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Abstract

Background: Striking a balance between the degree of model complexity and parameter identifiability, while still
producing biologically feasible simulations using modelling is a major challenge in computational biology. While
these two elements of model development are closely coupled, parameter fitting from measured data and analysis
of model mechanisms have traditionally been performed separately and sequentially. This process produces
potential mismatches between model and data complexities that can compromise the ability of computational
frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by
presenting a generic framework for combined model parameterisation, comparison of model alternatives and
analysis of model mechanisms.

Results: The presented methodology is based on a combination of multivariate metamodelling (statistical
approximation of the input–output relationships of deterministic models) and a systematic zooming into
biologically feasible regions of the parameter space by iterative generation of new experimental designs and
look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit
sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model
reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters
within the model are identified. The methodology is demonstrated by refitting the parameters of a published
model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative
model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/
crossbridge kinetics were found by identification of model components that can be omitted without affecting the
fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard
deviation of on average 15% of the mean values over the succeeding parameter sets.

Conclusions: Our results indicate that the presented approach is effective for comparing model alternatives and
reducing models to the minimum complexity replicating measured data. We therefore believe that this approach
has significant potential for reparameterising existing frameworks, for identification of redundant model
components of large biophysical models and to increase their predictive capacity.
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Background
Models in computational biology are becoming increas-
ingly complex, as in-silico frameworks are expanded to ac-
count for our rapidly increasing knowledge of physiological
mechanisms [1]. This poses considerable challenges for
uniquely linking model parameters to experimental data.
The desire to capture this complexity to simulate physio-
logical function increasingly results in models where the
identifiability of parameters from available experimental
data is relatively low. This situation is exacerbated by the
lack of consensus on the optimal method for fitting model
parameters to data, taking into account the, often, poor
signal to noise ratio in these measurements. Furthermore,
in many cases the model structure is such that the inverse
problem of parameter fitting is ill-posed due to multiple
parameter values producing the same model output.
Finally, measured data in the literature is often incomplete,
and state-of-the-art models are consequently based on a
synthesis of data measured at different temperatures, from
different laboratories and often from different species [2,3].
The reuse, combination and extension of existing mo-

dels are necessary components of the Physiome approach
[4]. In particular, as new datasets become available, and as
models are applied to address new hypotheses and under-
stand physiological situations, model developers are likely
to need to augment or extend models or model compo-
nents. This implies a requirement for a methodology for
comparing model predictions with experimental data in a
robust and automated fashion, efficiently incorporating
new knowledge to better constrain the model parameters,
systematically searching for the perturbation of the system
that highlights parameter sensitivities and constrains the
system, as well as reducing models to the minimal ap-
plicable version (as few parameters and equations as
possible).
We believe that reduction in model complexity is im-

portant in that it typically increases the sensitivity of
model outputs to the various parameters and hence the
consequences of introducing changes to the model be-
come more transparent. It also improves the likelihood
that the models will be predictive outside the regime of
the parameterising data. Specifically, if the identifiability of
model parameters can be increased, this will enhance the
ability to find the most relevant experimental measure-
ments to use in order to constrain parameters within a
given model framework, decreasing the uncertainty in
parameter estimates.
In this study we address the issue of ill-posed inverse

problems through the development of a generic frame-
work for combined model parameterisation, comparison
of model alternatives and analysis of model mechanisms.
The fitting of model parameters from measured data is
based on a combination of inverse metamodelling [5-9]
(prediction of the input parameters as functions of the
model outputs using regression) and iterative cost-func-
tion-based identification (look-up) of the simulations
resulting in values of the output metrics in close proxi-
mity of the measured values, and subsequent zooming
into relevant regions of the parameter space. In contrast
to conventional nonlinear fitting or minimisation algo-
rithms that only estimate parameter values, this method
provides an overview of the parameter space and identi-
fies regions in the parameter space where model outputs
match measured data. The variation in possible solutions
thereby provides an estimate of the uncertainty in the
parameter values. Moreover, the inverse metamodelling
component of the fitting pipeline provides an implicit
sensitivity analysis and a quantification of the identifia-
bility of model parameters from measured data.
In the look-up component of our proposed pipeline, the

output spaces of model alternatives are analysed using
Principal Component Analysis (PCA) [10,11], providing ef-
fective visualisation of the consequences of introducing
changes to models and allowing identification of redun-
dant model components. Hence, this modelling framework
represents a combined parameter fitting and systematic
analysis of model behaviour and model mechanisms for
possible model reduction. This has the clear advantage
that it provides a transparent link between parameter
values and experimental data in comparison to alternative
methods such as simplex optimisation [12], simulated an-
nealing [13] and Levenberg-Marquart optimisation [14],
which only provide parameter value estimates without in-
creasing the understanding of the underpinning model
mechanisms.
We demonstrate our proposed approach by applying

our parameter fitting pipeline to re-parameterise the car-
diac cell contraction model developed by Niederer et al.
[15], originally fitted to rat experimental data at room
temperature, to represent mouse functionality at 37°C by
iteratively matching the output from the Niederer-model
to a combination of measured data and the outputs of the
Land-model [16] (which was parameterised for mouse at
37°C). The lack of a complete and self consistent data set
of all output metrics of interest from a single species,
temperature and laboratory motivated the use of simu-
lated outputs from one model as a substitute for measured
data in the parameter fitting. Using in silico data also
provides the opportunity to analyse how the parameter
identifiability can be increased by introducing additional
output metrics for which measured values are not avail-
able in the literature, guiding future measurements.
Following re-parameterisation of the Niederer-model,

we apply the same methodology for finding reduced
model versions through the identification of redundant
model components. Specifically, we demonstrate how
our methodology can be used for systematically com-
paring model versions, analysing the sensitivity of the
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model outputs to the input parameters, and choosing
the most reduced version giving outputs matching mea-
sured data.
Methods
Application system
As outlined above we demonstrate our methodology by
applying it to two models of cardiac cell contraction,
consisting of differential equations describing contractile
force, including length-dependence and velocity-depen-
dence. The choice of application system was motivated by
the high degree of maturity of cardiac models; the heart is
arguably the most advanced example of a multi-scale
framework for biology. Both these models represent car-
diac muscle cells which consist of many contractile sub-
units, sarcomeres, each again organised into thin and
thick filaments [17,18]. The thick filaments contain myo-
sin crossbridges that bind to the thin actin filament to
generate force. Electrical activation results in an increase
in cytosolic calcium (Ca), and binding of calcium to the
regulatory calcium binding site on troponin C (TnC)
within the sarcomeres. This causes a conformational
change in the associated tropomyosin complex that un-
blocks the thin filament actin sites for binding to the thick
filament myosin crossbridges. In a crossbridge cycle, a my-
osin crossbridge on the thick filament attaches to the actin
thin filament, performs a power stroke to generate force,
and then detaches using Adenosine Triphosphate (ATP).
Both models applied in this study consist of equations
representing the influence of the muscle’s length on the
tension it generates (length-dependence; more force is
generated as a muscle is stretched), and the sensitivity of
the generated force to the rate at which the muscle is
stretched (velocity-dependence). The velocity-dependence
parts of the two models are based on the same mathemat-
ical formulation, which is therefore not considered in this
study (the velocity was set to zero for all simulations).
Both models, parameterised from a range of data, are bio-
physically based, and represent two different frameworks
for simulating the generation of contractile force in car-
diac cells as a consequence of calcium binding (a central
component of heart physiology). A description of the two
contraction models including the differential equations is
given in Additional file 1.
Both the Land-model and the Niederer-model were de-

