments	is	largely	unknown,	but	it	is	assumed	to	play	a	key	role	as	
a	 fleshy	 fruit	disperser	 (Pereira	et	al.,	2019),	potentially	acting	as	an	
ecosystem	engineer	(González-	Varo	et	al.,	2013).	Therefore,	accurately	
estimating	its	density	and	the	factors	that	govern	it,	such	as	the	habitat	
and	food	availability,	and	intra-	specific	relationships	(Jiménez,	Nuñez-	
Arjona, et al., 2019;	Monterroso	et	al.,	2020),	are	paramount	from	an	
ecological	standpoint	due	to	the	multitrophic	relationships	and	impli-
cations	for	ecosystem	structure.	Although	density	estimation	of	stone	
martens	would	be	possible	using	SMR	(incorporating	information	from	
box-	trap	captures	into	the	gen-	SMR	model),	the	challenges	involved	in	
marking	 stone	martens	with	 reasonable	mark	permanence	and	easy	
recognition	(e.g.,	using	collars	or	ear	tags)	make	the	use	of	transponders	
more	appropriate.	However,	maintaining	a	large	enough	box-	trapping	
sampling	grid	targeting	an	SCR	approach	is	laborious,	expensive,	and	
invasive	for	all	captured	individuals.	Under	these	conditions,	the	use	
of	the	SCR-	Occ-	Tel	is	recommended	because	it	allows	working	with	a	
relatively	small	capture–	recapture	grid	and	handling	smaller	numbers	
of	animals,	while	complementing	it	with	detection	(cheaper)	data	col-
lected	over	a	larger	area.	As	recaptures	are	based	on	transponder	read-
ing,	a	possible	methodological	improvement	would	be	the	deployment	
of	a	network	of	automatic	transponder	readers	(Charney	et	al.,	2009)	

F I G U R E  3 Scatter	plots	of	discrepancy	
measures	for	the	replicate	versus	the	
actual	data	for	the	spatial	capture–	
recapture-	integrated	(SCR-	IM)	model.	The	
Bayesian	p-	values	are	the	proportion	of	
points	below	the	1:1	equality	line	(black).	
Top	left:	Individual	×	trap	frequencies,	
which	summarizes	the	data	by	individual	
and detector aggregated over a single 
occasion.	Top	right:	Individual	encounter	
frequencies,	which	assess	individual	
heterogeneity.	Bottom:	Detector	
(trap)	frequencies,	which	is	based	on	
aggregating	over	individuals	and	replicates	
to	form	detector-	encounter	frequencies.
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as	a	new	set	of	detectors,	which	would	collect	data	 to	complement	
live	captures	in	box	traps	and	presence/absence	in	camera	traps.	This	
would	require,	however,	 including	a	new	parameter	in	the	model	for	
baseline	detection	rate	at	transponder	readers.

With	 this	 study,	 we	 provide	 a	 proof	 of	 concept	 of	 the	 SCR-	
Occ-	Tel	model	with	 real	data,	 and	of	 its	 applicability	 to	an	elusive	
species	with	 near-	absent	 natural	 markings	 by	 integrating	multiple	
data	 sources	with	 small	 sample	 size.	Our	 results	 indicate	 that	 the	
SCR-	Occ-	Tel	model	 could	be	used	 for	other	 species	 in	which	 indi-
vidual	 recognition	 in	 camera	 traps	 is	 not	 possible,	 minimizing	 in-
vasive	 sampling	 procedures.	 Possible	 extensions	 to	 this	 approach,	
for	example,	by	combining	occupancy	and	SCR	with	categorical	co-
variates	 (Augustine	et	 al.,	2019)	 or	 random-	thinning	SCR	 (Jiménez	
et al., 2021),	may	allow	additional	improvements	in	the	precision	of	
the	estimates.	The	integration	possibilities	are	as	many	as	the	pos-
sible	problems	to	be	addressed,	and	we	are	only	at	the	beginning	of	
this	journey.
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F I G U R E  4 Relationships	between	the	coefficient	of	variation	
for	population	size	and	number	of	detections	from	the	occupancy	
submodel,	under	four	dilution	scenarios	and	100	simulated	datasets	
per	scenario:	20%	(77	detections),	40%	(58),	60%	(38),	and	80%	
(19).	Violins	represent	the	distribution	of	CVs	in	each	dilution	
scenario.
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TA B L E  2 Bias	and	precision	of	parameters	estimate	from	(i)	
spatial	capture–	recapture,	detection/nondetection,	and	telemetry	
data	(SCR-	occupancy-	telemetry);	(ii)	spatial	capture–	recapture	and	
detection/nondetection	data	(SCR-	occupancy);	(iii)	spatial	capture–	
recapture	and	telemetry	data	(SCR	telemetry);	and	(iv)	spatial	
capture–	recapture	(SCR)	data	alone,	in	100	simulated	datasets.	We	
used	a	similar	of	our	proof-	of-	concept	scenario:	(i)	the	same	box	
trap	and	camera	trap	deployments;	(ii)	similar	detection	numbers	
(97;	range:	72–	117);	(iii)	density	of	0.35 individuals/km2;	(iv)	sigma	
of	0.6 km;	(v)	4	telemetry-	tagged	individuals	(20	locations	each);	
and	(vi)	21	captures.	We	used	mode	as	point	estimate.	Parameters:	
population	density	(D̂;	individuals/km2);	spatial	scale	parameter	of	
the	detection	function	(�̂;	km)	and	baseline	detection	rate	for	box	
traps (�̂0.trap).

Model
Parameter 
(mode)

Relative 
bias RMSE

SCR-	occupancy-	
telemetry

D̂ −0.102 0.099

�̂ −0.032 0.061

�0.trap −0.121 0.008

SCR-	occupancy D̂ −0.114 0.105

�̂ −0.085 0.122

�0.trap −0.105 0.010

SCR-	telemetry D̂ −0.192 0.110

�̂ −0.025 0.060

�0.trap −0.026 0.010

SCR D̂ −0.249 0.126

�̂ −0.044 0.127

�0.trap −0.082 0.012
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