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Abstract

Accurate prediction of crop yield supported by scientific and domain-relevant insights, is

useful to improve agricultural breeding, provide monitoring across diverse climatic condi-

tions and thereby protect against climatic challenges to crop production. We used perfor-

mance records from Uniform Soybean Tests (UST) in North America to build a Long Short

Term Memory (LSTM)—Recurrent Neural Network based model that leveraged pedigree

relatedness measures along with weekly weather parameters to dissect and predict geno-

type response in multiple-environments. Our proposed models outperformed other compet-

ing machine learning models such as Support Vector Regression with Radial Basis

Function kernel (SVR-RBF), least absolute shrinkage and selection operator (LASSO)

regression and the data-driven USDA model for yield prediction. Additionally, for providing

interpretability of the important time-windows in the growing season, we developed a tempo-

ral attention mechanism for LSTM models. The outputs of such interpretable models could

provide valuable insights to plant breeders.

Introduction

One of the key challenges in plant breeding and crop production is to predict performance

(for example, seed yield) in unseen and new environments. This active research area is compli-

cated by the time and expense of generating an extensive dataset to represent a wide range of

genotypes and environments. Among different crops, soybean has a long history of cultivation

in North America, with the first reported production in Georgia in 1766 [1]. Over the years,

production in the US and Canada has expanded longitudinally as far west as Kansas-Colorado

border and latitudinally from southern Texas to Canada [2, 3]. North American annual soy-

bean yield trials (known as Uniform Soybean Tests (UST)) have been coordinated in the

United States and Canada through the United States Department of Agriculture (USDA)

between public breeders in university and government settings since 1941 [4, 5]. These trials

are used to evaluate current and experimental varieties in multiple environments within

their range of adaptation. Therefore, these trials are valuable sources of historical and current
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data to improve prediction performance with the assimilation of genetic and environmental

variables.

Management and permanent environmental effects have been examined primarily at small

scales due to the labor required for managing large numbers of plots [6, 7]. With the addition

of each layer of added characterization of the environment, less of the differences need be

ascribed to a generic “environmental” component, and can instead be examined individually

in combination with plant genetics. The nexus of genetic and non-genetic variables form the

cornerstone of plant breeding strategies, irrespective of crop species, for meeting crop produc-

tion challenges in the future [8, 9].

Climatic resiliency in cultivars is an important objective for plant breeders and farmers to

get a high seed yield in a myriad of environments [10]. The climatic variability can be associ-

ated with changes in temperature and rainfall events (including patterns and magnitude) and

other weather variables. In addition to spatial variability, temporal variability of weather vari-

ables [11] is equally important but generally less understood in yield prediction studies. It is

important to understand how agricultural production is affected by the variability of weather

parameters in the presence of global climate change, especially with higher occurrence of

extreme weather events. Therefore, prediction of the effects of changing environments on per-

formance can help in making informed plant breeding decisions, marketing decisions, opti-

mizing production and comparing results over multiple years [12].

Traditionally, crop growth models have been proposed to simulate and predict crop pro-

duction in different scenarios including climate, genotype, soil properties, and management

factors [13]. These provide a reasonable explanation on biophysical mechanisms and responses

but have deficiencies related to input parameter estimation and prediction in complex and

unforeseen circumstances [14]. Previous attempts at yield prediction across environments

have relied on crop models generated by quantifying response in a limited number of lines

while altering a single environmental variable, limiting the inference scope [15]. To bypass the

limitations of crop growth models, linear models have also been used to predict yield with

some success [16]. However, these low-capacity models typically rely on a rather small subset

of factors, therefore failing to capture the complexity of biological interactions and more site-

specific weather variable complexities. Traditional linear methods such as Autoregressive Inte-

grated Moving Average (ARIMA) have been used for time series forecasting problems [17],

but these methods are effective in predicting future steps in the same time-series. Considering

the importance of climate extremes for agricultural predictions, random forest has been uti-

lized to predict grid-cell deviations of yields [18]. For time series prediction tasks, deep neural

networks show robustness to noisy inputs and also have the capability to approximate arbitrary

non-linear functions [19]. Deep learning models can provide solutions in the presence of such

complex data comprising of different weather variables, maturity groups and zones, and geno-

type information. These models can be highly efficient in learning the non-linear dependen-

cies between multivariate input data (weather variables along with maturity group, cluster

information) and the predicted yield.

Long Short Term Memory (LSTM) networks are very useful for time series modeling as

they can capture the long-term temporal dependencies in complex multivariate sequences

[20]. LSTMs have shown state-of-the-art results in various applications including off-line

handwriting recognition [21], natural language processing [22] and engineering systems [23].

LSTMs have also been used effectively for multivariate time series prediction tasks [24–26].

LSTM based model has been used for corn yield estimation [27], but these models lack

interpretability as well. is based on geospatial data without field-scale farming management

data and lacks temporal resolution in the absence of daily weather data.
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In recent years, a significant number of different approaches has been proposed to address

the ‘interpretability’ problem [28–33]. The use of ‘attention” mechanism is one such approach

where the goal is to localize important parts of input features by using the attention weights.

Attention-based model [34] was originally introduced for neural machine translation to out-

perform the encoder-decoder model [22, 35]. While use of ‘attention’ has been predominant

in the computer vision community [36], the domain of sequence modeling, time-series model-

ing has extensively used this concept recently [37–39]. Additionally, it is becoming increas-

ingly evident to the ML community that the attention mechanism in time-series modeling can

not only help in prediction performance, it can also be used for interpretability [25, 40–44].