veloped specifically for use with organ-scale simulations,
and therefore have a relatively low level of detail compared
to many other contraction models. Specifically, they do
not include many sub-states for the attachment of ATP
and the position of crossbridges. However, both of these
models do include enough detail to enable the direct
linking of parameters to biological data and exploration of
different mechanistically based hypotheses.
The Niederer-model was originally parameterised
using data for rats at 25°C, the calcium/TnC dynamics
are modelled by a simple molecular binding model, and
tropomyosin/crossbridge dynamics are represented by
the transient changes in the proportion of available actin
sites, while the binding sensitivity is length-dependent.
With the default parameter values, the Niederer-model
is unable to capture the fast relaxation kinetics of mouse
cardiac muscle at higher pacing frequencies.
The Land-model uses a standard cooperative binding

equation which has a Hill curve as its steady state solution
to represent troponin binding, where the calcium half
activation of maximal steady state tension generation is
length-dependent, combined with a modified version of
the crossbridge dynamics component from the model de-
veloped by Rice et al. [19], which uses a 4-state Markov
model. The Land-model uses only 2 of these states, the
so-called non-permissive and permissive (crossbridge cyc-
ling) states.
Evidence of the velocity-dependence of tension gener-

ation and the dynamic response to step changes remains
controversial in the experimental literature. The fading
memory model (FMM) [20] provides a succinct represen-
tation of these dynamics without being tied to a specific
underlying mechanism, and is exploited by both models.
The FMM represents the velocity response as several
strain-rate dependent variables which all decay with time.
An advantage of this model is that it is independent of the
contraction model, and can be added after modelling iso-
metric tension and length-dependence.
Our analysis of the two contraction models consists of

the following steps:

1) Sensitivity analysis and parameter identifiability
analysis based on statistically designed model
simulations and metamodelling. This was carried
out to test whether the Niederer-model parameters
could be predicted directly from the Land-model
outputs using regression, and to identify redundant
model components for both models. This is
illustrated in Figure 1.

2) Due to the relatively low prediction accuracy of the
resulting inverse metamodel for several of the
Niederer-model parameters, the inverse
metamodelling approach was combined with a
cost-function based look-up of simulations resulting
in model outputs in close proximity to the target
values. This was carried out iteratively as shown in
Figure 2, resulting in a zooming into the region of
the parameter space where the target outputs were
replicated by the simulations.

3) Model reduction by repetition of step 2 using
reduced model versions. The reduced model
versions were made based on the results from the



Figure 1 Illustration of classical and inverse metamodelling for sensitivity analysis and parameter estimation.
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parameter identifiability analysis, which was done for
both models.

Sensitivity analysis and parameter identifiability analysis
of the Niederer-model
In order to obtain an overview of the relationships bet-
ween input parameters and dynamic outputs of the
model, an experimental design of the Niederer-model
parameters using relatively wide parameter ranges was
made using a Latin Hypercube design (LHD) [21]. LHD
is a semi-random sampling procedure that is especially
suitable for use on high-dimensional data, since it se-
parates the data into several hypercubes, and samples
randomly within each hypercube. This ensures that all
regions of the parameter space are sampled. Within our
implementation, the parameter ranges in Table 1 were
used to generate a LHD of 500 parameter value combi-
nations, and simulations where run with the Niederer-
model using cell lengths of 90, 100 and 110% of resting
sarcomere length. An input Ca-transient measured for
mouse at 37°C (Figure 3) [22] was used in all simula-
tions. All simulations and subsequent analyses were
done in MATLAB® version R2012b [23].

Output metrics used to represent the model behaviour
Tension transients were simulated using both the Land
and Niederer contraction models, and described by
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Figure 2 Schematic representation of the parameter fitting
pipeline. Steps 2–8 were repeated in each iteration.
routinely experimentally measured descriptors of the
transient morphology. A list of the descriptors and their
recorded experimental values for mouse at 37°C is
shown in Table 2. Tension transients were simulated at
three cell lengths (90, 100 and 110% of resting sarco-
mere length) activated by the experimentally measured
Ca-transient in Figure 3.
Preliminary analyses of the results achieved by fitting

the model parameters to the metrics in Table 2, using data
obtained by simulations using the experimentally mea-
sured Ca-transient scaled by 90, 100 and 110%, showed
that the model outputs were highly sensitive to the cal-
cium concentration. In order to take this into account we
also matched the force-pCa (F-pCa) relationships of the
two models, using metrics from simulations run with fixed
Ca-concentrations as additional model characteristics to
constrain parameters. The Ca-concentrations used were a
logarithmically spaced series of 82 different concentrations
from 0.15 to 1 μM together with the concentration
10 μM. The resulting steady state tensions were norma-
lised by the maximal simulated tension value.
Model and experimental steady state force-calcium

curves are routinely approximated by a Hill-curve that
can be logarithmically transformed to be linear. The re-
lationship between pCa and log(F/(1-F)) was therefore
fitted to a straight line using Ordinary Least Squares
(OLS) Regression [24] (values of (1-F) < 10−3 were re-
moved in order to avoid numerical errors), and the
metrics given in Table 3 were calculated to represent the
properties of the force-pCa relationship. The F-pCa
curves were simulated for 90, 100 and 110% of resting
sarcomere length, and the resulting F-pCa metrics used
as additional output constraints (together with the ten-
sion transient characteristics resulting from simulations
with the experimental Ca-transient) to fit the parameters
of the Niederer-model. Similarly, the final set of target
output measures included both the metrics in Table 2
and those in Table 3, all calculated from simulations
with 90, 100 and 110% of resting sarcomere length for
the Land-model.

Sensitivity analysis by classical metamodelling
Partial Least Squares Regression (PLSR) [25-28] was then
used for regression-based sensitivity analysis. PLSR is a
subspace-based regression method based on decomposing



Table 1 Description and initial ranges for the varied Niederer-model parameters

Parameter Description Minimum value Maximum value Default value

Ca50ref Calcium sensitivity at resting sarcomere length (mM) 0.3e-3 0.8e-3 0.3e-3

krefoff Unbinding rate of Ca from TnC in the absence of tension (ms−1) 0 0.80 0.2

kon Binding rate of Ca to TnC (μM−1 s−1) 0 400 100

nr Relaxation parameter 2 4 3

β0 Magnitude of length-dependent activation effects 1 5 4.9

β1 Magnitude of filament overlap effects −8 0 −4

γ Effect of tension on the unbinding rate of Ca from TnC 2 100 2

nH Hill coefficient in the steady-state force-pCa curve 4 9 5

Tref Reference tension (kPa) 100 140 100

α0 Monoexponential activation rate seen in caged Ca experiments (ms−1) 0 0.048 0.008

αr1 Slow relaxation rate (ms−1) 0 0.012 0.002

αr2 Fast relaxation rate (ms−1) 0 0.0105 0.00175

Kz Relaxation parameter 0.1 0.2 0.15
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the data into a subspace representing the main features of
covariance between the regressors (here input parameters)
and the response variables (here model output metrics).
This subspace is represented by latent variables called
score- and loading vectors. PLSR can be seen as a regres-
sion analogue to PCA, and can handle numerous input
and output variables simultaneously. Unlike for example
OLS Regression [24], PLSR does not require the regressor
variables to be linearly independent. Coupling between pa-
rameters can be revealed using PLSR-based classical meta-
modelling through analysis of the regression coefficients
for cross-terms between the parameters. In addition, the
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Figure 3 The measured Ca-transient used in all simulations with the t
at 37°C.
correlations (Pearson’s R) between all input parameters
and output metrics included in the analysis were evaluated
to obtain overview of the model system.
Based on the parameter-simulated output data for the

