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Abstract: Coordination catalysis is a highly efficient alternative to more traditional acid catalysis
in the oligomerization of α-olefins. The distinct advantage of transition metal-based catalysts is
the structural homogeneity of the oligomers. Given the great diversity of the catalysts and option
of varying the reaction conditions, a wide spectrum of processes can be implemented. In recent
years, both methylenealkanes (vinylidene dimers of α-olefins) and structurally uniform oligomers
with the desired degrees of polymerization have become available for later use in the synthesis of
amphiphilic organic compounds and polymers, high-quality oils or lubricants, and other prospective
materials. In the present review, we discussed the selective dimerization and oligomerization of
α-olefins, catalyzed by metallocene and post-metallocene complexes, and explored the prospects for
the further applications of the coordination α-olefin dimers and oligomers.
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1. Introduction

The achievement of the best characteristics of chemical product by the use of efficient
knowledge-intensive technologies is the most productive avenue for achieving real development goals
in the modern chemical industry. The Ziegler–Natta polymerization of α-olefins [1–5] is an excellent
example of such technologies that provides humanity with ~2 × 108 tons of plastics per year. Ethylene
and propylene are raw materials for the modern polyolefin industry; thousands of articles and
hundreds of reviews are devoted to the coordination homopolymerization and copolymerization of
these monomers. The polymerization and oligomerization of higher α-olefins have been studied less
intensively. The oligomerization of C8+ α-olefins followed by hydrogenation to form engine Group 4
poly-α-olefin oil (PAO) base stocks and lubricants (Scheme 1a) [6,7], and the synthesis of ultra-high
MW polyolefins (Scheme 1b) as drag reducing agents [8,9], were actual topics of the applied research.

It was the Group 4 oil industry that led to the growing interest in the oligomerization of
higher α-olefins in the mid-20th century [10,11]. The conventional technologies of acid-catalyzed
oligomerization with the use of BF3/ROH or Al chloride catalysts remains relevant for the production of
the lower oligomers of α-olefins [12,13]. The cationic oligomerization is accompanied by huge numbers
of rearrangements [14,15]. However, lower α-olefin oligomers obtained by cationic oligomerization
were exceedingly defined as structurally uniform reaction products [16,17]. Moreover, most of the
recent publications devoted to the oligomerization of higher α-olefins have discussed acid-catalyzed
processes [18–32].

The review of Nicholas [7] was also focused on cationic polymerization; the mini-review of Ray et al.,
devoted to the synthesis of PAOs [12], addresses only part of the problem of coordination polymerization.
The reviews of Janiak [33,34] and Belov [35] were focused on the coordination oligomerization of
α-olefins, but these works, published more than 10 years ago, are now objectively outdated.
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Additionally, we were to focus on looking at the relationship between molecular structure and the 
characteristics of the oligomers of -olefins, and on the prospects of the application of these dimers 
and oligomers in the synthesis of amphiphilic organic compounds and polymers, in the production 
of fuels, oils, lubricants, and other actual products. 
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of the synthetic use of this reaction in the synthesis of methylenealkanes were studied by 
Christoffers and Bergman for linear -olefins, allylbenzene, and 1,2-diallylbenzene [37,38], and by 
Erker et al. for 1,5-hexadiene and 1,6-heptadiene [39] (Scheme 2a). The reaction was complicated by 
the isomerization of the starting -olefins, by the formation of higher oligomers, and by the 
deactivation of the catalyst. 

Nifant’ev et al. optimized this approach significantly. Based on the results of X-ray diffraction 
studies of bis(cyclopentadienyl) zirconium complexes 1–6 (Scheme 3), they proposed the structure of 
highly active and selective pre-catalyst 6. The use of 6 activated by ~20 equivalents (eq.) of 
triisobutylalumnium (TIBA) and 10 eq. of methylalumoxane (MAO) provided 92%–94% yields of 
vinylidene dimers of linear -olefins [40–43]. As compared with zirconocene 1, in the presence of the 
6 dimer of sterically hindered olefin, 3-methylbut-1-ene was obtained with an average yield; 
substituted silanes and allylthiophenes also formed vinylidene dimers [41] (Scheme 2b). Note that 
the zirconium pre-catalysts 7 [44–46], 8 [47], 3 [48], 9 [49,50], and 10 [51] and the hafnium complex 11 
[48], studied previously in -olefin dimerization, were less active and selective in comparison with 6. 

The replacement of the activator of the zirconocene pre-catalyst by perfluoroaryl borate 
resulted in the migration of the C=C bond: thus, in the presence of dimethyl zirconocene 12 (Scheme 
3), activated by [PhNMe2H][B(C6F5)4], 1-decene formed trisubstituted C20 olefins, and the yield of 
9-methylenenonadecane was only 30% [52,53]. Tens of Group 4 metallocenes were studied in the 
coordination oligomerization of -olefins (Scheme 3, Section 3); however, dimer fractions were the 
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Scheme 1. Coordination oligomerization (a) and polymerization (b) of α-olefins.

Taking into account the fact that the selective coordination oligomerization of α-olefins is a growth
point of the actual petrochemical industry [7], in the present review, we tried to organize the current
scientific information on that topic. In our review, we discussed the plausible mechanisms of the
coordination dimerization and oligomerization of α-olefins, collated the data on the catalytic properties
of different single-site catalysts, and discussed the problem of the catalyst design. Additionally,
we were to focus on looking at the relationship between molecular structure and the characteristics of
the oligomers of α-olefins, and on the prospects of the application of these dimers and oligomers in the
synthesis of amphiphilic organic compounds and polymers, in the production of fuels, oils, lubricants,
and other actual products.

2. Coordination Dimerization of α-Olefins

2.1. Group 4 Metallocene-Catalyzed Synthesis of Methylenealkanes

The zirconocene-catalyzed dimerization of α-olefins (Scheme 2) has been known since the late
1980s [36]. The reaction proceeds in the presence of zirconocene dichloride (η5-C5H5)2ZrCl2 (1,
Scheme 2a), activated by minimal amounts of methylalumoxane (MAO) and results in the selective
formation of methylenealkanes, olefins containing the vinylidene fragment >C=CH2. The prospects of
the synthetic use of this reaction in the synthesis of methylenealkanes were studied by Christoffers
and Bergman for linear α-olefins, allylbenzene, and 1,2-diallylbenzene [37,38], and by Erker et al. for
1,5-hexadiene and 1,6-heptadiene [39] (Scheme 2a). The reaction was complicated by the isomerization
of the starting α-olefins, by the formation of higher oligomers, and by the deactivation of the catalyst.

Nifant’ev et al. optimized this approach significantly. Based on the results of X-ray diffraction
studies of bis(cyclopentadienyl) zirconium complexes 1–6 (Scheme 3), they proposed the structure
of highly active and selective pre-catalyst 6. The use of 6 activated by ~20 equivalents (eq.) of
triisobutylalumnium (TIBA) and 10 eq. of methylalumoxane (MAO) provided 92%–94% yields of
vinylidene dimers of linear α-olefins [40–43]. As compared with zirconocene 1, in the presence of the 6
dimer of sterically hindered olefin, 3-methylbut-1-ene was obtained with an average yield; substituted
silanes and allylthiophenes also formed vinylidene dimers [41] (Scheme 2b). Note that the zirconium
pre-catalysts 7 [44–46], 8 [47], 3 [48], 9 [49,50], and 10 [51] and the hafnium complex 11 [48], studied
previously in α-olefin dimerization, were less active and selective in comparison with 6.