Attention based LSTM has been used along with multi-task learning (MTL) output layers

[45] for county level corn yield anomaly prediction only based on meteorological data (maxi-

mum daily temperature, minimum daily temperature) without field-scale farming data. Previ-

ous work [46] using deep learning for yield prediction has utilized multi-spectral images to

predict yield (instead of leveraging only multivariate time series as input) without considering

model interpretability. Khaki et al. [47] applied deep neural networks for yield prediction of

maize hybrids using environmental data, but their model is not capable of explicitly capturing

the temporal correlations and also lacks interpretability. Other approaches to predict yield rely

on the use of sensors to identify the most informative set of variables to predict yield [48, 49],

which is very useful in multiple applications. However, there is still a need to integrate weather

parameters using a time series approach involving multiple genotypes. In addition to accurate

prediction, the ability to interpret domain-relevant prediction outcomes from a machine

learning model (learning temporal dependencies from multivariate time series) can signifi-

cantly benefit the domain experts in the field of plant breeding.

Using these motivations, we developed a model that can capture the temporal variability of

different weather variables across the growing season in an interpretable manner to predict

soybean yield from the UST dataset of field trials spanning 13 years across 28 U.S. states and

Canadian provinces. We propose a framework based on LSTM and temporal attention to pre-

dict crop yield with 30 weeks (spanning the typical crop growing season) of weather data per

year (over 13 years) provided as input, along with a reduced representation of the pedigree to

capture differences in the response of varieties to the environment. We varied the number of

input time-steps and compared the performance of our proposed Temporal Attention model

with the Stacked LSTM model for two variations of each model. We also compared against the

results of SVR-RBF, LASSO regression and the data-driven state-of-the-art USDA model [16].

The temporal attention mechanism highlights the significant time periods during the growing

season leading to high or low yield prediction. The results from the temporal attention are in

concord with the domain knowledge. In this paper, we report improved fidelity interpretation

of the prediction outcomes without sacrificing the accuracy for multivariate time-series predic-

tion. Our proposed framework can have widespread applications in plant breeding, crop sci-

ence research, and agricultural production.

Material and methods

Preparation of performance records

Files from 2003–2015 USTs were downloaded as PDFs [4, 5]. Using on-line utility Zamzar

(zamzar.com), all 26 PDFs from this period were converted to.xlsx files, with each tab corre-

sponding to a single page in the file. In this way, the vast majority of tables were recovered

with no errors or need for human translation. However, random checking for error was manu-

ally performed to ensure verity. These tables were manually curated to align all performance

records for a given genotype/location combination into a single row. Records that did not
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have yield data (due to a variety not being planted in a specific location or dying prior to pro-

duction of seed), were removed from the file.

Following data cleaning, the final dataset comprised of 103,365 performance records over

13 years representing 5839 unique genotypes. The map in Fig 1 shows the different locations.

After compilation, we imported performance records in Python for further data analysis. Each

performance record comprises of 214 days (crop growing season, defined April 1 through

October 31) of multivariate time-series data and each day is represented by 7 weather variables

as shown in Fig 2.

Acquisition and sub-sampling of weather records

Daily weather records for all location/year combinations were compiled based on the nearest

grid point from a gridded 30km product (Weather.com [52]). We downsampled the dataset to

include maximum, minimum, and average conditions on different time frames throughout

the growing season (defined April 1 through October 31) and this information was appended

to performance records. Additional details regarding this are provided in S5 Text.

Genotype clustering

We included genotype-specific criteria to apply the model for specific genotypes and mean

location yield across genotypes. Due to the nature of the UST program, most of the genotypes

Fig 1. Map showing different locations in the USA and Canada included in our dataset. The dataset comprises of

different maturity groups (MGs), some of which are labeled in the figure. The relative size of a yellow dot (representing

location) indicates the size of the dataset for that particular location. Dataset included observations from the National

Uniform Soybean Tests for years 2003–2015 and is split into North (MG 0 to 4) and South (MG 4 to 8) regions [50,

51], consisting of 103,365 performance records over 13 years and 150 locations. These records are matched to weekly

weather data for each location throughout the growing season (30 weeks). This generated a dataset with 35,000 plots

having phenotype data for all agronomic traits.

https://doi.org/10.1371/journal.pone.0252402.g001
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tested in this period do not have molecular marker data available, preventing the use of a G

matrix. To circumvent these restrictions, we developed a completely connected pedigree for all

lines with available parentage information, resulting in the formation of a 5839 x 5839 correla-

tion matrix. To improve the model performance, genotypes were clustered based on the orga-

nization which developed them, providing additional control over relatedness.

We find that the optimum number of clusters for the K-means algorithm can be considered

as 20 (details provided in S1 Text). We clustered genotypes in 20 clusters using the K-means

Clustering technique based on the correlation matrix to extract information about relatedness.

With a specified number of clusters (n), the K-means algorithm finds n groups of equal vari-

ance by choosing centroids of the clusters to minimize a criterion known as inertia (also called,

within-cluster sum-of-squares). This algorithm is effective for a large number of samples and

finds application across different domains [53–55]. With this hard clustering technique, each

genotype belongs to one of the 20 clusters. The cluster ID for a genotype is augmented into the

proposed model for yield prediction.

Model development

A modeling approach based on recurrent neural network (RNN) can capture correlation

across time. Long short-term memory (LSTM) [56] can overcome the error backflow problems

of an RNN [57]. By learning long-range correlations in a sequence, LSTM can accurately

model complex multivariate sequences [20].