Niederer-model, a classical metamodel was first con-
structed to predict the output metrics as functions of
the parameters using PLSR. This classical metamodel
was used for sensitivity analysis, using the regression co-
efficients as sensitivity measures (measures of the impact
of variations in each of the parameters on the output
metrics), as described in [29,30]. The metamodelling
procedure is illustrated schematically in Figure 1. Here,
80 120 160
me (ms)

Mouse, 37 οC

wo contraction models. The transient was measured for mouse



Table 2 Metrics used to describe the tension transients
and measured data for mouse at 37°C

Metric Description Land-model
default output*

Experimental
values

RT50 Time to 50% relaxation (ms) 24 16-30

RT90 Time to 90% relaxation (ms) 53 41-59

TTP Time to peak tension (ms) 33 26-41

Peak Peak tension (kPa) 41.1 32-52

Min Minimum tension (kPa) 0.073

These metrics were calculated from simulations using a Ca-transient.
*From a simulation at resting sarcomere length.
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both parameters and output metrics were centred and
standardised by subtraction of the mean value and divid-
ing by the standard deviation of each variable prior to
the regression, making the regression coefficients inde-
pendent of the scales of the variables and thereby easier
to compare in the sensitivity analysis. Cross-terms and
second order terms of the input parameters (i.e. prod-
ucts between combinations of variables in the regressor
matrix) were included in the metamodelling to take non-
linearities into account when predicting the output
metrics.

Parameter identifiability analysis by inverse metamodelling
To evaluate whether it would be possible to get a rea-
sonable estimate for the Niederer-model parameters by
direct prediction using regression, an inverse meta-
model, predicting the input parameter values from the
simulated output metrics in Table 2 and Table 3, was
generated using Hierarchical Cluster-based Partial Least
Squares Regression (HC-PLSR) [5,6]. HC-PLSR is a non-
linear extension of PLSR. As described above, PLSR can
handle correlated regressor variables, which makes it
Table 3 Description of the output metrics used to
describe the force-pCa relationship

Metric Description Land-model
default output*

Slope Slope of the fitted line −7.33

Intercept Intercept of the fitted line 45.9

RMSEP Root Mean Square Error of prediction
from fitting to a straight line
(representing the deviation from
a straight line)

0.18

R2force Correlation coefficient between the
fitted line and the simulated force-pCa
data (representing the deviation from
a straight line)

0.99

Max Maximum tension 119.4

RMSDforce RMSD between the simulated force
for the Niederer-model and the
target Land-model force
(in standardised variables)

0

These metrics were calculated from simulations using fixed Ca-concentrations.
*From a simulation at resting sarcomere length.
especially useful for inverse metamodelling of large,
complex dynamic models, which contain large sets of
highly coupled differential equations producing corre-
lated model outputs. HC-PLSR is a locally linear regres-
sion method based on separating the observations into
groups using fuzzy C-means (FCM) clustering [31-34]
on the latent variables from a global PLSR model includ-
ing all observations, and making local PLSR models
within each cluster. This allows prediction of highly
nonlinear input–output relationships. The inverse meta-
modelling procedure is also schematically illustrated in
Figure 1, while the HC-PLSR method used for the meta-
modelling is outlined in Additional file 2.
Both parameters and output metrics were centred and

standardised by subtraction of the mean value and divi-
ding by the standard deviation prior to the regression,
and 8 clusters where used in the HC-PLSR. The number
of clusters was chosen based on a comparison of pre-
dictive ability between different HC-PLSR metamodel
complexities ranging from models using 1–20 clusters.
This comparison showed that 8 clusters was the mini-
mum number of clusters providing maximal predictive
ability, and 8 clusters were therefore used to limit the
metamodel complexity. Cross-terms and second order
terms of the output metrics were included in the inverse
metamodelling to predict the input parameters, in order
to better handle nonlinearities in the input–output rela-
tionships of the model.
Due to the relatively large differences between the de-

fault outputs from the Land-model and the Niederer-
model, it was necessary to obtain a robust estimate of the
predictive ability of the metamodel to evaluate whether it
could be used to directly predict new parameter values for
the Niederer-model. The inverse metamodel was therefore
validated using 33% of the simulations from the experi-
mental design of 500 simulations as a separate test set.
Hence, the metamodel was calibrated using only 2/3 of
the simulations, while the rest of the simulation results
were kept aside for the purpose of prediction and thus not
included in the parameterisation of the metamodel. This
process produces a valid estimate of the ability of the
metamodel to predict the parameter values from a new
set of measured data.

Fitting of the Niederer-model parameters
The results from the sensitivity analysis and the parameter
identifiability analysis above showed that the identifiability
was relatively low for several of the Niederer-model pa-
rameters (see the Results section). We therefore combined
the inverse metamodelling with an iterative generation of
new experimental designs in the parameters, and identifi-
cation of the simulations resulting in output metrics in
close proximity to the target values. The target output
metrics were found from simulations run with the Land-
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model using the default parameter set and otherwise the
same settings as for the Niederer-model simulations.
These were used as substitutes for measured data in the
parameter fitting pipeline. A schematic representation of
the parameter fitting pipeline is shown in Figure 2. The
initial Niederer-model parameter ranges are given in
Table 1, and were used to generate the initial experimental
design (step 2 in Figure 2). Following simulations with
the contraction model, the output metrics described
above were calculated from the model outputs generated
using the parameter values from the experimental design
(step 3).
The next step of the fitting pipeline is to generate an in-

verse HC-PLSR metamodel, predicting the Niederer
model parameters as functions of the output metrics in
Table 2 and Table 3, based on the simulation results. This
metamodel is then applied to the target outputs (from the
Land-model simulations, see Table 2 and Table 3) to gene-
rate an initial estimate of the model parameters (step 4 in
Figure 2). The inverse metamodelling is performed in the
same way as described above under “Parameter identifia-
bility analysis by inverse metamodelling”.
For each set of output metrics corresponding to one of

the parameter sets in the experimental design, the prox-
imity to the target is found (step 5), and the predicted
parameter set from the inverse metamodelling is then
combined with the 20 simulations that generated obser-
vations in the closest proximity to the experimental
measurements (step 7). The predictions from the meta-
modelling were only included for those parameters for
which the inverse metamodel could provide a prediction
accuracy of >70% in a test set validation. Together, these
21 parameter sets (in the following referred to as the
“guideline sets”) are used to identify the direction or
localised region of the parameter space that allows the
model to best match the target observations. Using the
20 simulations having the lowest distances to the mea-
sured metrics in the guideline set was considered suf-
ficient in order to balance between zooming into the
relevant parameter space region and keeping the possi-
bility of identifying alternative regions giving feasible
output metrics. This increases the likelihood that all
possible regions in the parameter space that can produce
physiologically feasible simulations are found during the
parameter fitting. This, preferably together with con-
straints on the parameter values according to a priori
knowledge about possible ranges, can generate robust/
unique parameter estimates. The size and number of
identified regions of the parameter space producing
model outputs that replicate measured data give an indi-
cation of the uniqueness of the parameter estimates.
The achieved distances to the target outputs are found

by PCA of the output metrics resulting from the simula-
tions together with the target output (using centred and
standardised variables), and calculation of the Root
Mean Square Distances (RMSDs) of each simulation to
the target in the PCA scores. The PCA scores are used
to evaluate the distance to the target both in order to de-
crease the dimensionality of the data and to weight the
metrics according to their contribution to the variation
in the data. The PCA approach decomposes the data
into latent variables describing the main variance direc-
tions in the data, and each score vector is a weighted
sum of the original variables. Hence, the metrics having
the largest contributions to the variation in the data have
the highest weights for the first principal components
(PCs) resulting from the PCA. The minimal number of
PCs explaining 99% of the variance are included in the
distance calculations in our fitting pipeline.
For each parameter, the new parameter range for the

next iteration is set to the value span over the guideline
sets (X1) ± an additional span defined by a variable called
stepsizenew (in order to extend the design beyond the
values for the guideline sets and thereby further ap-
proach the target output values (step 8 in Figure 2)).
The ranges for the new experimental design are calcu-
lated using Equations (1) and (2).