The replacement of the activator of the zirconocene pre-catalyst by perfluoroaryl borate resulted
in the migration of the C=C bond: thus, in the presence of dimethyl zirconocene 12 (Scheme 3),
activated by [PhNMe2H][B(C6F5)4], 1-decene formed trisubstituted C20 olefins, and the yield of
9-methylenenonadecane was only 30% [52,53]. Tens of Group 4 metallocenes were studied in the
coordination oligomerization of α-olefins (Scheme 3, Section 3); however, dimer fractions were the
main reaction products only for the first dozen, 1–12.

The mechanism of the zirconocene-catalyzed dimerization of α-olefins remains unclear in terms of
detail. On the surface, this mechanism is not very different from the conventional cationic mechanism,
and the high selectivity of dimerization can be explained by the low value of the activation barrier of
β-hydride transfer (or β-hydride elimination) after the insertion of the second molecule of monomer
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in comparison with the activation energy of the chain propagation. However, this interpretation
does not match the results of the catalytic experiments. As far back as the 1990s [37,38], Christoffers
and Bergman demonstrated that chloride is an indispensable component of the catalyst system that
provides the high selectivity of dimerization; the special role of Zr–Cl bonding was also proposed by
Hessen et al. [54]. Such an effect was confirmed experimentally by an increase in the selectivity of
zirconocene/MAO-catalyzed dimerization in the presence of R2AlCl [40,55,56], and by the formation of
oligomers when Cp2ZrMe2/B(C6F5)3 was used [57]. To explain the experimental facts, Nifant’ev et al.
proposed a binuclear Zr–Al mechanistic concept [40,41] involving the Zr-(µ-Cl)(µ-H)AlR2 catalytic
species (Scheme 2c). The early studies of the interaction of 1 with TIBA and HAl(iBu)2 [58–61] were
the experimental basis of this concept.
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Scheme 2. Early works on the zirconocene-catalyzed dimerization of -olefins [37–39] (a); high 
efficiency of the pre-catalyst 6 [40,41] (b); cationic Zr–Al catalytic species proposed to explain the 
reactivity of zirconocene under low MAO/Zr ratios [40,41] (c). 

Recently, this Zr–Al binuclear mechanism was studied theoretically for propylene 
oligomerization [62]. Using the quantum chemical modeling at the M-06x/DGDZVP level of the 
density functional theory (DFT), the qualitative difference between mononuclear and binuclear 
mechanisms (for [( 5-C5H5)2Zr–Alkyl]+ and [( 5-C5H5)2Zr–Alkyl(R2AlX)]+ species, respectively), was 
demonstrated. Without R2AlX coordination (mononuclear mechanism), oligomerization was found 
to be a preferable reaction pathway. In binuclear complexes (X = H, Cl), the formation of vinylidene 
dimers had been greatly facilitated by an explicit Zr–Al cooperative effect (Figure 1). 

Scheme 2. Early works on the zirconocene-catalyzed dimerization ofα-olefins [37–39] (a); high efficiency
of the pre-catalyst 6 [40,41] (b); cationic Zr–Al catalytic species proposed to explain the reactivity of
zirconocene under low MAO/Zr ratios [40,41] (c).

Recently, this Zr–Al binuclear mechanism was studied theoretically for propylene
oligomerization [62]. Using the quantum chemical modeling at the M-06x/DGDZVP level of the density
functional theory (DFT), the qualitative difference between mononuclear and binuclear mechanisms (for
[(η5-C5H5)2Zr–Alkyl]+ and [(η5-C5H5)2Zr–Alkyl(R2AlX)]+ species, respectively), was demonstrated.
Without R2AlX coordination (mononuclear mechanism), oligomerization was found to be a preferable
reaction pathway. In binuclear complexes (X = H, Cl), the formation of vinylidene dimers had been
greatly facilitated by an explicit Zr–Al cooperative effect (Figure 1).
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Figure 1. Cooperative effect in Zr–Al transition states of the β-hydride elimination stage in the
framework of the Zr–Al binuclear mechanism [62]. Copyright (2019) MDPI.

2.2. Dimerization of α-Olefins Catalyzed by Other Complexes of Transition and Rare-Earth Metals

A number of complexes—namely, WCl6/Et2AlCl [63], zirconium and hafnium adducts with
tetradentate ligand 64 [64], half-sandwich complexes of Ta 65 [65,66] and Co 66 [67], a bis-indenyl
complex of Y 67 [68], a zwitter-ionic zirconium complex 69 [54], and a sandwich hydride complex of
Sc 68 [69]—were studied in the coordination dimerization of α-olefins (Scheme 4a). In the presence
of a WCl6-based catalyst, a mixture of vinylidene olefins was formed (Scheme 4b); similar mixtures
were obtained in the presence of 65. The half-sandwich complex 66 catalyzed the formation of dimers
containing significant amounts of linear olefins. The sandwich complexes of rare-earth metals 67
and 68, as well as the zwitter-ionic complex 69 demonstrated moderate catalytic activity and high
selectivity in the formation of the single reaction product; however, the catalytic performance of these
complexes dramatically decreased over time (TON ~ 100). Among the complexes mentioned above,
only 64Hf (R = nBu) was capable of beating zirconocenes on the criteria of selectivity and catalytic
productivity; however, its stability was much lower.
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3. Coordination Oligomerization of α-Olefins

3.1. Common Aspects of the Coordination Oligomerization of α-Olefins

Different types of transition metal complex were studied in the coordination oligomerization
of α-olefins. Traditional Ziegler–Natta catalysts demonstrated low activity [70,71] and will not be
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discussed in our review. Group 4 metal sandwich complexes, metallocenes, are the most efficient and
most extensively researched catalysts for this process. Scheme 5 illustrates the main and side reactions
observed during metallocene-catalyzed oligomerization. The degree of polymerization, DPn, is related
to a variety of factors, such as the molecular structure of metallocene, type and quantity of the activator,
reaction temperature, and presence of the molecular hydrogen. In the heyday of metallocene catalysis
(1990s–early 2000s), the zirconocene-catalyzed polymerization of higher α-olefins was largely viewed
as a model process for the study of the mechanism of chain propagation and chain release [72–79].
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characteristic chain-end groups (routes A–E) and saturated polyolefin species (route H) [72,73,80].

Usually, the zirconocene-catalyzed oligomerization and polymerization of higher α-olefins was
studied in the laboratory using the activation of LZrCl2 pre-catalysts by MAO with extremely high
Al/Zr ratios (103–104), or the activation of LZrMe2 pre-catalysts by perfluoroaryl borates. Many of the
zirconocenes under these conditions catalyzed the formation of high MW polyolefins (Mn ~104–105 Da);
however, several complexes were efficient in the synthesis of oligomers (see below, Section 3.2).
High AlMAO/Zr ratios facilitate the formation of Zr–Al alkyl complexes [81–85] that are unable to
perform monomer coordination. Such complexes are intermediates of the chain release via Zr–Al
transfer [86–88]. At the same time, the practice of using high AlMAO/Zr ratios in the laboratory was due
to lthe ow effectiveness of MAO as an alkylation agent; the AlMAO/Zr ratios of 102 MAO were found to
be insufficient for the activation of bis-indenyl and bis-fluorenyl complexes [89]. In 2017, Nifant’ev et al.
proposed a two-stage activation method for a wide array of LZrCl2 complexes. This method was based
on the reaction of LZrCl2 with TIBA (formation of Zr–Al alkyl-hydrides) followed by the reaction
with ~10 eq. of aMAO; dozens of zirconocene dichlorides were studied in such industrially important
conditions [40,80,90–92] (see Section 3.3). In contrast to dimerization, the activation of zirconocenes by
perfluoroaryl borates was successfully used in the oligomerization of higher α-olefins (see Section 3.4).
The formulas of the metallocenes studied in the oligomerization of α-olefins are presented in Scheme 3.