We developed two models, based on LSTM: (a) Stacked LSTM Model (without using any

attention) (Fig 2), and (b) Temporal Attention Model (using a temporal attention mechanism)

(Fig 3). The output of both the models is yearly seed yield as this is a many-to-one prediction

problem. For each model, we formulated the model variants depending on whether the perfor-

mance records comprise data of maturity group (MG) and genotype cluster. The same model-

ing approach was used to compute the time-step wise encoding for both models. Two stacked

Fig 2. Stacked LSTM model. The input feature vector is x<t> at time-step ‘t’. Depending on whether the MG and

genotype cluster information are incorporated in the model or not, the vector x<t> can be 9-dimensional or

7-dimensional. We included 7 weather variables in our study. The embedding vector a<Tx> encodes the entire input

sequence and summarizes the sequential dependencies from the time-step 0 to the time-step Tx. We designed two

variants of our proposed model based on input information with the time series encoding part remaining the same for

both variants. This model (when including MG, cluster with Tx = 30) had 202,503 learnable parameters and the

training time/epoch was 18 secs.

https://doi.org/10.1371/journal.pone.0252402.g002
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LSTM layers were used to encode the Tx time-steps of the input sequence as shown in Fig 2.

Depending on the variant, for both models, we concatenated MG and genotype cluster values

with the compressed time-series information.

In the Stacked LSTM Model, the last hidden state of the encoding part is assumed to be the

compressed representation from the entire input sequence. This fixed-dimensional representa-

tion was concatenated with maturity group and cluster information before the prediction of

yield (Fig 2). For the Temporal Attention Model, the compressed information (context) is

computed after aggregating the information from the sequence of hidden states using the

attention mechanism. The concept of soft temporal attention [34] was first proposed in the

context of neural machine translation to overcome the bottleneck of the encoder-decoder

model [22, 35] for long sequences. Compressing all information from the input time-steps into

a fixed-length single vector was the major bottleneck for the encoder-decoder model. Tempo-

ral attention can be applied to many-to-many time series prediction [25] and many-to-one-

prediction [44, 58]. The proposed approach (Fig 3) does not incorporate a decoder LSTM

as we are performing a many-to-one prediction problem. Taking in the annotations of all

time-steps as input, the attention block aggregates the information and computes the context

vector. Therefore, while the Stacked LSTM model only considers the hidden state of the last

encoding time-step, the Temporal Attention model considers the hidden state of all the time-

steps across the crop growing season and learns the alignments in order to compute the aggre-

gated context.

A greedy search method was utilized to empirically determine the most influential weather

variable on seed yield prediction considering data of both the northern and southern U.S.

regions. In the first step of the greedy search, the Stacked LSTM model was trained for each of

the 7 variables and to choose the variable that had the least RMSE. With this variable added, in

Fig 3. Temporal attention model. The LSTM encoding part is the same as that of the Stacked LSTM Model where we

get the annotations a<t> for each timestep. Instead of only using a<Tx>, this model utilizes all annotations which act as

inputs for the temporal attention mechanism. Based on the computed context vector, the two variants of this model are

designed depending on the input information. This model (when including MG, cluster with Tx = 30) had 202,632

learnable parameters and the training time/epoch was 18 secs.

https://doi.org/10.1371/journal.pone.0252402.g003
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the second step, the model was trained for each of the other 6 variables. In this way, variables

were added.

All input features were scaled in the range (-1, 1) with the scaler fitted on the training set.

Data were randomly split into training (80%), validation (10%) and test (10%) sets. To get the

best set of hyper-parameters, we performed several experiments. For training the models,

Adam optimizer was used [59] (learning rate of 0.001 gave better results) and the mean

squared error loss function was computed. After each LSTM layer, dropout layer (0.2) was

used to prevent overfitting. The hidden state dimensions of the two LSTM layers were kept

same for simplicity. Hidden State dimension of 128 showed better performance in our experi-

ments. The reduction in dimension of the time-series encoding (context) was optimized to 2

units. Both models were trained for 100 epochs with batch size of 512 to get the optimal error

scores. Models were developed using Keras [60] with the TensorFlow backend [61] and the

models were trained using one NVIDIA Titan RTX GPU. For both the Stacked LSTM and

Temporal Attention model, the training time per epoch is 6s.

We utilized three evaluation metrics: root mean square error (RMSE), mean absolute error

(MAE), and coefficient of determination or R-squared (R2) score. We computed the metrics

after inverting the applied scaling to have forecasts and the actual values in the original scale.

For comparison of the empirical results, we used two baseline models: Support Vector Regres-

sion with Radial Basis Function kernel (SVR-RBF) and least absolute shrinkage and selection

operator (LASSO) regression. We also tried to optimize the hyper-parameters of the baseline

models by running multiple experiments. The SVR-RBF and LASSO models are developed

using the scikit-learn [62] library. For the SVR-RBF model, in our experiments, we find that

the optimal value of epsilon is 0.1 with the regularization parameter (C) kept as 1. The LASSO

is a linear model trained with L1 prior as regularizer. Alpha is the constant that multiplies the

L1 term. With the maximum number of iterations kept as 1000, through different experiments,

we optimize alpha to 0.000001. The results for SVR-RBF and LASSO model are given in S2

and S3 Tables respectively.

Results

Greedy search

With the inclusion of only weather variables. We observed average relative humidity

had the lowest test RMSE. With the inclusion of average relative humidity in the prediction

model, average direct normal irradiance was the next most important variable. Sequentially,

the remaining weather variables (from S4 Table) were: maximum direct normal irradiance,

maximum surface temperature, minimum surface temperature, average surface temperature,

and average precipitation.