Maximum values ið Þ ¼ maxi X1þ
�X1i

stepsizenew

� �����
���� ð1Þ

Minimum values ið Þ ¼ mini X1−
�X1i

stepsizenew

� �����
���� ð2Þ

The variable stepsizenew was introduced to allow adjust-
ment of the spread in parameter values according to the
degree of proximity to the target outputs. Initially, the
value of stepsizenew is 4 in order to analyse a large part of
the parameter space. In each following iteration, the mini-
mum achieved RMSD in the PCA score space is com-
pared to that for the previous iteration, and stepsizenew is
increased by 2 if the value has decreased, until it reaches a
maximum value of 20. Hence, the value of stepsizenew is
increased as the distance from the target decreases,
strengthening the zooming effect. If stepsizenew reaches
the value 20 before the results are sufficiently close to the
target metrics values, stepsizenew is decreased by 2 for the
next iteration design.
In each iteration, a new experimental design of para-

meter value combinations is generated using LHD in the
region of the parameter space defined by the new pa-
rameter ranges. The number of simulations for each
iteration is given as input to the fitting pipeline. Here,
using a LHD size of 500 simulations was regarded suffi-
cient in order to sample the parameter space relatively
densely, while limiting the computational time used in
each iteration. This procedure (step 2–8 in Figure 2) is



Tøndel et al. BMC Systems Biology 2014, 8:59 Page 8 of 20
http://www.biomedcentral.com/1752-0509/8/59
repeated iteratively until the success criterion is met
(evaluated in step 6 in Figure 2).
For our specific application, the criterion for success

of the parameter fitting was defined as follows:

1) For resting sarcomere length simulations: The
tension transient metrics should be within the error
bars for the measurements in Table 2.

2) For 110% of resting sarcomere length simulations:
The peak tension should be between 73 and 90 kPa
(based on experimental measurements of relative
changes in maximum twitch force generation [16])
and the minimum tension should be less than 1 kPa.

3) For 90% of resting sarcomere length simulations:
The peak tension should be between 12 and 20 kPa
(±20% of the baseline value from the Land-model).

4) For the force-pCa curve simulations: The RMSD
between the simulated force for the Niederer-model
and the target Land-model force (in standardised
variables) should be less than 15%.

The test set prediction accuracy of the inverse meta-
model was relatively low for several of the parameters
(see the Results section), so the metamodel was used only
in the first iteration to provide an initial indicator of the
direction in the parameter space to move (by adding extra
extensions to the ranges of some of the parameters based
on the prediction). The constraints given in Table 4 were
set on the parameters based on the variation in measured
values in the literature.
The fitting pipeline was written in MATLAB® version

R2012b [23] as both a parallelised and a non-parallelised
version, and both can be obtained from the authors
upon request.

Reduction of model complexity for the Niederer-model
and the Land-model
Parameter identifiability analysis for the Land-model
In the same way as for the Niederer-model, the possibility
for reducing the Land-model was tested based on a similar
test set validated inverse HC-PLSR metamodelling. The
Table 4 Constraints used on some of the Niederer-model
parameters used in the parameter fitting

Parameter Minimum value Maximum value

krefoff 0.05 0.4

kon 50 300

nr 1 -

β0 - 6

γ 1 5

nH 1 15

Tref 90 140
metamodel was made using data from simulations in a
LHD of 500 observations within the ranges given in
Table 5, using the output metrics in Tables 2 and 3 to
predict the Land-model parameters. All variables were
centred and standardised prior to the regression, and
cross-terms and second order terms of the output metrics
were included.

Model reduction
Reduction of the Niederer-model The parameter fit-
ting procedure described above was repeated with parts
of the Niederer-model omitted in order to see whether
the model could be reduced while keeping the replica-
tion of the simulated output data from the Land-model.
The choice of model parts to omit was based on the re-
sults from the sensitivity- and parameter identifiability
analysis, indicating very low sensitivity to the parameters
nr, αr2 and Kz. These parameters were assumed to have
minor effects on the model outputs, and were therefore
omitted by making the model independent of these
model parts. This omission was achieved by giving the
parameter αr2 the value zero, making the model inde-
pendent also of nr and Kz.

The initial parameter ranges in the fitting pipeline
were the same as in the previous parameter fitting (given
in Table 1), and all output metrics in Tables 2 and 3
were included to fit the model parameters.

Reduction of the Land-model Based on the parameter
identifiability analysis of the Land-model, kTRPN, nxb and
kxb were successively set equal to 1 (keeping the other
parameters at the default values), in order to analyse the
model output effects of variations in these parameters.
The simulations were run as described above, and all
output metrics in Tables 2 and 3 were included in the
analysis.

Results
As described in the Methods section, we have analysed
the sensitivity of the model outputs to variations in the
input parameters, verified parameter identifiability and
compared and matched the model outputs for the two
cardiac contraction models. The analyses were based on
both simulations run using a measured Ca-transient for
mouse at 37°C to generate dynamic tension transients,
and fixed, individual Ca-concentrations to simulate the
steady state F-pCa curve. The Niederer-model was re-
parameterised using the presented parameter fitting
pipeline in Figure 2 using a combination of measured
data and synthetic data from Land-model simulations.
Reduced versions of both models were identified based
on the parameter identifiability analysis and comparison
of the outputs from reduced model versions with the



Table 5 Description and ranges for the Land-model parameters used for parameter identifiability analysis

Parameter Description Minimum value Maximum value Default value

Tref Reference tension (kPa) 100 140 120

Ca50ref Calcium sensitivity at resting sarcomere length (μM) 0.5 0.8 0.7

TRPN50 Troponin C sensitivity 0.25 0.5 0.35

nTRPN Hill coefficient for cooperative binding of Ca to TnC 1 2.5 2

kTRPN Unbinding rate of Ca from TnC (ms−1) 0 0.5 0.1

nxb Hill coefficient for cooperative crossbridge action 3 7 5

kxb Scaling factor for the rate of crossbridge binding (ms−1) 0 0.6 0.1

β1 Magnitude of length-dependent activation effects −2 −1 −1.5

β0 Magnitude of filament overlap effects 1 5 1.65
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Land-model default outputs. The results are detailed
below.

