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A B S T R A C T

Background and purpose: Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, 
which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. 
We aim to optimise spatial normalisation for breast IBDM.
Materials and methods: Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited 
in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral 
arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) 
configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR 
configuration and further investigated two pathways: i) registering prone/supine cohorts independently and ii) 
registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. 
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DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean 
Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration 
uncertainty (ILRU).
Results: DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation 
metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ±
1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone 
registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, 
uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found.
Conclusions: B-spline algorithm using NMI and registered supine and prone cohorts independently provides the 
most optimal spatial normalisation strategy for breast IBDM.

1. Introduction

Radiotherapy is an important treatment modality for breast cancer 
treatments. As the survival rate improves [1], long-term side effects 
become increasingly important to address. Adverse effects from radio-
therapy, such as skin toxicity, breast fibrosis, lymphoedema, and 
shoulder stiffness, can cause treatment delays and negatively impact 
patients’ quality of life [2,3]. Finding dose-outcome relationships can 
help clinicians prevent unwanted toxicity following breast radiotherapy.

Dose-outcome models in radiotherapy traditionally use simplified 
representations of dose distributions derived from dose-volume histo-
grams (DVHs) or dose surface histograms (DSHs). However, this 
approach has some limitations, e.g., it requires a predefined hypothesis 
about structures or organs at risk (OARs) related to the investigated 
toxicity, where contour delineation uncertainties can bias prediction 
outcomes [4]. Generating a toxicity model from DVHs or DSHs [5–7]
does not account for the heterogeneous dose distribution within OARs, 
as it summarises the complete 3D dose distribution to a single value, i.e., 
mean dose. Image-based data mining (IBDM), a voxel-based analysis 
technique, can help overcome these limitations [8]. IBDM involves 
analysing all voxels of the dose distribution and generating a spatial map 
to describe the dose–response relationship, including other confounding 
variables directly or through post-hoc analysis [9]. This is particularly 
relevant in breast cancer, where multimodal treatment such as surgery, 
chemotherapy, and hormonal therapy, as well as patient factors, e.g., 
comorbidities and body mass index (BMI), play a role in toxicity 
[10,11].

IBDM relies on spatial normalisation of the dose distribution to a 
common coordinate system (CCS), typically a reference template using 
Deformable Image Registration (DIR) before voxel-wise statistical 
analysis is performed [12]. While IBDM has been successfully applied to 
various tumour sites, including the lung, oesophagus, head and neck, 
and prostate cancer [13–17], its application in breast cancer remains 
largely unexplored. The dose–response relationships for many side ef-
fects of breast radiotherapy, such as lymphoedema and shoulder 
mobility, are poorly understood and may involve multiple structures or 
sub-structures. Therefore, implementing IBDM has the potential to 
advance our knowledge in this field.

However, spatial normalisation for breast radiotherapy presents 
significant challenges. There are considerable variations in breast size 
and shape between patients. Additionally, patients are treated in 
different positions: either prone or supine, the latter with either both 
arms raised or only the ipsilateral arm raised. These variations could 
affect the accuracy of spatial normalisation and the identification of 
sensitive sub-regions. This study aims to evaluate the accuracy of the 
spatial normalisation process and establish an optimal DIR strategy.

2. Methods

2.1. Patient dataset

Data from 996 early-stage breast cancer patients treated with 
radiotherapy after breast-conserving surgery, with/without systemic 
therapy [18], were included in this study, Table 1. These patients were 

recruited prospectively in the REQUITE project (www.requite.eu) from 
9 institutes in 5 countries. REQUITE established a resource for multi- 
national validation of models and biomarkers that predict the risk of 
late toxicity following radiotherapy [18]. REQUITE was approved by 
local ethics committees in participating countries (UK NRES Approval 
14/NW/0035) and registered at https://www.controlled-trials.com
(ISRCTN98496463) [19].

Due to the lack of anatomical landmarks and consistent contours in 
the full cohort, a smaller “representative cohort” (160 patients) was 
identified (see section Identifying the Optimal Image Registration Pathway). 
The purpose of the representative cohort is two-fold: 1) it allowed an in- 
depth exploration of the image registration performance, and 2) it 

Table 1 
The characteristics of 996 breast cancer patients recruited from the REQUITE 
dataset.

Characteristics Supine Prone

Number of patients 811 185
Age (years) 59 (23–90) 59 (35–79)
Treatment site (%) Left = 52.6 %; Right = 47.4 

%
Left = 48.6 %; Right = 51.4 
%

Breast volume 
(cm3)

670 (40–5450) 664 (107–1869)

Breast cup size (%)* 1 = 6.0 %; 1 = 0.6 %;
2 = 8.6 %; 2 = 5.0 %;
3 = 38.3 %; 3 = 29.3 %;
4 = 27.2 %; 4 = 30.4 %;
5 = 18.7 %; 5 = 26.5 %;
6 = 5.4 %; 6 = 6.6 %;
7 = 1.3 %; 7 = 0.6 %;
8 = 0.0 %; 8 = 0.6 %;
9 = 0.0 %; 9 = 0.6 %;
≥ 10 = 0.0 % ≥ 10 = 0.0 %

Breast band (%)** 1 = 0.0 %; 1 = 0.6 %;
2 = 0.1 %; 2 = 0.0 %;
3 = 8.2 %; 3 = 1.7 %;
4 = 19.9 %; 4 = 12.2 %;
5 = 26.0 %; 5 = 10.5 %;
6 = 18.1 %; 6 = 17.1 %;
7 = 9.8 %; 7 = 11.6 %;
8 = 9.9 %; 8 = 23.8 %;
9 = 3.5 %; 9 = 15.5 %;
10 = 4.4 % 10 = 7.2 %

BMI (kg/m2) 25.0 (16.9–38.1) 25.2 (17.4–36.5)
Surgery (%)
Breast Yes = 98.4 % Yes = 100.0 %
Axillary NA=1.6 % NA=0.0 %

Yes = 89.5 % Yes = 94.5 %
No = 8.9 % No = 5.5 %
NA=1.6 % NA=0.0 %

* Breast cup size was defined as 1 = AA; 2 = A; 3 = B; 4 = C; 5 = D; 6 = E/DD; 
7 = F(E in Italy); 8 = G(F in Italy); 9 = H(FF in Italy); ≥ 10 = J(G in Italy); NA =
not available.