With the inclusion of weather variables, MG and genotype clusters. Minimum surface

temperature was the most important weather variable, i.e, had the lowest RMSE. The remain-

ing weather variables (from S4 Table) with diminishing importance were—average direct nor-

mal irradiance, average surface temperature, maximum direct normal irradiance, average

precipitation, average relative humidity, and maximum surface temperature. Noticeably, the

ranking of the variables was different but the absolute change in MAE scores were minimal.

Empirical results

For determination of appropriate temporal sampling of weather information to predict yield

using our proposed frameworks, the validation set RMSE was used to determine optimal

(lowest RMSE) number of time points to predict seed yield. Using a step-wise approach

building from monthly, bi-weekly, weekly and finally daily data, almost similar comparative
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performance was observed in each scenario except for daily (Validation RMSE = 7.595). The

intermediate scenario of weekly data was picked for some subsequent analyses, to facilitate

faster training of LSTMs and also not to downsample to a higher extent in capturing the long-

range temporal dependencies.

Overall, a R2 score of 0.796 between predicted and observed yields in the test set was

attained; largely capturing the differences in performance between environments and years.

However, the model remains somewhat limited in its ability to generate genotype-specific

yield predictions due to the limited complexity of relationships which can be modeled using

LSTM, and a lack of genomic information on each genotype. As currently implemented, the

model’s mean absolute error is 5.441 bu/acre, which is reasonable given the levels of variability

within a given environment/year combination. For example, in Ames, IA, during 2003, yields

ranged from 33.3–55.3 bu/acre. In spite of this large range of difference, mean absolute error

of only 4.57 bu/ac was observed for this environment. No perceptible trends are observed

when we looked at state wide results combined over years. We also looked at originating

breeding state as well as private company entries, and no geographical trends were noticeable.

The comparative results are shown in Table 1.

Varying the value of Tx did not have a significant change in the accuracy of the models,

except for the LASSO model. Augmenting the information of maturity group and cluster to

the weather variables (detailed description of the chosen approach given in S6 Text) seem to

have a considerable impact in the performance of the deep learning models. Both of our pro-

posed models (Stacked LSTM, Temporal Attention) showed similar performance, and results

improved when more information were included (Fig 4). The coefficient of determination was

highest (0.796) when information from all the sources (MG, genotype cluster, weather vari-

ables) were incorporated. The best performance (test MAE = 5.441) from Temporal Attention

model is 10.72% of the average seed yield for the test set (50.745) and 33.96% of the standard

deviation of the test set (16.019)(Fig 4). Comparatively, test MAE of 9.987 was obtained from

LASSO, while SVR-RBF test MAE was 5.976 with same input features. Both the Stacked LSTM

and the Temporal Attention models outperformed LASSO and SVR-RBF models.

In comparison with the data-driven state-of-the-art USDA model [16], our deep learning

LSTM approach performs significantly better, evident from much lower absolute errors. The

Table 1. Comparison of performance of the two deep learning models (2 variants of each model based on the input information) with SVR-RBF and LASSO by vary-

ing the input sequence length (Tx) using metrics of the test set. Each model was trained three times, to obtain the average and standard deviation of each evaluation

metric.

Tx Model Weather Variables Including All

RMSE MAE R2 Score RMSE MAE R2 Score

7 LASSO 14.465±0.000 11.485±0.000 0.184±0.000 14.463±0.000 11.485±0.000 0.185±0.000

SVR-RBF 8.465±0.000 6.285±0.000 0.720±0.000 7.913±0.000 6.012±0.000 0.755±0.000

Stacked LSTM 8.290±0.021 6.191±0.007 0.731±0.001 7.257±0.025 5.470±0.024 0.794±0.001

Temporal Attention 8.292±0.018 6.172±0.027 0.731±0.001 7.243±0.037 5.453±0.030 0.795±0.001

15 LASSO 13.732±0.000 10.911±0.000 0.265±0.000 13.729±0.000 10.912±0.000 0.266±0.000

SVR-RBF 8.438±0.000 6.256±0.000 0.722±0.000 7.835±0.000 5.943±0.000 0.760±0.000

Stacked LSTM 8.284±0.029 6.176±0.034 0.732±0.002 7.248±0.020 5.460±0.015 0.795±0.001

Temporal Attention 8.284±0.017 6.182±0.035 0.732±0.001 7.226±0.017 5.441±0.013 0.796±0.001

30 LASSO 12.811±0.000 9.995±0.000 0.360±0.000 12.790±0.000 9.987±0.000 0.363±0.000

SVR-RBF 8.460±0.000 6.282±0.000 0.721±0.000 7.875±0.000 5.976±0.000 0.758±0.000

Stacked LSTM 8.283±0.005 6.178±0.004 0.732±0.000 7.276±0.050 5.484±0.049 0.792±0.002

Temporal Attention 8.303±0.019 6.200±0.013 0.730±0.001 7.239±0.032 5.441±0.028 0.795±0.002

https://doi.org/10.1371/journal.pone.0252402.t001
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USDA approach uses a linear regression approach with coefficients based on historical state-

wide yields and weather averages. However, the USDA model does not predict performance

for individual locations. Ths USDA model averages over the entire state, while our model was

built on predictions from multiple separate locations within a state. The USDA model is a state

(farm level) model, while our model is on a breeding level scale (finer scale). The results from

the USDA model are outputted as one single crop yield, while our model outputs multiple dif-

ferent yields from each plot and per location. Due to this limitation of the USDA model, we

compared results of our model with the USDA model using year wise average across states for

the test set. In comparison with the USDA model, the absolute errors of the Temporal Atten-

tion model are lower for most of the 13 years (except in 2004, 2011 and 2013). For 2014 and

2015, the absolute errors of deep learning models were 0.38 and 0.17 (compared to 1.32 and

1.70 for the USDA model), respectively. Detailed comparison results are provided in the

(S1 Table).