Sensitivity analysis and parameter identifiability analysis
of the Niederer-model
Sensitivity analysis by classical metamodelling
Sensitivity analysis based on a classical PLSR metamodel
indicated that physiological simulations using the
Niederer-model had low sensitivity to the parameters nr,
γ, αr2 and Kz, while they were most sensitive to Ca50ref,
krefoff, β0, β1, nH and Tref. The regression coefficients
from the PLSR showing the sensitivity of the output
metrics to the input parameters are shown in Figure 4.
These results indicate that parts of the Niederer-model
tropomyosin kinetics component can be simplified by
omitting the low sensitivity parameters. The model
equations in Additional file 1 show that giving αr2 the
value zero would make also nr and Kz redundant, signifi-
cantly reducing the model complexity. This possibility
was therefore analysed further below.
Ca50ref

krefoff

kon

nr

β0

β1

γ

nH

Tref

α0

αr1

αr2

Kz

Figure 4 Regression coefficients from the classical PLSR metamodel. T
to the different input parameters. Results are shown for 110% of resting ce
The sensitivity patterns described above were confirmed
by the plot of the correlations (Pearson’s R) between all
input parameters and model output metrics included in
this analysis, shown in Figure 5. As expected due to the
sampling procedure used to generate the experimental
design of parameter sets, Figure 5 shows no strong cor-
relations between the input parameters in the model.
However, there are several strong correlations between
the output metrics. This was also expected, since they are
metrics representing curve shapes. However, the results
also show correlations between the metrics representing
the tension transients and those representing the force-
pCa-relationship.

Parameter identifiability analysis by inverse metamodelling
The parameter prediction accuracies from the inverse HC-
PLSR metamodel are shown in Figure 6, represented by
the correlation coefficients (R2-values) between the simu-
lated and the predicted parameters from a test set predic-
tion. The test set consisted of 33% of the simulations from
he regression coefficients were used to analyse the model sensitivities
ll length.



Ca50ref

krefoff

kon

nr

β0

β1

γ

nH

Tref

α0

αr1

αr2

Kz

RT50

RT90

TTP

Peak

Min

Intercept

Slope
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R^2force

RMSEP

RMSDforce

Ca50ref krefoff kon nr β0 β1 γ nH Tref α0 αr1 αr2 Kz RT50     RT90    TTP      Peak     Min    Intercept Slope  Max  R^2force  RMSEP RMSDforce

Figure 5 Correlations (Pearson’s R) within and between input parameters and output metrics. Results are shown for 110% of resting
cell length.
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the LHD of 500 simulations. These simulations were not
included in the calibration of the metamodel, and there-
fore represent new data, so that the resulting predictive
ability would be what we can expect from a prediction
using new measured data (or the output from simulations
Figure 6 Results from the parameter identifiability analysis of the Nie
HC-PLSR metamodel, which was test set validated using 33% of the simula
with the Land-model). As Figure 6 shows, the inverse
metamodel was not able to predict all parameters accur-
ately, but could give useful information about the parame-
ters β1, β0 and Tref. The reason why some of the model
parameters that the sensitivity analysis indicated a model
derer-model. Parameter prediction accuracies from the inverse
tions as an independent test set. 8 clusters were used in the HC-PLSR.
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sensitivity to were predicted incorrectly by the inverse
metamodel is probably that the model is sloppy, mea-
ning that many parameter value combinations can gene-
rate the same output metrics values. This characterises
most dynamic models [35]. The model can still be sensi-
tive to variations in these parameters, but it is difficult
to predict parameter values from the output metrics for
sloppy models. However, our results demonstrate the
value of using inverse metamodelling to give an indica-
tion of the best direction in the parameter space to
move to approach reasonable estimates for the values of
the three parameters for which the prediction accuracy
was relatively high. For the other parameters the inverse
metamodel alone will not provide an estimate that can
be trusted. The fitting procedure therefore had to be ex-
tended by including the look-up approach to guide new
simulations.

Fitting of the Niederer-model parameters
Figure 7 shows a comparison of the outputs from si-
mulations with default parameter values and resting cell
length for the two models. As the figure shows, the
Niederer-model is not able to capture the faster relaxa-
tion kinetics of the mouse at higher pacing frequencies.
This was expected, since the Niederer-model was ori-
ginally parameterised using a different Ca-transient and
fitted to experimental measurements from a different
species. Figure 8 shows the results from a PCA of the
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Figure 7 Tension transients for the Land- and Niederer-models with d
achieved through simulations using the Ca-transient shown in Figure 3. Th
measured for rat at room temperature.
simulation results based on the parameter value com-
binations generated by the initial experimental design
using the parameter ranges in Table 1, together with the
results from the Land-model. This was the PCA used in
the first iteration of the fitting pipeline.
Using our presented parameter fitting pipeline, three

Niederer-model parameter sets were identified that fit-
ted the Land-model data. The three successful para-
meter sets found (see Table 6) gave outputs from the
Niederer-model matching the Land-model outputs for
all three cell lengths used, including the force-pCa rela-
tionships. The force-pCa relationship for parameter set
1 in Table 6, which gave the best match to the Land-
model outputs, and the tension transients for all param-
eter sets in Table 6 are shown in Figure 9. The force-
pCa relationships for the remaining parameter sets in
Table 6 are shown in Additional file 3: Figure A3.1. The
spread in parameter values provides an indication of
how constrained a parameter is for a given set of output
metrics. In this specific case, the Niederer-model pa-
rameters could be constrained to a standard deviation
of on average 17.4% of the mean values over the suc-
ceeding parameter sets. Figure 10 shows the 500 simula-
tions from the LHD used in the last iteration together
with the Land-model output in the score space from a
PCA of all output metrics. As expected, the simulation
results are significantly closer to the region of the Land-
model outputs than in the first iteration (see Figure 8).
120 160
e (ms)

 
Land−model,

parameterised for mouse at 37οC

Niederer−model,
parameterised for rat at 25oC

efault parameter values at resting cell length. The transients were
e Niederer-model was originally parameterised using a Ca-transient
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Figure 8 Comparison of simulation results from the first iteration with the target output metrics. Results from a PCA of the simulations
based on Table 1 (grey), together with the results from the Land-model (red). The 20 simulations closest to the target are marked with circles in
cyan. The corresponding 20 parameter sets were used together with the parameter prediction from the inverse metamodelling to find new
parameter ranges and generate a new experimental design for simulations with the Niederer-model.

Tøndel et al. BMC Systems Biology 2014, 8:59 Page 12 of 20
http://www.biomedcentral.com/1752-0509/8/59
Reduction of model complexity for the Niederer-model
and the Land-model
Parameter identifiability analysis for the Land-model
In order to identify a reduced version of the Land-model,
a LHD of 500 simulations were made with the parameter
ranges given in Table 5 for the nine length-dependence
parameters of the Land-model. An inverse metamodel
was made in the same way as for the Niederer-model, and
the test set parameter prediction accuracies achieved are
shown in Figure 11. The results in Figure 11 show that
only Tref and β0 had R2-values above 0.8, but also Ca50ref
Table 6 Niederer-model parameter values corresponding to t

Parameter Parameter set 1 Parameter set 2

Ca50ref 0.31e-3 0.33e-3

krefoff 0.08 0.12

kon 227.2 163.1

nr 1.38 1.66

β0 0.10 0.06

β1 −1.35 −1.14

γ 3.99 4.75

nH 13.48 10.23

Tref 135.8 130.6

α0 0.03 0.03

αr1 0.48 0.46

αr2 0.009 0.016

Kz 0.07 0.10

Model outputs were matched to target data for 90, 100 and 110% of resting sarcom
and TRPN50 had R2-values above 0.7, which is a reason-
ably good prediction accuracy considering the large span
in parameter values utilised here. nTRPN and β0 had R2-
values around 0.6. Hence, most of the parameters from
the Land-model could be constrained by the output met-
rics considered. However, kTRPN, nxb and kxb were not as
well constrained, having R2-values below 0.5. Hence, the
possibility for reducing the model complexity by making a
steady state approximation by increasing kTRPN and kxb to
10 times the default value was analysed as described
below. The low sensitivity to nxb may be explained by the
he model output values closest to the target

Parameter set 3 Mean value Standard deviation

0.35e-3 0.33e-3 2.21e-5

0.08 0.09 0.03

186.7 192.3 32.4

2.02 1.68 0.32

0.07 0.08 0.02

−1.29 −1.26 0.11

4.79 4.51 0.45

12.09 11.93 1.63

115.8 127.4 10.4

0.06 0.04 0.02

0.43 0.46 0.02

0.010 0.01 3.97e-3

0.07 0.08 0.02

ere length.