3.2. Metallocene-Catalyzed Oligomerization of α-Olefins and Activation by 102–103 eq. MAO

Dozens of scientific articles and patents have been devoted to the oligomerization of higher
α-olefins, catalyzed by Zr and Hf sandwich complexes and activated by a large excess of MAO (Table 1).
The main target of the studies, namely, the synthesis of Group 4 oil base stocks, required the use of
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specific types of product characteristic such as the kinematic viscosity at a given temperature, KVt (KV100

are given in Table 1), and viscosity index, VI, as an alternative to the degree of polymerization, DPn,
or oligomer distribution.

Table 1. Metallocene-catalyzed oligomerization of α-olefins at high Al/Zr ratios

Cat. Mon. [Mon]/[Zr] [Al]/
[Zr]

T,
◦C

H2,
bar

TOF, h−1 DPn KV100 1 VI 2 Additional
Remarks Ref.

or Oligomer Distribution for DPn 2,3,4,5

1

C6 1.3 × 105 4000 50 – 5.9 × 104 4.9 – – – [45,46]
C6 2 × 103 200 60 – – % olig. 45 (2):20 (3–5), res. 21 3 [91]
C8 2 × 103 200 60 – – % olig. 45 (2):25 (3–5), res. 15 [91]
C10 1.0 × 105 1000 40 – 1.1 × 104 – 41 196 – [93]
C10 1.0 × 105 1000 80 – 3.2 × 104 – 2.5 181 – [93]
C10 3.0 × 104 30 50 1 2.9 × 104 % olig. 42:11:17:5, res. 35 [51]
C10 5.0 × 104 300 70 – 9.2 × 103 – 17 167 24% of dimer [49]
C10 5.0 × 104 300 110 – 3.7 × 103 – 5.9 152 55% of dimer [49]
C14 1.6 × 103 530 40 – 1.1 × 103 % olig. 42:25:16:8, res. 6 [50]
C14 1.6 × 103 530 60 – >2 × 103 % olig. 60:23:8:4, res. 5 [50]

3 C10 1.0 × 105 1000 40 – 1.1 × 104 – 2460 344 – [93]
7 C6 1.3 × 105 4000 50 – 9.4 × 104 5.7 – – – [45,46]

8

C6 1.3 × 105 4000 50 – 2.0 × 104 3.9 – – [45,46]
C6 2 × 103 200 60 – - % olig. 15 (2):30 (3–5), res. 41 [91]
C8 500 200 60 – - % olig. 31 (2):41 (3–5), res. 16 [91]
C10 1.0 × 105 1000 90 – 6.3 × 104 – 2.3 163 [93]
C10 3.0 × 104 30 50 1 2.7 × 104 % olig. 47:26:11:4, res. 12 [51]
C10 3.0 × 104 100 50 1 >3 × 104 % olig. 44:27:11:5, res. 13 [51]
C10 3.0 × 104 300 50 1 2.8 × 104 % olig. 54:28:9:3, res. 6 [51]
C10 3.0 × 104 600 50 1 2.9 × 104 % olig. 27:28:16:9, res. 20 [51]
C10 5.0 × 104 300 110 – 6.0 × 103 – 6.7 156 49% of dimer [49]
C10 5.0 × 104 300 110 – 6.0 × 103 – 6.7 156 49% of dimer [49]

9
C10 2.7 × 103 340 50 – >3 × 103 % olig. 43:24:11:5, res. 17 [50]
C10 3.0 × 104 30 50 1 1.6 × 104 % olig. 28:12:8:6, res. 46 [51]
C10 5.0 × 104 300 110 – 6.0 × 103 – 5.7 152 50% of dimer [49]

13 C6 1.3 × 105 4000 50 – 3.2 × 104 14 - - [45,46]
14 C10 5.0 × 104 300 110 – 6.1 × 103 – 8.2 159 40% of dimer [49]
19 C10 3 × 104 30 50 1 1.5 × 104 % olig. 25:24:10:6, res. 25 [51]

20
C10 5.0 × 104 300 70 – 1.1 × 104 – 61 190 6% of dimer [49]
C10 5.0 × 104 300 110 – 9.8 × 103 – 17 162 15% of dimer [49]

23 C10 3.0 × 104 30 50 1 8 × 103 % olig. 13:5:4:3, res. 75 [51]
24 C6 1.3 × 105 4000 50 – 7.5 × 104 14 – – [45,46]
25 C6 1.3 × 105 4000 50 – 3.9 × 104 45 – – [45,46]

26
C6 1.3 × 105 4000 50 – 6.5 × 104 83 – – [45,46]
C10 5.0 × 104 300 70 – 1.2 × 104 - 154 – 1% of dimer [49]

28, X
= Cl

C6 1.3 × 105 4000 50 – 3.4 × 104 19 – – [45,46]
C10 5.0 × 104 300 70 – 2.3 × 103 – 115 224 5% of dimer [49]

37 C6 1.0 × 103 500 25 – 630 ~3 49% of dimer [94]

38
C10 1.5 × 105 1000 80 – 8.3 × 104 26 101 – [95]
C10 1.5 × 105 1000 80 5 8.2 × 104 14 28 – [95]
C10 1.5 × 105 1000 80 15 1.3 × 105 12 32 – [95]

41 C10 1.0 × 105 250 100 – 1.1 × 104 72 – – [96]
42 C8 1.7 × 105 1000 25 40 63 831 – [97]

44
C10 1.5 × 105 1000 80 – 7.4 × 104 27 143 – [95]
C10 1.5 × 105 1000 80 5 1.2 × 105 17 71 – [95]
C10 1.5 × 105 1000 80 15 1.9 × 105 19 86 – [95]

47 C10 1.0 × 105 1000 40 – 1.0 × 105 – 702 296 [93]
48 C10 2.6 × 105 600 80 6.9 611 – 11 211 [98]
51 C10 1.3 × 105 500 80 13.8 8.3 × 104 – 112 208 [98]

52
C10 1.0 × 105 1000 40 – 5.0 × 104 – 2460 344 [93]
C10 2.6 × 105 200 100 13.8 8.9 × 104 21 116 214 [98]
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Table 1. Cont.

Cat. Mon. [Mon]/[Zr] [Al]/
[Zr]

T,
◦C

H2,
bar

TOF, h−1 DPn KV100 1 VI 2 Additional
Remarks Ref.

or Oligomer Distribution for DPn 2,3,4,5

53

C10 2.6 × 105 250 100 6.9 2.6 × 105 19 94 213 [98]
C10 2.6 × 105 250 90 – 5.6 × 104 133 1227 – [98]
C10 2.6 × 105 250 90 1.7 1.0 × 105 57 453 – [98]
C10 2.6 × 105 250 90 3.4 2.6 × 105 40 333 – [98]
C10 2.6 × 105 250 90 6.9 2.6 × 105 19 94 – [98]
C10 2.6 × 105 250 90 13.8 2.1 × 105 12 39 179 [98]