Interpretability

In addition to accurate yield prediction, the Temporal Attention Model provided insights (Fig

5) about how early-season variables were less important for yield prediction in the highest

yielding genotypes for two geographically distinct maturity groups: MG1 (Northern US adap-

tation) and MG7 (Southern US adaptation). We observed mild sigmoid curves for the highest

yielding group in the case of both MG1 and MG7. However, we note that while MG1 had a sig-

nificantly large number of plots (�550) for the highest yielding group, MG7 had only about 30

such plots. It points to the increasing importance of features in the August–September time

Fig 4. Results for different inputs to the temporal attention model. The vertices of the triangle demonstrate results

including only the MG, only genotype cluster and only weather variables in the input. The edges show the results with

a combination of inputs from the respective vertices. The results showed improvement when the genotype cluster was

included with weather variables. The coefficient of determination increased further when MG was included with

weather variables. The best results were noticed when information from all sources was incorporated (shown at the

center of the triangle).

https://doi.org/10.1371/journal.pone.0252402.g004
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phases for both these North and South US regions. These time phases coincide with pod set

and seed fill stages, emphasizing their importance in the final yield, and need functional valida-

tion which is outside of the scope of our research. However, these insights are a useful as a

hypotheses generation tool and another advantage of these models motivating future research.

Discussion

We establish the potential for use of a long short-term memory-based method for yield predic-

tion to allow models to account for temporal differences in the occurrence of weather events.

Predictions using this system can be made reasonably accurate due to a large amount of train-

ing data made available through the mining of historical records. Our approach (using LSTM

and attention) is an efficient modeling scheme to analyze soybean crop growth interaction

with the weather, as well as to identify key physio-environmental features that are important

to include into any predictive model. For example, differences in the timing of extreme heat

events, as well as drought periods, would affect soybean plants in various ways depending on

the stage of plant development. For example, heat stress during flowering is particularly dam-

aging while heat in vegetative stages of development may have less drastic impact on seed yield

[63]. With a larger encompassing dataset, breeders and researchers can be empowered to parse

out most informative time periods, weather variables and crop responses. This information

sets up the framework for breeding strategies to develop climate resilient and responsive

varieties.

Relative importance of weather variables

Our results show a potential mismatch in the heuristic and empirical results for the impor-

tance of weather variables in predicting seed yield. The finding of minimum surface tempera-

ture as the most significant weather variable suggests that nighttime temperatures play a larger

role in yield prediction than previously suggested [64]. Our study is a retrospective design, and

cannot conclude definitively that this is the case; however, these findings necessitate further

empirical investigations and can be used to formulate the next set of hypotheses. This finding

is significant, as minimum temperatures have been reported to be increasing at a faster rate

than maximum temperatures [65]. More studies are needed to ascertain the relative impor-

tance of these variables and can motivate morpho-physiological attentive breeding approaches

Fig 5. Distribution of attention weights for the entire input sequence (spanning the growing season). Considering

different ranges of actual yield, the results are demonstrated for two different maturity groups (MG = 1, MG = 7)

providing stark geo-climatic regions (Fig 1). Early season variables were observed to be comparatively less important

for prediction of the highest yielding genotypes.

https://doi.org/10.1371/journal.pone.0252402.g005
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to assemble sturdier varieties for future scenarios. While greedy search is a very useful tool as

demonstrated in our approach, in future we envision a more scalable attention-based approach

(similar to the temporal attention concept we present), to provide additional insights about the

importance of variables in predictions. This approach will be computationally less intensive,

but more importantly it will better integrate spatial importance of variables more intrinsically

compared to the brute greedy search.

Advantages of our framework

Our work shows a unique strategy to assimilate and utilize complex data for seed yield predic-

tion. For comparison purposes, we compared our models with the SVR-RBF, LASSO and the

data-driven USDA model. The USDA model has a limitation on the type of data it can utilize

and is limited in its application. For example, as the USDA model computes predictions at the

state level, the finer resolution available with our model may help in making regional market-

ing decisions, as well as in creating yield predictions which can capture intra-state variation

due to factors such as differences in rainfall (amount, duration, time) in different areas of the

state. Since our results are built on more than a decade of data, it also reflects that early season

weather variables are less useful in seed yield prediction and needs empirical evidence to con-

firm the genetic variability in plasticity of soybean genotypes in earlier stages of growth and

development. Importantly, we emphasize that the utilization of the attention module within a

LSTM framework allows us to tease out potentially important features for further testing. This

alleviates the disadvantage of DL models—which serve as purely blackbox predictive models—

by allowing for hypothesis generation that will allow scientific insight via targeted follow up

analysis and experiments.

The advantages of LSTM based models have been recently established for maize yield pre-

diction at a county level [27], but the model lacked interpretability. Attention based LSTM

along with multi-task learning (MTL) output layers has also been used for maize yield predic-

tion using county level data based on meteorological data (maximum daily temperature, mini-

mum daily temperature, and daily precipitation) [45]. These studies are important for solving

the yield prediction challenge; however, models are based on geospatial data without field-

scale farming management data and variety information is indiscernible, and based on limited

weather variables.