Figure 9 Resulting model outputs after re-parameterisation of the Niederer-model. A) Force-pCa relationship for parameter set 1 in Table 6.
The force-pCa relationships for the remaining parameter sets in Table 6 are shown in Additional file 3: Figure A3.1. The parameter λ represents
the cell length relative to the resting cell length. B) Tension transients for the three simulations for which the force-pCa relationships matched
that of the Land-model.
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coupling to nTRPN, which was illustrated in [16]. The
effects of removing this parameter by setting it to 1 are
analysed below.

Model reduction
Reduction of the Niederer-model The values of αr2 in
Table 6 are close to zero, and according to the analysis
above the Niederer-model has low sensitivity to this
parameter. Hence, we tested whether the model can be
simplified by giving this parameter the value zero. This
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Figure 10 Comparison of simulation results from the last iteration wi
simulations from the last iteration with the Niederer-model (grey) together
gives K1 = 0, K2 = 0 (see Additional file 1), and thereby a
simplified equation for zMax. The parts of the equation
system containing the parameters nr and Kz would then
also be zero, making these parameters redundant. A new
parameter fitting was therefore carried out, starting from
the same initial parameter ranges as in the first param-
eter fitting, but now with αr2 = 0 in all parameter sets.
The same parameter fitting procedure as described
above was used, and four parameter sets (Table 7) were
found to give values of the output metrics close to
0

5

PC1

Niederer−model simulations

Land−model default output

th the target output metrics. PCA of the output metrics for the 500
with the Land-model default outputs (red).



Figure 11 Results from the parameter identifiability analysis of the Land-model. Prediction accuracies (test set validated using 33% of the
simulations as an independent test set) for the Land-model parameters using inverse HC-PLSR metamodelling with 8 clusters.
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the target values. Comparison of the parameter sets in
Tables 6 and 7 shows that the values are relatively simi-
lar for most parameters. Hence, two separate parameter
fittings identified the same parameter space region,
giving confidence in the parameter estimates.

The force-pCa relationship for parameter set 2 in
Table 7, which gave the best match to the Land-model
outputs, and the tension transients for all parameter sets
in Table 7 are shown in Figure 12. The force-pCa relation-
ships for the remaining parameter sets in Table 7 are
shown in Additional file 3: Figure A3.2 and Figure A3.3.
Our results therefore indicate that it is possible to reduce
Table 7 Niederer-model parameter values corresponding to t

Parameter Parameter set 1 Parameter set 2 Parameter s

Ca50ref 3.51e-04 3.45e-04 3.45e-04

krefoff 0.11 0.12 0.08

kon 231.4 268.2 240.2

β0 0.66 0.28 0.92

β1 −1.33 −1.34 −1.24

γ 3.73 4.56 4.61

nH 11.31 12.50 14.22

Tref 128.3 126.2 113.4

α0 0.03 0.02 0.04

αr1 0.31 0.28 0.38

Model outputs were matched to target data for 90, 100 and 110% of resting sarcom
the Niederer-model by setting αr2 to zero while keeping
the same model behaviour.
For this reduced model version, the parameters could

be constrained to a standard deviation of on average
14.6% of the mean values over the succeeding parameter
sets, as compared to 17.4% for the original model ver-
sion. This is not a very large decrease in the spread of
resulting parameter sets, but this model reduction
process has clear advantages in terms of ultimately in-
creasing the capacity to derive physiological insight
from the model behaviour and identification of fea-
sible measurements to make in order to constrain
parameters.
he model output values closest to the target (αr2 = 0)

et 3 Parameter set 4 Mean value Standard deviation

3.71e-04 3.53e-04 1.23e-05

0.14 0.11 0.03

294.0 258.4 28.4

0.71 0.64 0.26

−1.47 −1.35 0.10

4.29 4.30 0.41

11.70 12.43 1.29

104.1 118.0 11.3

0.05 0.04 0.01

0.35 0.33 0.05

ere length.



Figure 12 Resulting model outputs for the reduced version of the Niederer-model. A) Force-pCa relationship for parameter set 2 in Table 7,
found using αr2 = 0. The force-pCa relationships for the remaining parameter sets in Table 7 are shown in Additional file 3: Figure A3.2 and Figure
A3.3. B) Tension transients for all parameter sets in Table 7, found using αr2 = 0. The parameter λ represents the cell length relative to the resting
cell length.
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Reduction of the Land-model The parameter identifia-
bility analysis indicated that the Land-model had rela-
tively low sensitivity to the parameters kTRPN, nxb and kxb
in the part of the simulation space analysed here. These
three parameters were therefore successively given the
value 1, while all the other parameters were kept at the
default values, and simulations were run in order to ana-
lyse the consequences these changes had for the model
outputs. Giving these parameters the value 1 simplifies
the equation system for the Land-model (see Additional
file 1). Setting nxb = 1 led to relatively large changes in
Figure 13 Resulting model outputs for the Land-model with kTRPN = 1
achieved with kTRPN = 1. The parameter λ represents the cell length relative
model behaviour (results not shown), as expected con-
sidering the importance of thin filament cooperativity.
However, setting kTRPN = 1 or kxb = 1 had only relatively
small consequences for the behaviour; the force-pCa
relationships were identical to the default output, and the
tension transients were still within the measurement error
compared to the default tension transients (see Figures 13
and 14). Hence, this indicates that it is possible to speed
up these components of the Land-model to near steady
state by setting kTRPN = 1 or kxb = 1 while keeping appro-
ximately the same model behaviour. This result was
. A) Force-pCa relationship using kTRPN = 1. B) Tension transients
to the resting cell length.



Figure 14 Resulting model outputs for the Land-model with kxb = 1. A) Force-pCa relationship using kxb = 1. B) Tension transients achieved
with kxb = 1. The parameter λ represents the cell length relative to the resting cell length.

Tøndel et al. BMC Systems Biology 2014, 8:59 Page 16 of 20
http://www.biomedcentral.com/1752-0509/8/59
probably caused by the fact that the measured time to
peak is relatively low for mouse, giving these two parame-
ters undefined upper bounds given the metrics included
in this analysis (both parameters have a well-defined lower
bound of zero). Setting both to 1 simultaneously caused
the time to peak to be too low compared to the measured
data, as expected. This indicates that it is difficult to iden-
tify the rate-limiting step using the metrics included in
this study, something that is consistent with the coupling
of kTRPN and kxb found previously [16].