56 C10 4.2 × 105 260 80 13.8 1.4 × 105 21 25 183 [98]

57
C8 2.5 × 105 1000 65 – 1.4 × 105 23 139 192 [99]
C8 2.5 × 105 1000 65 8 2.2 × 105 18 43 168 [99]

60 C8 2.0 × 105 1000 25 – 1.3 × 105 83 1119 – [97]

61

C10 1.0 × 105 1000 40 – 1.0 × 105 – 2460 344 [93]
C10 3.0 × 105 1000 70 – 2.4 × 105 64 635 282 [93]
C10 3.0 × 105 1000 150 – 1.6 × 105 – 58 195 [93]
C10 3.0 × 105 500 70 – 2.3 × 105 – 1134 307 [93]
C10 3.0 × 105 250 70 – 1.7 × 105 – 1308 314 [93]
C10 3.0 × 105 1000 70 0.5 1.5 × 105 – 1074 308 [93]
C10 3.0 × 105 1000 70 1 2.1 × 105 – 863 296 [93]
C10 3.0 × 105 1000 70 2 2.0 × 105 – 722 288 [93]
C10 3.0 × 105 1000 70 13 2.4 × 105 – 512 271 [93]
C6 3.0 × 105 1000 90 – 1.8 × 105 – 2862 251 [93]
C8 3.0 × 105 1000 90 – 2.0 × 105 – 888 276 [93]
C10 3.0 × 105 1000 90 – 1.6 × 105 – 515 272 [93]
C12 3.0 × 105 1000 90 – 1.3 × 105 – 402 264 [93]

62 C10 7.0 × 105 1500 63 8 1.6 × 105 15 37 177 [100]
1 Kinematic viscosity at 100 ◦C. 2 Viscosity index. 3 In % by weight, DPn in the brackets, res.—residue,
higher oligomers.

The degree of oligomerization, DPn, depends on the structure of the metallocene pre-catalyst,
AlMAO/Zr ratio, and reaction conditions. Unsubstituted zirconocene dichloride 1 and monosubstituted
and disubstituted zirconocenes catalyzed the formation of the mixtures of lower oligomers. The presence
of bulky alkyl or aryl substituents in the cyclopentadienyl rings resulted in decreasing activities of
metallocenes and an increased content of higher oligomers; increasing the number of alkyl substituents
entailed the same effect. The early results in the study of the oligomerization of α-olefins in the
presence of zirconocenes 1 and 8 at AlMAO/Zr ~ 200 [47] were complemented substantially by Nifant’ev
et al. [91], who established that under these conditions, the products of side reactions (2-alkenes and
alkanes) typically exceeded 10 wt %. Therefore, bis-cyclopentadienyl complexes at high AlMAO/Zr
ratios have poor prospects for the oligomerization of α-olefins.

The derivatives of substituted indenes and fluorenes demonstrated more promising catalytic
properties. High yields of the oligomer fractions were obtained for metallocenes 53, 56 [98], and 61 [93].
For these complexes, the degree of oligomerization, DPn, can be affected by the hydrogen pressure and
reaction temperature with no reduction in the yield of the oligomer fraction.

In order to conclude this section on metallocene-catalyzed oligomerization at high AlMAO/Zr
ratios, it is important to note the publication of Jiang et al. [101], which was a thorough
study of the microstructure of 1-butene/1-dodecene copolymers, obtained in the presence of
(η5-C5Me4H)2ZrCl2, activated by 100–500 eq. of MAO. Detailed investigations of the kinetics and
mechanisms of the formation of α-olefin oligomers in the presence of (η5-C5H4-n-Bu)2ZrCl2 [102] and
(η5-C5H5)2ZrCl2 [103] after activation by 102–103 eq. of MAO have also been of particular interest.

3.3. Zirconocene-Catalyzed Oligomerization of α-Olefins at Low AlMAO/Zr Ratios

A systematic study of the zirconocene-catalyzed oligomerization of α-olefins at low AlMAO/Zr
ratios was started in recent years. With the use of the method of the two-stage activation of LZrCl2
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(with TIBA and then MAO, see Section 3.1), Nifant’ev et al. studied the catalytic performance of a wide
range of zirconocenes [80,90–92]. The results of these studies are presented in Table 2.

Table 2. Zirconocene-catalyzed oligomerization of α-olefins at low Al/Zr ratios

Cat. Mon. [Mon]/
[Zr]

AlTIBA/
Zr

AlMAO
/Zr

T,
◦C

H2,
bar

Conv.
(h)

DPn
Additional
Remarks Ref.

or Oligomer Distribution

1 C6 2 × 103 20 10 60 – 97 (4) % olig. 85 (2):12 (3–5), res. 1 1 [91]

8

C6 2 × 103 20 10 60 – 85 (4) % olig. 35 (2):36 (3–5), res. 20 [91]
C6 2 × 103 20 10 60 1 99 (4) % olig. 50 (2):31 (3–5), res. 11 [91]
C8 2 × 103 20 10 60 – 83 (4) % olig. 40 (2):40 (3–5), res. 11 [91]
C10 2 × 103 20 10 60 – 72 (4) % olig. 38 (2):35 (3–5), res. 17 [91]
C10 2 × 103 20 10 100 – 69 (4) % olig. 40 (2):36 (3–5), res. 10 [91]

10 C6 2 × 103 20 10 60 – 16 (4) % olig. 40 (2):30 (3–5), res. 19 [91]
18 C6 2 × 103 20 10 60 – 92 (4) % olig. 35 (2):31 (3–5), res. 31 [91]
22 C6 2 × 103 20 10 60 – 72 (4) % olig. 8 (2):34 (3–5), res. 55 [91]
26 C6 4 × 103 80 40 60 – 90 (4) 38 [92]
30 C6 2 × 103 20 10 60 – 89 (4) 44 [91]
31 C6 4 × 103 80 40 60 – 75 (4) 190 [92]

35

C6 2 × 103 20 10 60 – 98 (4) % olig. 41 (2):28 (3–5), res. 24 [91]
C8 2 ×·103 20 10 60 – 98 (4) % olig. 36 (2):32 (3–5), res. 29 [91]
C10 2 × 103 20 10 60 – 98 (4) % olig. 40 (2):33 (3–5), res. 35 [91]
C10 2 × 103 20 10 100 – 98 (4) % olig. 41 (2):34 (3–5), res. 19 [91]

36 C6 2·× 103 20 10 60 – 98 (4) % olig. 40 (2):30 (3–5), res. 11 [90]
41 C6 2 × 103 20 10 60 – 95 (4) % olig. 22 (2):32 (3–5), res. 39 [91]
42 C6 2 × 103 20 10 60 – 94 (4) % olig. 20 (2):31 (3–5), res. 40 [91]

45
C6 2·× 103 20 10 60 – 88 (4) 25 [91]
C6 4 × 103 80 40 60 – 76 (4) 25 [92]

46 C6 2 × 103 20 10 60 – 94 (4) 108 [91]

47
C6 2 × 103 20 10 60 – 92 (4) 37 [91]
C6 4 × 103 80 40 60 – 94 (4) 35 [92]

50 C6 4 × 103 80 40 60 – 95 (4) 108 [92]
55 C6 4 × 103 80 40 60 – 95 (4) 68 [92]

59

C6 2 × 103 20 10 60 – 100 (4) % olig. 9 (2):17 (3–5), res. 72 [91]
C6 2 × 103 20 10 60 1 100 (4) % olig. 13 (2):24 (3–5), res. 57 [91]
C8 2 × 103 20 10 60 – 100 (4) % olig. 23 (2):30 (3–5), res. 45 [91]
C8 2 × 103 20 10 80 – 100 (4) % olig. 28 (2):26 (3–5), res. 44 [91]
C8 2 × 103 20 10 100 – 100 (4) % olig. 37 (2):34 (3–5), res. 27 [91]
C8 2 × 103 20 10 120 – 100 (4) % olig. 44 (2):32 (3–5), res. 21 [91]
C8 2 × 103 20 10 100 1 100 (4) % olig. 47 (2):34 (3–5), res. 8 [91]
C8 2 × 103 20 10 120 1 100 (4) % olig. 51 (2):40 (3–5), res. 10 [91]
C10 2 × 103 20 10 100 – 93 (4) % olig. 44 (2):45 (3–5), res. 7 [91]
C10 2 × 103 20 10 100 1 99 (4) % olig. 45 (2):41 (3–5), res. 6 [91]
C10 2 × 103 20 10 120 1 99 (4) % olig. 51 (2):33 (3–5), res. 10 [91]