Future expansion and generalizability of our framework

A large capacity machine learning approach, such as the one presented in this paper using

LSTM and temporal attention will be robust to incorporate weather changes and adjust perfor-

mance predictions accordingly. Additional information that may improve the results of this

approach is the inclusion of any supplemental irrigation provided, soil fertility levels, disease

pressure and resistance levels, and direct genetic markers for the tested varieties, all of which

would further strengthen predictive ability. While a lack of molecular marker data for each

line precludes us from leveraging genomic prediction and integrating with the LSTM model,

this is a logical next step as such data becomes available. The models performed reasonably

well in absence of crop management and soil data, but these can be incorporated in future

studies to further leverage the predictive ability of our models. Therefore, future implementa-

tions may be expanded to include genomic data, additional factors such as preceding crop,

row spacing, planting date, soil texture, or additional temporal data in the forms of soil sensor

measurements and remote sensing data for morphological and physiological traits. The

approach presented in this work will further enhance phenomics assisted breeding and pre-

scriptive breeding that use in-season data from different sensors and payloads [48, 49, 66]
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using machine and deep learning approaches suitable in plant sciences applications [67–69].

The basic framework of LSTM for the phenotypic prediction can be applied to any crop and

trait with weather-dependent variability in order to better understand the genotype x environ-

ment effects found in the course of multi-environment testing. While we present the useful-

ness of LSTM and attention based models on seed yield predictions and associated variable

importance, this approach is trait agnostic and will be useful for a wide variety of useful traits

including root traits [70, 71].

Broad societal impact

The ability to make accurate predictions of crop performance can lead to optimization across

many different levels of organizations. At the federal level, improved crop insurance recom-

mendations can be made based on weather forecasts before planting, and be continually

updated throughout the season as more data is recorded and forecasts are updated. Crop

insurance decisions for providers and clients rely on weather events. This is reflected, for

example, in the date of planting and risk associated with seedling frost damage. The same is

applicable for fall season killing frost. Therefore, both insurers and farmers can benefit from a

robust crop performance prediction that includes weather parameters. These losses are not

just from weather related events such as frost, but also drought, and diseases/insect-pest that

may also be indirectly related to weather conditions. Furthermore, individual and area plans

can benefit from crop yield prediction; and yield as well as revenue protection type of crop

insurance will be impacted from better crop performance prediction built on weather. Rail-

roads, grain cooperatives, and end-users can streamline the logistics of handling the desired

quantities of grain if they are permitted a better understanding of how much grain (and of

what quality) will be produced in a given region. Farmers can make better marketing decisions

if they have an accurate and high confidence prediction of their production for the year, allow-

ing them to sell their crops at the most opportune time. For example, farmers can better utilize

price guarantees or price locks in the futures market if they have better prediction tools at their

disposal. We envision that similar work on other crops and over a longer time span will gener-

ate invaluable insights for cultivar development and plant breeding and production related

research in a challenging climate.

Conclusion

Unraveling the importance of different weather parameters would be a substantial step for-

ward in understanding the impact of climate change on variety’s plasticity. Viewed through

the lens of interpretability, DL based predictive models vs process based predictive models

have distinct pros and cons. Process based models have clear relationships (by construction);

however the dependency is limited to the confines of the model parameters, and it is non-triv-

ial to assimilate additional data to extract broader trends. On the other hand, accurately inter-

preting DL based model outcomes is an open problem in the AI/ML community, with much

activity. However, DL models (in contrast with the process-based models) have the ability to

seamlessly assimilate additional data. Our vision is therefore to evaluate if systematically aug-

menting DL based predictive models with increasing amounts of physio-morphological infor-

mative features provides a way towards unraveling scientific insights. We can accomplish this

by deploying our DL framework as a ‘hypotheses generation tool’. We build DL models using

a large volume of data and variety of information incorporating domain based knowledge. We

can then systematically probe the impact of various physio-morphological and environmental

parameters on yield (via sensitivity analysis, and “what if” scenario evaluation), and establish a

framework to generate hypotheses in different crop species and physio-morphological
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characteristics under different climatic conditions. Until explicitly interpretable DL becomes

feasible, the hypotheses generation DL models will have the maximum impact in meeting the

need of climate change scenarios and to incorporate plasticity response in future varieties.

Supporting information

S1 Fig. Clustering details. After finding the optimum number of clusters (20), we plot magni-

tude against cardinality.

(TIF)

S2 Fig. LSTM block. The input, output and forget gates regulate whether information can be

augmented or removed from the cell state [72, 73].

(PDF)

S3 Fig. Encoding of input sequence. LSTM is used for encoding the input sequence which is

of length Tx and the output from the first LSTM layer is a batch of sequences that are propa-

gated through another layer of LSTM. We used dropout regularization after each LSTM layer

to prevent overfitting.

(TIF)

S4 Fig. Temporal attention mechanism. The context vector is computed and the attention

weights are learned simultaneously.

(PDF)

S5 Fig. Data availability. Attempt to gain insights behind performance on the test set based

on data availability in the training set.

(TIF)

S1 Table. Comparative performance with the USDA model. The deep learning model

showed better performance.

(PDF)

S2 Table. Performance of SVR-RBF model for different epsilon values. The optimal value

of epsilon is found to be 0.1.