Discussion
In this study, we have presented and demonstrated the
value of a generic and robust methodology for combined
parameter fitting and analysis of model mechanisms. To
demonstrate this method, we have adjusted the para-
meters of the Niederer-model to fit data for mouse at
37°C. We also succeeded in finding reduced versions of
both the Land-model and the Niederer-model through
comparison of model alternatives and fitting of reduced
model versions to measured data. Our results indicate
that this is an effective approach for comparing model
alternatives and reducing models to the minimum com-
plexity replicating measured data.
In our analysis we make the assumption that the equa-

tions capture the salient first order dynamics of our sys-
tem of interest. Both models applied here are biophysically
based. By understanding the relationships between the pa-
rameters and model predictions, we gain further insight
into the regulation and physiology of our system. The
Niederer-model has two relaxation terms, but setting αr2
to zero leaves only one relaxation term. The omitted rela-
xation term was designed to fit rapid relaxation rates
following a step change in calcium due to the activation of
a calcium chelator. However, our analysis shows that a
simpler model suffices for contraction under conditions of
regular changes in calcium, which includes most phy-
siological conditions. The Land-model starts with only
one relaxation term, so it cannot be removed. Setting the
parameters kTRPN or kxb to 1 are approximations for very
fast or near steady-state kinetics.
The fitting pipeline includes an implicit sensitivity ana-

lysis and analysis of parameter identifiability, making it
suitable for testing hypotheses for model reduction.
Hence, an advantage of this method compared to alter-
native methods is that it not only provides the parameter
values, but also gives an estimate of the identifiability of
parameters and the uncertainty in the parameter esti-
mates through both the range of values in the feasible
parameter sets and the ability of the inverse metamodel
to predict the different parameters. Combining the ana-
lysis of model mechanisms with parameter fitting makes
it possible to automatically detect how the behaviour of
the model as well as the parameter identifiability
changes as a consequence of moving to different parts of
the parameter space, and whether adjusting certain pa-
rameters makes other parameters or model components
redundant.

Sensitivity analysis
Biological models typically contain numerous output met-
rics resulting from large sets of coupled equations, and
complex covariance patterns often exist between the out-
puts. Choosing the measurements to make in order to
constrain biological parameters thus requires sensitivity
analyses and parameter fitting methodologies that can
take numerous output variables into account simulta-
neously and evaluate the impact of parameter value
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perturbations on the entire model system. Regression-
based sensitivity, as used here, is based on deriving a selec-
tion of data points by experimental design or semi-
random sampling, and analysing the resulting input–out-
put relations using regression [36]. The regression coeffi-
cients then provide direct measures of the impact of
variations of the individual inputs on the output. Most
regression-based sensitivity analyses published are based
on relatively simple linear models fitted by OLS Regres-
sion [37]. In this study, the sensitivity analysis was based
on classical PLSR metamodelling due to its ability to han-
dle linearly dependent regressor variables, several re-
sponse variables simultaneously and to utilise inter-
correlations between the response variables for regression
model stabilisation.
Metamodelling has been widely used in e.g. engineering,

for speed-up of computations, sensitivity analysis and
uncertainty assessment [37], and recently, multivariate
metamodelling using PLSR [25-28,30,38] and HC-PLSR
[5,6,29] has been shown to be effective for analysis of the
complex, nonlinear input–output relationships of bio-
logical models. Classical PLSR metamodels, where the
model outputs are predicted as functions of the input
parameters, are useful for sensitivity analysis and analysis
of interactions between input parameters and covariance
patterns between multiple model outputs [29].
Several alternatives to regression-based sensitivity ana-

lysis exist, such as rank transformation, first- and second
order reliability algorithms (FORM and SORM) and
variance-based methods [36]. Rank transformation is an
alternative to conventional regression-based sensitivity
analysis in cases where the input–output relations are
monotonically nonlinear, while reliability algorithms are
used in cases where the primary focus is on a particular
mode of failure of the system rather than the entire
spectrum of possible outcomes. Variance-based methods,
such as Sobol's method [39], use Analysis of Variance
(ANOVA)-type decomposition of the output function into
a polynomial expression including cross-terms between
the input parameters. Partial variances are computed from
each of the terms in the decomposition, and the sensitivity
of each term is defined as the partial variance divided by
the total output variance. However, these methods con-
centrate on the effects on one output variable at a time,
and are therefore not as useful for analysis of biological
systems that typically contain intricate feedback loops.

Parameter fitting
As described above, in order to re-parameterise the
Niederer-model, we used a combination of inverse meta-
modelling [5,8], predicting the input parameter values
directly from the model output metrics, and iterative
zooming into the relevant region of the parameter space
based on a look-up approach. However, numerous
alternative methods exist to fit model parameters from
measured data. Optimisation of the parameter values
based on simplex optimisation [12] is a widely used ap-
proach. However, the results become unreliable when
many parameters are required to be fitted simultan-
eously, and the most common approach is to fit a few
parameters at a time. The result from simplex optimisa-
tion is highly dependent on the starting values used, and
this method is thus often not able to find the global
optimum. The optimisation itself is computationally
non-expensive, but the optimisation might become time
consuming if the dynamic model is large, since the opti-
misation has to be run many times with different start-
ing values to provide reliable results.
In order to compare our method to the more conven-

tional simplex optimisation, we ran optimisations with
the Nelder-Mead simplex (direct search) method [40]
using the “fminsearch” function in MATLAB® (with de-
fault settings). Optimisations were run using 50 different
starting values (randomly chosen from the initial design
used in our metamodelling-based parameter fitting pipe-
line), adding a penalty to the cost function value for
moving outside the feasible parameter ranges given in
Table 4. The cost-function we used was the RMSD
between the simulated and reference model outputs
(Tables 2 and 3). The RMSD was calculated using output
variables that had been scaled by subtracting the mean
and dividing by the standard deviation for all model out-
puts from simulations using the initial experimental de-
sign described under “Fitting of the Niederer-model
parameters” in the Methods section. None of the opti-
misations could identify any parameter sets within the
feasible ranges producing model outputs replicating the
reference data. Even though we used a wide variety of
starting values and penalty functions, all optimisations
were driven outside the feasible region, and were unable
to move back into the feasible region, in spite of the pe-
nalty added to the cost function. It therefore seems that
with a very complex cost function with many local
minima like the one used in this study, our statistical ap-
proach is more useful than the simplex optimisation for
constraining the model parameters.
Alternative optimisation methods include simulated an-

nealing [13] and Levenberg-Marquart optimisation [14].
These methods generally give more reliable results, and
are more likely to find the global optimum. However, they
are also significantly more computationally expensive, and
are therefore not very suitable for parameter estimation of
large, dynamic models. Moreover, neither of these me-
thods or the simplex optimisation provide an increased
understanding of the underlying model mechanisms, they
result in a parameter estimate only, and the results can
often be non-physiological when no constraints on the
parameter values are used.
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As an alternative, Artificial Neural Network-based
methods [41] are computationally non-expensive and can
fit input–output relations including several outputs suc-
cessfully. However, the neural network models often be-
come extremely complex and difficult to interpret. They
are also highly dependent on the quality of the data, and
since they have the flexibility to adjust to small nuances in
the data there is a risk of fitting to noise. Physiological
measurements often lack a sufficient signal-to-noise ratio,
giving non-robust approximations of the parameter values
when these methods are used for parameter estimation.
Kalman Filtering [42] and derivative-based methods give
an estimate of parameter confidence, but can be computa-
tionally expensive, and derivative-based methods may in
addition display convergence problems.
Sarkar and Sobie [43] recently published a regression-