1 The ratios of dimer and lower oligomer fractions, and residue.

During the research, the side reactions of the isomerization and reduction of the starting α-olefins
were studied. In was established that in some cases, the content of 2-alkenes in the reaction products
can reach values of 20% and higher (for example, for zirconocene 36 [90]). The formation of
2-alkenes is a greatly underestimated problem of the metallocene-catalyzed oligomerization of
α-olefins; the isomerization of the starting monomers to inert internal olefins seriously diminishes the
yields of oligomers, thus generally devaluing the method of metallocene-catalyzed oligomerization in
the production of polyolefin oils and lubricants.

The feasibility of the ligand design is a substantial advantage of the zirconocene catalysis;
the inherently high stability of the bis(η5-cyclopentadienyl)Zr fragment allows for a fruitful search of
the catalyst without the drawbacks of the unnecessary wasting of the starting α-olefins.
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Figure 2 illustrates this idea; activation by 10 eq. of modified methylalumoxane MMAO-12,
bis-cyclopentadienyl complex 8 was clearly inferior to that by ansa-zirconocene 35 in terms of catalytic
activity, but both zirconocenes 8 and 35 were less active and selective than zirconocene 59 [91]. Using 59,
Nifant’ev et al. separated oligomers of 1-hexene, 1-octene, and 1-decene for DPn = 2–5 and proved
the homogeneity of their structure [91]; similar results were reported later by Mi et al., who used
the less active zirconium complexes 1, 2, 10, and 50 [104]. The complex 59 is a representative of
metallocenes containing heterocycle-fused η5-cyclopentadienyl fragments, “heterocenes”. In the early
2000s, such complexes were extensively studied by the chemists of the Basell Polyolefins and Exxon
Mobil companies in close cooperation with M.V. Lomonosov Moscow University in the polymerization
of ethylene and propylene [105–108]. To date, heterocenes are considered as the most promising
single-site oligomerization catalysts (see Sections 4.2 and 5).Polymers 2020, 12, x FOR PEER REVIEW 10 of 31 
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Figure 2. Fragments of 1H NMR spectra of the reaction mixtures of 1-decene oligomerization (2 h,
100 ◦C), catalyzed by zirconocenes 8, 35, and 59, activated by 10 eq. of MMAO-12. Reprinted with
permission from [91]. Copyright (2018) Elsevier B.V.

3.4. Zirconocene-Catalyzed Oligomerization of α-Olefins, Activated by Perfluoroaryl Borates

To avoid the use of a large excess of organoaluminium in the activation of metallocenes, MAO can
be replaced with perfluoroaryl borates. This method, proposed by Marks et al. [109–111], has been
successfully used in the oligomerization of α-olefins (Table 3).

The activation by perfluoroalkyl borates, apparently, resulted in the formation of more electrophilic
separate ion pairs, which caused the possibility of side processes unusual for zirconocene/MAO
catalysts. The 1H NMR analysis of the end-groups of 1-decene oligomers, obtained in the presence
of zirconocenes 32–34, clearly demonstrated the product β-hydride’s elimination from the secondary
Zr–alkyl complexes [112]. The formation of such complexes does not affect the carbon skeleton of the
oligomers; however, it inevitably results in the slowing down of the oligomerization. A substantially
more important process—namely, the β-elimination of the n-hexyl fragment (Scheme 5, reaction
pathway C)—was detected in the oligomerization of 1-octene catalyzed by bis(indenyl) hafnium
complex 54 [73]. The products of this side reaction represent allyl-terminated oligooctenes that are
able to react with the formation of long-chain branched polymers.
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Table 3. Zirconocene-catalyzed oligomerization of α-olefins, with activation by perfluoroaryl borates.

Cat. Mon. [Mon]
/[Zr]

Al/Zr T,
◦C

H2,
bar TOF, h−1

DPn KV100 VI AlR3,
Additional
Remarks

Ref.or Oligomer Distribution for
DPn 2,3,4,5+

11, X =Me C10 5.2 × 105 50 100 – 1.0·× 103 27 103 – Al(n-Oct)3, NB 1 [113]
C10 5.2·× 105 50 100 3 3.6·× 105 23 11.3 – Al(n-Oct)3, NB [113]

16, X =Me

C10 5.2·× 105 50 100 – 5.2·× 104 10.6 4.5 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 – 3.1·× 104 8.8 3.4 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 100 3.7 7.8·× 104 9.5 3.7 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 3 8.0·× 104 8.3 3.1 – Al(n-Oct)3, NB [113]

17, X =Me
C10 5.2·× 105 50 100 – 8.4·× 103 18 10.2 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 – 1.2·× 104 11 4.9 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 3 5.9·× 104 10.6 4.5 – Al(n-Oct)3, NB [113]

8

C10 5.2·× 105 50 100 – 6.3 × 104 9.3 4.0 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 – 3.9 × 104 7.9 3.1 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 100 3 7.4·× 104 9.0 3.8 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 3 8.8·× 104 7.9 3.1 – Al(n-Oct)3, NB [113]

20
C10 5.2·× 105 50 100 3 8.7·× 104 7.9 3.0 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 3 8.8·× 104 7.5 2.8 – Al(n-Oct)3, NB [113]

21, X =Me

C10 8.5·× 104 4 50 – 1.3·× 104 - 96 199 Al(n-Oct)3, NB [114]
C10 8.5·× 104 4 60 1 1.6·× 104 - 44 180 Al(n-Oct)3, NB [114]
C10 8.5·× 104 4 70 1 1.8·× 104 - 20 179 Al(n-Oct)3, NB [114]
C10 8.5·× 104 4 80 1 2.0·× 104 - 11.0 163 Al(n-Oct)3, NB [114]
C10 8.5·× 104 4 100 1 1.7·× 104 - 8.0 161 Al(n-Oct)3, NB [114]
C10 8.5·× 104 4 120 1 2.1·× 104 - 5.0 151 Al(n-Oct)3, NB [114]
C10 5.2·× 105 50 80 – 2.2·× 104 13 5.9 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 100 – 3.3 ×·104 10 4.1 148 Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 – 3.3·× 104 8.5 3.3 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 100 3 1.2·× 105 8.6 3.3 – Al(n-Oct)3, NB [113]

26 C10 1.2·× 105 100 110 – – – 3.9 144 TIBA, NB [115]

27, X =Me

C10 5.2·× 105 50 100 – 7.2·× 103 10 4.1 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 – 1.8·× 104 8.3 3.1 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 100 3 1.1·× 105 9.3 3.6 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 3 3.1·× 104 8.0 3.0 – Al(n-Oct)3, NB [113]

28, X =Me C10 5.2·× 105 50 100 3 2.0·× 104 7.6 2.8 – Al(n-Oct)3, NB [113]
C10 5.2·× 105 50 120 3 1.4·× 104 7.9 3.2 – Al(n-Oct)3, NB [113]