(PDF)

S3 Table. Performance of LASSO model for different alpha values. The optimal value of

alpha is found to be 0.000001.

(PDF)

S4 Table. Greedy search for the weather variables. With inclusion of only weather variables

and with inclusion of MG, genotype cluster and weather variables.

(PDF)

S1 Text. Clustering. Clustering is an unsupervised machine learning technique used to group

unlabeled examples. A metric (similarity measure) is used to estimate the similarity between

examples by combining the examples’ feature data. With the increase in the number of fea-

tures, the similarity measure computation can become more complex. By assigning a number

to each cluster, each complex example is represented by a cluster-ID. This makes clustering a

simple yet powerful technique that finds applications in domains including image segmenta-

tion, anomaly detection, social network analysis, and medical imaging. The output of the clus-

tering technique (Cluster ID) can be then used as input instead of a high-dimensional feature

for machine learning algorithms.

(PDF)
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S2 Text. Long Short Term Memory networks (LSTMs). Recurrent Neural Networks (RNNs)

can explicitly capture temporal correlations in time series data, and efficient learning of the

temporal dependencies leads to highly accurate prediction and forecasting, often outperform-

ing static networks. Deep RNNs are trained using the error backpropagation algorithm; how-

ever, the propagation of error gradients through the latent layers and unrolled temporal layers

suffer from the vanishing gradient problem. Therefore, gradient descent of an error criterion

may be inadequate to train RNNs especially for tasks involving long-term dependencies [57].

Moreover, standard RNNs fail to learn in the presence of time lags greater than 5–10 discrete

time-steps between relevant input events and target signals [72]. To overcome these challenges,

Long short-term memory (LSTM) was used, which is an RNN architecture designed to over-

come the error backflow problems [56]. By using input, output and forget gates to prevent the

memory contents being perturbed by irrelevant inputs and outputs, LSTM networks have the

ability in learning long-range correlations in a sequence and can accurately model complex

multivariate sequences [20]. The cell state in an LSTM block can allow the information to just

flow along with it unchanged and information can be added to or removed from the cell state.

In an LSTM block (S2 Fig), there are input, output and forget gates that prevent the perturba-

tion of the memory contents with irrelevant information. These gates regulate the augmenta-

tion of any information to the cell state.

(PDF)

S3 Text. Encoding using stacked LSTM. To encode the information of the input time-steps,

we had two LSTM layers stacked on top of each other to get the Tx annotations as shown in S2

Fig. We finalized this model after an extensive hyper-parameter and architecture search. The

Stacked LSTM can capture the long-range dependencies and temporal correlations for nonlin-

ear data, therefore, they were ideal for our research problem. An LSTM layer consists of a

sequence of directed nodes where each node corresponds to a single time-step. The first layer

of LSTM takes in input the information from all timesteps sequentially. For input at each

time-step, we concatenated the information from different variables and this concatenated

information acts as the input to the LSTM node. The LSTM node computes the hidden state as

a function of the previous hidden state and the input vector for the current timestep. Each

LSTM node updates the hidden state and cell state. The next LSTM node receives as input

these updated states and the concatenated information of that time-step. After performing

computations at each timestep of the time series, the first LSTM layer generates a sequence of

hidden states for input to the next LSTM layer. The encodings returned by the first LSTM

layer act as inputs for the next LSTM layer (S3 Fig).

(PDF)

S4 Text. Temporal attention mechanism. The input to the temporal attention mechanism is

a sequence of vectors and the aim is to compute aggregated information from these vectors.

The vectors are annotations corresponding to the input time-steps. We computed the context

vector from the weighted sum of annotations (hidden states) as shown in S4 Fig. Annotation

a<t> focuses on the information surrounding the time-step t in the sequence. The attention

weight α<t> signifies the contribution of the information at a time-step t for prediction.

(PDF)

S5 Text. Downsampling the dataset. The original multivariate time-series data set comprises

of 214 days (thus having 214 time-steps). Each day is represented by 7 weather variables. The

variables are Average Direct Normal Irradiance (ADNI, Wm−2), Average Precipitation Previ-

ous Hour (AP, inches), Average Relative Humidity (ARH, Percentage), Maximum Direct Nor-

mal Irradiance (MDNI, Wm−2), Maximum Surface Temperature (MaxSur, ˚C), Minimum
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Surface Temperature (MinSur, ˚C) and Average Surface Temperature (AvgSur, ˚C). We con-

sider the first 210 days (time-steps) while downsampling the daily data to weekly (Tx = 30),

biweekly (Tx = 15) and monthly (Tx = 7) values. We kept the sense of the variables the same

while downsampling and thus instead of considering mean for all the variables, we compute

an average of average (ADNI, ARH, AvgSur), maximum of maximum (MDNI, MaxSur), mini-

mum of minimum (MinSur). For average precipitation, we consider both the total precipita-

tion and the average precipitation for the considered time interval (7 days, 14 days, 30 days).

The model performs better when the downsampling is performed using average precipitation

and therefore we implement this in our experiments.

(PDF)

S6 Text. Adding maturity group, genotype cluster informations. We performed three differ-

ent experiments to optimize the augmentation of the information of Maturity Group (MG).

To do this, we developed three different architectures. In the first approach, we concatenated

MG to every time-step of the input. In the second approach, we concatenated MG to every

time-step and also after the 2nd LSTM layer just before prediction. For the third architecture,

we added MG only after the 2nd LSTM. The second approach which gave the least RMSE

became our selected approach for the paper. Interestingly, we observe that even though MG is

a static value for all time-steps, approach 1 gave better results than approach 3. With MG infor-

mation already augmented, we performed a similar search to select a suitable architecture for

adding the genotype cluster information. We observed that approach 2 also gives the least

RMSE in this case.