based approach for constraining free parameters in dyna-
mic models, based on inverting the regression coefficient
matrix of a classical metamodel, and using this inverted
regression coefficient matrix to predict the parameters
from the model outputs. This resembles inverse metamo-
delling, but in inverse metamodelling the input parame-
ters are predicted directly from the output metrics from
simulations using regression, avoiding the need for an in-
vertible (square) regression coefficient matrix. Both the
approach presented by Sarkar and Sobie and the inverse
metamodelling approach require a non-ambigous (one-to-
one) relationship between input parameters and model
outputs. This, however, is often not the case for many bio-
logically based models (often referred to as model sloppi-
ness [35]), creating a need for an alternative approach to
constrain model parameters. This model sloppiness was
also demonstrated in the application in this study, where
low parameter identifiability resulted from the initial ana-
lysis (Figure 6).
In spite of model sloppiness, inverse metamodelling can

effectively identify the direction in the parameter space to
move in order to approach measured data in cases where
the baseline is far from the target. This can limit the
search space compared to what is needed with alternative
methods such as simplex optimisation. Without prior
knowledge of suitable starting values for the optimisation,
a simplex optimisation requires numerous simulations to
give reasonable results. In contrast, the inverse metamo-
delling component of our method effectively guides the
design of new simulations towards the most relevant parts
of the parameter space, and the search space can thereby
be reduced. This can also be achieved with methods like
genetic algorithms or Levenberg-Marquardt optimisation.
However, these methods provide no implicit, easily inter-
pretable analysis of model mechanisms.
If the inverse metamodel is not calibrated using relevant

simulation results, it has the potential to identify an incor-
rect search direction in the parameter space. However, the
look-up process will automatically detect this error, since
the closest simulations will then be further from the mea-
surements than in the previous iteration. In such cases,
the inverse metamodelling component can be omitted,
and the look-up part of the algorithm used alone to guide
the design of new simulations. The method often results
in a set of possible solutions that can be restricted ac-
cording to known physiological ranges of the parameters.
Accordingly, as new measurements of output metrics or
parameters become available, they can further constrain
the set of possible solutions. Hence, prior knowledge can
easily be taken into account in the procedure. Moreover,
other cost-functions can easily be incorporated in the
pipeline, in addition to, or instead of, the RMSD calcu-
lated in the PCA score space. Hence, a weighting of the
output metrics according to, for example, relevance for
clinical use can be utilised.
Due to the dependency of the results from each fitting

iteration on the previous iteration, there may be other
directions in the parameter space that could also give
possible solutions. Hence, the parameter space needs to
be sampled densely in the initial experimental design to
ensure that all possible solutions are found. However,
in each iteration the experimental design is extended
slightly beyond the ranges of the guideline set. Hence,
alternative directions in the parameter space that would
allow model outputs replicating the measurements are
likely to be found during the procedure. In cases where
the target is very far from the output of the baseline
parameter set, the method may need numerous simula-
tions to make sure the parameter space is sampled suffi-
ciently and that all possible clusters of feasible solutions
are found, but due to the effective identification of a rea-
sonable direction in the parameter space to move by the
inverse metamodelling, the method is still likely to be
more efficient in most cases than a “brute force” opti-
misation using, for example the simplex method, with a
large number of different starting values. The method
gives no clear answer as to when to stop, how many
parameter values are enough or how we can know
whether we have found all possible clusters/manifolds of
solutions, but this is a problem with any parameter esti-
mation method. Likewise, if the data used to fit the pa-
rameters does not cover the complete space of system
behaviour, the model parameters will not be constrained
by the data, which also means that the model is too
complex for the data it is being used to understand. This
is true for all models and parameterisation methods.

Model reduction
Parameterising cardiac cell models in a whole-organ con-
text is important for multi-scale modelling and ultimately
for clinical use of the models, and requires the ability to
control and foresee the whole-organ consequences of
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variations in cell-level model parameters. This makes it
easier to determine how to pass on parameters between
the scales, and eases the parameterisation of the cell-
models in a whole-organ context. This again requires com-
pact cell models with relatively few parameters and equa-
tions for which overview of the input–output relationships
can be easily gained. By reducing models to a minimum
number of parameters and equations, using detailed bio-
physical data we can reduce the number of free parameters
that can then be efficiently fitted when these cellular
models are embedded within whole organ models and fit-
ted to compatible data. In many cases, and in particular
clinical contexts, only whole organ data will be available.
Consequently, there is a need for efficient comparison of
model alternatives in order to find the most reduced ver-
sion that is able to replicate experimental measurements.
For biochemical reaction networks, several methods have
been developed for reducing the networks to the minimal
complexity required [44]. We present here a generic frame-
work for combined sensitivity analysis, parameter identifia-
bility analysis, parameter fitting and model reduction,
which can be applied to all types of deterministic models
generating a set of outputs from a set of input parameters.
Our results indicate that the presented approach is ef-

fective for model reduction and automatic updating of
models according to new measurements, allowing iden-
tification of models that are more specific to e.g. certain
species, temperatures or individuals. This is likely to be
important in large modelling initiatives like the Physiome
project (physiomeproject.org), since compact cell models
can be more confidently and effectively applied as parts of
large multi-scale whole organ models. We therefore
believe that the presented methodology will be of great
value for future model development, including the search
for patient-specific or patient group-specific parameter
values, something that is likely to highly increase the cli-
nical applicability of models.

Conclusions
We have presented a new method for parameter estima-
tion, which combines parameter fitting in relation to mea-
sured data and analysis of the mechanisms of the model
system. The pipeline contains an implicit analysis of the
model sensitivity and the parameter identifiability for
model reduction. Using our approach, different model al-
ternatives can be compared, allowing effective analysis of
the consequences of introducing changes to the models
and identification of redundant model components that
can be omitted without affecting the fit to measured data.
We have applied the methodology to show that we can
make two alternative model frameworks for cardiac con-
traction give the same outputs, and that we can generate
reduced versions of both these models using this ap-
proach. We show that despite model sloppiness, inverse
metamodelling can identify a reasonable direction in the
parameter space to move in order to approach measured
data. Combined with a look-up of simulations in the pro-
ximity of the measured data and iterative generation of
new experimental designs, this provides an accurate and
effective approach for constraining model parameters.
The presented parameter fitting pipeline can effectively

fit numerous parameters simultaneously, and through the
iterative generation of new experimental designs for simu-
lations, the method provides an overview of the spread of
possible solutions, as well as possible clusters of suitable
parameter values. This indicates the ability of a set of
output metrics to constrain the parameters and gives an
estimate of the uncertainty in the parameter estimates. In
this study we showed that the Niederer-model parameters
could be constrained to a standard deviation of on average
17.4% of the mean values over the succeeding parameter
sets. This was decreased to 14.6% for the equivalent re-
duced model. As new measurements become available,
these can be incorporated to further constrain parameter
values.
Given measured data for a number of patients in a

clinical context, this methodology can also be used to
find sets of parameter values replicating the measured
data for each patient, allowing identification of clus-
ters in the parameter space corresponding to different
patients or patient groups for personalised medicine.
Similarly, clusters of parameter values for different spe-
cies, different measurement conditions etc. can be iden-
tified. The presented method thus has a clear potential
in both multi-scale model development and clinical use
of models.
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