32 C10 2.6·× 105 200 120 – 4.7·× 104 9.6/7.0/4.0/2.6 + 64 TIBA, CB 2 [112]

33
C8 2.6·× 105 200 120 – 1.9·× 105 13.1/14.1/11.8/33.4 TIBA, CB [112]
C10 2.6·× 105 200 120 – 1.5·× 105 13.3/14.3/11.3/34.7 TIBA, CB [112]

34 C10 2.6·× 105 200 120 – 9.1·× 104 17.0/18.4/13.9/24.6 TIBA, CB [112]

38
C10 1.5·× 105 200 120 + 1.2·× 105 6.6 5.5 164 TIBA, NB [95]
C10 1.5·× 105 200 140 + 1.2·× 105 4.4 2.6 140 TIBA, NB [95]

39, X =Me

C10 2.0·× 105 20 120 – ~2·× 105 ~3 C30 3.4
C40 9.3 128 158 Al(n-Oct)3, NB [52,

53]
C10 8.9·× 104 0.01 60 – 7.3·× 104 32 169 225 Al(n-Oct)3, NB [116]
C10 8.9·× 104 0.01 80 – 8.4·× 104 14 26.5 169 Al(n-Oct)3, NB [116]
C10 8.9·× 104 0.01 100 – 8.8·× 104 9.3 11.2 150 Al(n-Oct)3, NB [116]

40
C10 3.6·× 105 >100 70 – 3.1·× 105 - 18.5 164 TIBA, CB [117]
C10 3.6·× 105 >100 100 – 2.0·× 105 - 8.9 153 TIBA, NB [117]
C10 3.6·× 105 >100 100 – 2.5·× 105 - 14.6 158 TIBA, CB [117]

48
C10 3.5·× 105 >100 50 – 1.5·× 105 226 3715 379 TIBA, NB [117]
C10 3.5·× 105 >100 84 – 2.9·× 105 80 724 291 TIBA, NB [117]
C10 3.5·× 105 >100 100 – 2.3·× 105 64 363 250 TIBA, NB [117]

50 C10 2–4·× 105 20-200 60–1001–10 1.0·× 105 – 253–586 247–281 TIBA, NB [118]

58
C8/C12 1.0·× 105 10 100 0.5 ~1·× 105 15–35 39–140 175–212 TIBA, NB [119]
C8/C10/C121.0·× 105 10 100 0.5 ~1·× 105 15–30 40–120 179–205 TIBA, NB [120]
C8/C10 1.0·× 105 10 100 0.5 ~1·× 105 19–32 45–109 175–204 TIBA, NB [121]

61

C10 4.4·× 105 10 80 2 3.6·× 105 - 834 304 TIBA, NB [122]

C10 4.4·× 105 10 105 2 2.4·× 105 76 622 289 TIBA, NB [123,
124]

C10 4.4·× 105 10 110 2 3.2·× 105 71 558 280 TIBA, NB [122]
C10 4.4·× 105 10 120 2 2.4·× 105 63 434 270 TIBA, NB [122]
C10 4.4·× 105 10 130 2 2.4·× 105 57 377 266 TIBA, NB [122]

1 NB: [PhNMe2H][B(C6F5)4]. 2 CB: [CPh3][B(C6F5)4].

Experiments on the oligomerization of 1-decene in the presence of the 47-Me/[PhNHMe2][B(C6F5)4]
catalytic system, performed by the chemists of Total company [125], deserve special notice. The content
of the C30 fraction in the reaction products reached a value of 70%, comparing favorably with those in
BF3-catalyzed oligomerization.
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In addition to MAO and perfluoroaryl borates, fluorinated aluminosilicate, in combination with
TIBA, was successfully used in the zirconocene-catalyzed oligomerization of α-olefins [97] (Table 4).

Table 4. Oligomerization of 1-octene, catalyzed by zirconium complexes, activated by
triisobutylalumnium (TIBA) and fluorinated aluminosilicate [97].

Cat. [Mon]/[Zr] T, ◦C TOF, h–1 KV100 VI

1 1.1 × 105 90 3.1 × 103 8.9 211
8 5.6 × 105 105 4.1 × 104 45 175
9 3.1 × 105 110 3.4 × 104 62 186
15 1.5 × 106 70 1.3 × 105 130 222
29 5.5 × 105 90 2.5 × 104 8.3 157
42 4.3 × 105 120 3.1 × 104 159 214
43 4.4 × 105 120 3.6 × 104 132 200
45 1.1 × 105 90 9.0 × 103 23 169
47 4.2 × 105 115 4.3 × 104 136 210
49 1.0 × 105 100 5.2 × 103 10.3 194

3.5. Post-Metallocene Catalysts in the Oligomerization of α-Olefins

Post-metallocene catalysts that have been intensively and fruitfully studied in the polymerization
and oligomerization of ethylene and propylene [126–134] were of limited use in the oligomerization
of higher α-olefins. The Group 8 metal complexes 70 [135] and 71 [136] (Scheme 6) were
inferior to zirconocenes in terms of catalytic activity and, therefore, are of no interest for practical
applications. The Group 4 post-metallocenes have greater potential in selective oligomerization.
The carbene zirconium complex 72 with bulky phenolate fragments (Scheme 7) in the presence of
[Ph3C][B(C6F5)4] demonstrated moderate activity in the non-selective oligomerization of 1-hexene;
however, activation by [PhNHMe2][B(C6F5)4] resulted in the formation of a trimerization product
with ~77% yield [137]. At the same time, the benzimidazole analog 73 catalyzed non-selective
oligomerization regardless of the type of activator [138]. Zirconium complexes with [OSSO]-type
ligands 74, 75 [139], and 76 [140] (Scheme 6) in the presence of dried modified methylaluminoxane
(dMMAO) catalyzed the formation of lower 1-hexene oligomers with excellent vinylidene selectivity.
Apparently, the mechanism of the oligomerization catalyzed by 72–76 is similar to the mechanism of
zirconocene-catalyzed oligomerization.

The metallacyclic mechanism of the coordination oligomerization ofα-olefins (Scheme 7a) [130,141]
is highly attractive regarding the selectivity of the formation of the trimer fraction. This mechanism is
considered proven for chromium (III) complexes 77–82 of tridentate cyclic ligands (Scheme 7b) [142–145].
In the presence of 100 eq. of MAO, the complexes 77 and 78 catalyzed the trimerization of 1-hexene
with high selectivity; dimers and tetramers were found in less than 1%, and TONs ~103 were detected
at room temperature [142]. The structures and ratios of the major isomers in the C18 fraction are
presented in Scheme 7c. One year later [143], Wasserscheid et al. studied the trimerization of 1-decene
and 1-dodecene, catalyzed by a series of the complexes 79–82 with different substituents at N atoms;
the complex 80 with 2-ethylhexyl substituents demonstrated the best catalytic performance in terms
of trimerization selectivity and productivity. The impact of the steric bulk of the alkyl substituent
R’ on trimerization selectivity was studied in 2016 by Cohon and Köhn [144] for complexes 83–86
(Scheme 7b). The ratios of the products of trimerization of 1-hexene are presented in Table 5.
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The metallacyclic mechanism was also proposed for the Ti (IV) complex 87 [146]. In the 
presence of B(C6F5)3, this complex demonstrated more than 95% selectivity in the trimerization of 
1-pentene, 1-hexene, and 1-decene with TONs ~350 (C5, C6) and 100 (C10). Among the trimers
produced, ca. 85% were one regioisomer (Scheme 7d). The major olefin product is proposed to form
by a tail-to-tail coupling, followed by 1,2-insertion and selective -hydride elimination.