(PDF)

S7 Text. Comparison with USDA model. We compare the performance of our deep learning

model (Stacked LSTM) with the USDA’s weather-based soybean yield prediction model [16].

The USDA model which uses a linear regression approach doesn’t predict performance for

individual locations. It predicts yield state-wise. Due to this limitation of the USDA model, we

compare the models using year wise average across states for the test set (S1 Table). We com-

puted the absolute error (between predicted and actual yield) for both the models. The deep

learning model showed much-improved performance compared to the domain knowledge-

based USDA model.

(PDF)

S8 Text. Data availability—Insights. We try to gain insights based on data availability for per-

formance on the test set as shown in S5 Fig. We plotted the test RMSE values using a heat map

for all the (MG, Genotype Cluster) combinations. We also plotted the ratio (number of sam-

ples in training set/number of unique locations) to get an estimation of the data availability

and data distribution for all the (MG, Genotype Cluster) combinations. From the figure, we

observed that for the highest test RMSE (MG = 7, Cluster = 6) the corresponding data avail-

ability ratio is low. This holds true for most of the highest RMSE combinations, although not

for all. Therefore, while not conclusive, it seems bad performance can be attributed to less data

availability/location in the training set leading to high RMSE in the predicted yield. The frame-

work developed in this paper allows similar investigations to motivate other insights, and

future hypotheses driven research.

(PDF)

Acknowledgments

The authors thank Vikas Chawla for his assistance with querying weather data for this project.

PLOS ONE Crop yield prediction integrating genotype and weather variables using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0252402 June 17, 2021 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252402.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252402.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252402.s017
https://doi.org/10.1371/journal.pone.0252402


Author Contributions

Conceptualization: Johnathon Shook, Baskar Ganapathysubramanian, Soumik Sarkar,

Asheesh K. Singh.

Data curation: Johnathon Shook.

Formal analysis: Johnathon Shook, Tryambak Gangopadhyay, Linjiang Wu.

Funding acquisition: Baskar Ganapathysubramanian, Soumik Sarkar, Asheesh K. Singh.

Investigation: Baskar Ganapathysubramanian, Soumik Sarkar, Asheesh K. Singh.

Methodology: Tryambak Gangopadhyay, Linjiang Wu.

Supervision: Baskar Ganapathysubramanian, Soumik Sarkar, Asheesh K. Singh.

Validation: Tryambak Gangopadhyay.

Visualization: Tryambak Gangopadhyay.

Writing – original draft: Johnathon Shook, Tryambak Gangopadhyay, Baskar Ganapathysu-

bramanian, Soumik Sarkar, Asheesh K. Singh.

Writing – review & editing: Johnathon Shook, Tryambak Gangopadhyay, Baskar Ganapathy-

subramanian, Soumik Sarkar, Asheesh K. Singh.

References
1. Hymowitz T, Harlan JR. Introduction of soybean to North America by Samuel Bowen in 1765. Economic

Botany. 1983; 37(4):371–379. https://doi.org/10.1007/BF02904196

2. Soybeans: Planted Acreage by County;. https://www.nass.usda.gov/Charts_and_Maps/Crops_County/

sb-pl.php.

3. CANADIAN SOYBEAN SEEDED ACRES (1980 TO CURRENT);. http://soycanada.ca/statistics/

seeded-area-acres/.

4. Uniform Soybean Tests, Northern Region;. https://www.ars.usda.gov/midwest-area/west-lafayette-in/

crop-production-and-pest-control-research/docs/uniform-soybean-tests-northern-region/.

5. Uniform Soybean Tests;. https://www.ars.usda.gov/southeast-area/stoneville-ms/crop-genetics-

research/docs/uniform-soybean-tests/.

6. Zhang L, Zhu L, Yu M, Zhong M. Warming decreases photosynthates and yield of soybean [Glycine

max (L.) Merrill] in the North China Plain. The Crop Journal. 2016; 4(2):139–146. https://doi.org/10.

1016/j.cj.2015.12.003

7. Puteh AB, ThuZar M, Mondal MMA, Abdullah A, Halim MRA, et al. Soybean [Glycine max (L.) Merrill]

seed yield response to high temperature stress during reproductive growth stages. Australian Journal of

Crop Science. 2013; 7(10):1472.

8. Lenaerts B, Collard BC, Demont M. Improving global food security through accelerated plant breeding.

Plant Science. 2019; 287:110207. https://doi.org/10.1016/j.plantsci.2019.110207 PMID: 31481198

9. Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, et al. Breeding crops to

feed 10 billion. Nature Biotechnology. 2019; 37:744–754. https://doi.org/10.1038/s41587-019-0152-9

PMID: 31209375

10. Durrell J. Pathways to impact for building thriving and resilient communities in dry areas. International

Center for Agricultural Research in the Dry Areas, Beirut, Lebanon; 2017.

11. Melillo TTCR Jerry M, Gary W Yohe E. Climate Change Impacts in the United States: The Third

National Climate Assessment.; 2014. https://nca2014.globalchange.gov/report/sectors/agriculture.

12. Jagtap SS, Jones JW. Adaptation and evaluation of the CROPGRO-soybean model to predict regional

yield and production. Agriculture, ecosystems & environment. 2002; 93(1-3):73–85. https://doi.org/10.

1016/S0167-8809(01)00358-9
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