The theoretical aspects of three possible Cosse–Arlman, Green–Rooney, and metallacyclic 
mechanisms of -olefin oligomerization were studied theoretically by Copéret et al. [147]; the 
findings of this original article warrant further experimental studies.  

Table 5. The regioisomers produced in the trimerization of 1-hexene with a range of catalysts [144]. 

Scheme 7. (a) Metallacyclic mechanism of the coordination trimerization of α-olefins; (b) Precatalysts
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(d) The main product of the trimerization of α-olefins, catalyzed by 87 [146].



Polymers 2020, 12, 1082 14 of 31

The metallacyclic mechanism was also proposed for the Ti (IV) complex 87 [146]. In the presence
of B(C6F5)3, this complex demonstrated more than 95% selectivity in the trimerization of 1-pentene,
1-hexene, and 1-decene with TONs ~350 (C5, C6) and 100 (C10). Among the trimers produced, ca. 85%
were one regioisomer (Scheme 7d). The major olefin product is proposed to form by a tail-to-tail
coupling, followed by 1,2-insertion and selective β-hydride elimination.

The theoretical aspects of three possible Cosse–Arlman, Green–Rooney, and metallacyclic
mechanisms of α-olefin oligomerization were studied theoretically by Copéret et al. [147]; the findings
of this original article warrant further experimental studies.

Table 5. The regioisomers produced in the trimerization of 1-hexene with a range of catalysts [144].
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Note that the Group 8 metal complexes demonstrated high efficiency in the oligomerization
of ethylene [148–150] and norbornene [149–151]. The promising results in the selective
oligomerization of propylene [152] and oligomerization/polymerization of 1-butene [153,154] and higher
α-olefins [153,155–158] allow the consideration of such complexes as prospective post-metallocene
oligomerization catalysts if the problem of moderate productivity could be solved.

4. The Use of Methylenealkanes

As shown above (see Section 2.1), methylenealkanes can be easily obtained by the
zirconocene-catalyzed dimerization of α-olefins. The yields of linear α-olefin dimers typically exceed
values of 90% in the event that an efficient pre-catalyst (i.e., 6, Scheme 2b) is used [40]. In addition,
methylenealkanes are unavoidable by-products ofα-olefin oligomerization (see Section 3). The problem
of the utilization of α-olefin dimers is of great relevance and importance [33,41,159].

Methylenealkanes are close structural analogs of isobutylene. The presence of the reactive C=C
bond and a substantial difference in the environments of these unsaturated carbon atoms allows the
consideration of methylenealkanes as prospective starting compounds for the regioselective synthesis
of amphiphilic organic molecules and polymers. A number of possible directions for the synthetic
use of methylenealkanes were demonstrated by us with the example of 5-methyleneundecane [41]
(Figure 3). Below, we will refer to some of the notable examples of the use of methylenealkanes in the
synthesis of organic compounds and polymers.
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4.1. Free Radical Addition to Methylenealkanes

The ease of free radical addition of MeC(O)SH using the method developed by Klotz et al. [160]
was demonstrated on the example of 5-methyleneundecane (Figure 3) [41]. The closely related
free-radical hydrophosphinylation of methylenealkanes was studied by Nifant’ev et al. in order to
obtain hydrolytically stable extractants of rare-earth metals [161] (Scheme 8). Branched alkylphosphinic
acids, obtained by the hydrophosphinylation of methylenealkanes, also demonstrated promising
anti-wear properties [162].
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4.2. Free Radical Polymerization of Methylenealkanes

The ability of methylenealkanes to form copolymers with polar vinyl monomers was demonstrated
by Yamago et al. with the example of the organotellurium-mediated living radical polymerization
(TERP) of 6-methyleneundecane with acrylates; the tendency to form alternating copolymers was
demonstrated [163]. Later, Nifant’ev et al. studied the copolymerization of a series of α-olefin dimers
with maleic anhydride [164]. In copolymerization experiments, performed in hydrocarbon media at
80–100 ◦C, azobisisobutyronitrile (AIBN)- or benzoyl peroxide (BPO)-initiated reactions resulted in the
formation of copolymers with 1:1 comonomer ratios (Scheme 9), which would suggest an alternating
nature of the reaction products. The post-modification of the copolymers obtained by the reactions
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with higher linear amines and alcohols (Scheme 9) resulted in copolymers with promising pour point
depressant characteristics (Figure 4).Polymers 2020, 12, x FOR PEER REVIEW 16 of 31 
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Figure 4. Morphology of paraffin crystals in the absence (A) and in the presence (B)
of the pour point depressant, the octadecanol-modified copolymer of maleic anhydride and
9-methylenenonadecane [164].

The DFT modeling of copolymerization of olefins with maleic anhydride (MA) [165] confirmed
the preference of the alternating reaction pathway for methylenealkanes. The possible Alder-ene side
reaction (Figure 5a) was also studied; the results of calculations demonstrated that this thermally
induced process cannot complete with alternating polymerization under the reaction conditions
due to the relatively high level of the free energy of the corresponding transition state (Figure 5b).
At elevated temperatures (180–200 ◦C), this reaction proceeded within 4–6 h with good yields [165,166];
the Alder-ene adducts were used as a starting compounds in the synthesis of bis-succinimide friction
modifiers for transmission fluids [166].
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In contrast with the acid-catalyzed oligomerization of linear -olefins, accompanied by 
rearrangements with the formation of a large number of isomeric products, methylenealkanes in the 
presence of acids form products with the same carbon skeleton (Scheme 11). Kissin and Schwab 
achieved 90% conversions of 5-methyleneundecane after 5 h of the reaction at 60 °C with 87% “dimer 
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3-methyleneheptane [165].

4.3. Epoxydation and Related Reactions

The reaction of methylenealkanes with H2O2/HCOOH resulted in the formation of the
corresponding 1,2-diols with good yields (Scheme 10a) [167]. The acid-catalyzed rearrangement
of the diols to the corresponding aldehydes, followed by the reaction with 1,2-diol, yielded branched
acetals (Scheme 10a) [167]. Using toluene as a solvent, the reaction was stopped at the stage of the
oxirane [168,169]; the acid-catalyzed rearrangement of the latter in the presence of H5Mo12O41P yielded
the corresponding aldehyde (Scheme 10b) [168]. The first reaction sequence was the subject of the
study of Harvey et al. [170] that represents a perfect example of neglect of the patent sources.
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4.4. Methylenealkanes as Alkylating Reagents

In contrast with the acid-catalyzed oligomerization of linear α-olefins, accompanied by
rearrangements with the formation of a large number of isomeric products, methylenealkanes in the
presence of acids form products with the same carbon skeleton (Scheme 11). Kissin and Schwab
achieved 90% conversions of 5-methyleneundecane after 5 h of the reaction at 60 ◦C with 87% “dimer
of dimer” selectivity using silica-supported EtAlCl2 [47]. The C40 fraction obtained by the dimerization
of 9-methylenenonadecane (dimer of 1-decene) had promising viscosity characteristics (KV100 of 6.4
cSt and VI of 147) [47]. The product of the hydrogenolysis of this compound represents a promising
low-viscosity PAO base [171]. Nifant’ev et al. proposed a more efficient catalytic system (1 mol %
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of tert-BuCl and EtAlCl2) that allowed the achievement of 98% conversions of 1-hexene, 1-octene,
and 1-decene dimers after 2 h of the reaction at –30 ◦C [91]. Methylenealkanes were also used in the
electrophilic alkylation of diphenylamine, catalyzed by acid-treated clays or ionic liquids [172].
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5. Oils and Lubricants Based on Coordination Oligomers of α-Olefins

As was demonstrated previously, the viscosity properties such as VI and pour point (PP)
of poly-α-olefin (PAO) oil base stocks depend strongly on the architecture of the constituent
hydrocarbons [16,17,179,180]. Linear hydrocarbons, petroleum waxes, (Figure 6, A), which are present
in large amounts in Group I and II oils, have high PPs. Consequently, these oils have limitations for
their use since they cannot provide secure low-temperature engine start and transmission performance.
Group III oil base hydrocarbons, which contain compounds with short branches (Figure 6, B) and
cycloalkanes (Figure 6, C), also have relatively high PPs and low-temperature viscosity values.
Long-chain branched hydrocarbons (Figure 6, D) are characterized by low PPs and high Vis and
therefore represent the most prospective group of hydrocarbons for use as high-grade bases of engine
oils and transmission fluids.
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As mentioned in the Introduction section, cationic oligomerization is accompanied by a huge
number of rearrangements, including peculiar reactions proposed by Shubkin [14] and studied later by
Gee et al. [15] (Scheme 13). The products of metallocene-catalyzed oligomerization are vinylidene-type
α-olefin oligomers with uniform molecular structures (Scheme 1a). A gas chromatogram of the C20

fraction of the products of the cationic oligomerization of 1-decene (Figure 7a) [15] confirms the
complexity of the process with the formation of large number of reaction products; the difference
between this grim picture and the gas chromatogram of the products of zirconocene-catalyzed
oligomerization (Figure 7b) [103] clearly establishes the prospects of “metallocene” oligomers in terms
of the structural homogeneity.
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produced with the 8/MAO catalyst at 70 ◦C. Reprinted with permission from [103]. Copyright (2019)
Elsevier B. V.

The transformation of the α-olefin oligomers to PAO base stocks necessitates catalytic
hydrogenation. Electrophilic oligomerization led to the partial formation of tetra-substituted olefins
(Scheme 13); the presence of >C=C< fragments significantly hampers the complete hydrogenolysis
of double bonds. The ease of the hydrogenation is an additional benefit of the coordination α-olefin
oligomers. The viscosity characteristics of the α-olefin oligomers obtained using electrophilic and
metallocene catalysts and hygrogenated oligomers (PAO basestocks) are given in Table 6 and illustrated
by Figure 8 [91]. These data clearly demonstrate that 1-hexene oligomers have little or no value for use
as PAO base stocks due to low viscosity indices and high pour point values. The oligomers of 1-octene
prepared by the zirconocene-catalyzed reaction have medium viscosity and outperform the 1-octene
oligomers obtained in the presence of BF3–ROH according to viscosity indices, while possessing
the same low-temperature kinematic viscosity. The oligomers of 1-decene synthesized by the
zirconocene-catalyzed process significantly outperform the electrophilic oligomers obtained in the
presence of BF3–ROH and can be considered as base stocks for modern PAOs.

The above pertains to oligomers obtained by the zirconocene-catalyzed process (Scheme 1a);
however, as mentioned in Section 3.5, coordination oligomerization can proceed by a metallacyclic
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mechanism with the formation of products with different molecular structures (Scheme 8).
The comparison of the viscosity characteristics of 1-decene trimers obtained by the zirconocene-catalyzed
reaction and a metallacyclic process (Cr catalysts 79, 80, 82) suggests that metallocene catalysis is
preferable for the production of PAO oil base stocks.

Table 6. Viscosity characteristics of α-olefin oligomers.1

No. of C Atoms Oligomer KV−40,
sSt

KV40,
sSt

KV100,
sSt

VI PP, ◦C Ref.

12 H2H 9.00 1.28 – – −73 [91]
16 O2 – 2.6 – – [91]
16 O2H 53.1 2.82 – – −43 [91]
18 H3 3.12 [91]
18 H3h 167.2 3.57 – – −94 [91]
18 H3h (BF3 catalyst) 165 3.8 1.4 – <−55 [16]
20 D2 4.55 1.7 14 [91]
20 D2h 5.30 – 14 −7 [91]
24 H4 7.55 2.10 62 [91]
24 H4h 1335 8.93 2.28 46 −79 [91]
24 H4h (BF3 catalyst) 1780 9.8 2.6 94 [16]
24 H22h 3030 12.4 2.72 27 −71 [91]
24 O3 6.5 2.06 114 [91]
24 O3h 552.1 7.56 2.20 92 −86 [91]
24 O3H (BF3 catalyst) 580 8.0 2.3 92 <−55 [16]
30 H5 17.55 3.6 76 [91]
30 H5h 6798 19.2 3.8 76 −67 [91]
30 H5h (BF3 catalyst) 7850 18.1 3.8 96 [16]
30 D3 14.61 3.65 140 [91]
30 D3h (catalyst 79) 12.2 3.2 126 [143]
30 D3h (catalyst 80) 13.0 3.3 131 [143]
30 D3h (catalyst 82) 12.1 3.2 137 [143]
30 D3h 1897 15.05 3.70 137 −75 [91]
30 D3h [EBTHI]Zr - borate 13.5 3.39 128 [52]
30 D3h (BF3 catalyst) 2070 15.6 3.7 122 <−55 [16]
32 O4 13.94 3.44 125 [91]
32 O4h 3135 18.4 4.0 115 −74 [91]
32 O4h (BF3 catalyst) 4750 20.0 4.1 106 <−55 [16]
32 O22 28.1 5.4 130 [91]
32 O22h 6374 29.4 5.4 119 −68 [91]
40 O5 32.9 6.05 132 [91]
40 O5h 11651 36.2 6.4 129 −68 [91]
40 O5h (BF3 catalyst) 10225 30.9 5.6 124 [16]
40 D4 31.3 6.03 142 [91]
40 D4h 8631 34.5 6.52 145 −66 [91]
30 D4h (BF3 catalyst) 7475 29.0 5.7 141 [16]
40 D22 29.43 5.90 150 [91]
40 D22h 15615 42.0 7.25 136 −52 [91]

1 Abbreviations used: H—1-hexene, O—1-octene, D—1-decene oligomers; 2–5—DPn value; 22—dimer of dimer;
h—hydrogenated.
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6. Conclusions

Thus, it can be concluded that the zirconocene-catalyzed oligomerization of higher α-olefins
represents a flexible and resource-efficient method for the synthesis of methylenealkanes (vinylidene
dimers of α-olefins, >90% yields with >98% selectivities) and oligomers with a given DPn. A broader
view of the importance of the molecular structure and molecular design that emerged over recent
years resulted in the development of advanced “metallocene” technologies for poly-α-olefin oils and
lubricants by leading petrochemical companies such as Exxon, Idemitsu, and Mobil. The further
progress in this field is related to the creation of the novel metallocene catalysts in order to achieve
enhanced thermal stability, catalytic productivity, and selectivity in the synthesis of the desired oligomer
fractions. Our recent research on 1-octene oligomerization and polymerization [80] further strongly
suggests the high potential of “heterocenes” as a new generation of single-site catalysts of α-olefin
oligomerization. We have obtained early results that are extremely promising.

The problem of the utilization of methylenealkanes, which are imminent side products of
metallocene-catalyzed oligomerization, is still relevant. The fundamental difference between
methylenealkanes and isobutylene consists of the ability of methylenealkanes to isomerize with
the formation of more stable branched olefins with >C=CH– fragments. The research and
development of the catalysts and processes without such isomerization is an actual affront to
researchers’ professionalism.
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