** Breast band was defined as 1 = 28 (UK); 2 = 30 (UK); 3 = 32 (UK),70 (EU), 
85 (FR), 1 (IT); 4 = 34 (UK), 75 (EU), 90 (FR), 2 (IT); 5 = 36 (UK), 80 (EU), 95 
(FR), 3 (IT); 6 = 38 (UK), 85 (EU), 100 (FR), 4 (IT); 7 = 40 (UK), 90 (EU), 105 
(FR), 5 (IT); 8 = 42 (UK), 95 (EU), 110 (FR), 6 (IT); 9 = 44 (UK), 100 (EU), 115 
(FR), 7 (IT); 10 > above where EU = European Union; FR = France; IT = Italy; 
UK = United Kingdom.
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facilitated the estimation of the residual uncertainty covering different 
patient characteristics in the full cohort. Multiple manual landmarks and 
breast contours were created on each patient’s planning computed to-
mography (CT) scan in this cohort.

2.2. Selection of common coordinate system

To provide a suitable CCS for our patient subgroups, one patient was 
selected as a “reference patient” for 1) supine, 2) left-prone, and 3) right- 
prone positions. Note the prone patients were divided into left and right 
due to significant anatomical differences in breast shape and volume. To 
select the ‘most-average’ patient, we used variables collected in 
REQUITE: breast cup representing breast size, breast band representing 
chest diameter, and body mass index (BMI). Note that breast cup and 
breast band were mostly reported by the patient. For each subgroup, 
these patient characteristics were plotted as a 3D point cloud, and the 
patient at or nearest to the centroid was selected as CCSs.

2.3. Optimisation of image registration pathway

The performance of multiple DIR algorithms was investigated for 
each registration approach, Fig. 1. We compared the B-spline algorithm 
from NiftyReg [20] using either NMI (B-spline_NiftyReg-NMI) or sum of 
square difference (B-spline_NiftyReg-SSD) as a cost function, as well as 
B-spline and Demon algorithms in simple ITK [21] (B-spline_sITK-NMI 
and Demon_sITK-HistogramMatch, respectively. These algorithms were 
chosen to represent various solutions accessible to the research com-
munity. To reduce the bias related to DIR initialisation, all deformable 
registrations were performed after the same affine registration, which 

was performed using Aladin (Affine_Aladin, part of NiftyReg).

2.3.1. Identifying the optimal image registration pathway
To identify the representative cohorts, patients in the full cohort 

were clustered according to breast cup size, breast band, and BMI using 
K-means: 100 clusters for the supine subgroup and 30 for each left-prone 
and right-prone subgroup. The selected representative patients were 
those at or nearest to the centroid of each cluster, see supplementary 
Figure E.1.

1) Defining registration pathway for supine and prone set-up: We 
investigated two pathways of DIR for spatial normalisation for breast 
IBDM, Fig. 2. Pathway 1 was a two-step process: In the first step, all 
patients in a similar set-up position were registered to their corre-
sponding CCS, i.e., all supine patients were registered to the supine CCS, 
all left-prone patients to the left-prone CCS and all right-prone patients 
to the right-prone CCS. In the second step, the left- and right-prone CCS 
were registered to the supine CCS. In contrast, Pathway 2 consisted in 
registering all patients in the representative supine, left- and right-prone 
subgroup directly to the supine CCS.

2) Evaluating the impact of arm position in the supine sub-group: 
We compared the registration performance between patients treated 
with bilateral arms raised (70/100) and ipsilateral arms raised (30/100) 
to the supine CCS patient (treated with bilateral arms raised) in the 
representative supine subgroup using Mann-Whitney test in SPSS 
version 29.

2.3.2. Evaluation of image registration performance
1) Evaluation of Image Registration for the Representative Cohort: 

Image registration performance was evaluated qualitatively using visual 

Fig. 1. Overview workflow for selecting the optimal spatial normalisation pathway for breast IBDM by considering (A) the representative cohort using difference 
image registration algorithm and evaluation metrics and (B) the full cohort. *NMI stands for normalised mutual information, SSD stands for sum of square difference, NCC 
stands for normalised correlation coefficient, MDA stands for mean distance to agreement, DSC stands for Dice similarity coefficient, HD stands for Hausdorff distance, and 
ILRU stands for interpatient landmark registration uncertainty.
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inspection as well as quantitatively using five different metrics: 1) 
Normalised Cross Correlation (NCC), 2) Dice similarity coefficient 
(DSC), 3) mean distance to agreement (MDA), 4) 95 % Hausdorff dis-
tance (95 %HD) and 5) interpatient landmark registration uncertainty 
(ILRU).

NCC is an image-based metric used to estimate registration accuracy. 
We used a region of interest for NCC assessment on the CCSs covering 5 
cm beyond the superior and inferior border of the breast (Fig. 3A). For 

DSC, MDA and 95 % HD, we used ipsilateral and contralateral breast 
contours generated by atlas-based auto segmentation (Fig. 3B). For 
ILRU, bony and soft tissue landmarks were identified on the 3D CT 
images of the representative cohort by an expert clinician to estimate 
interpatient registration uncertainty, point-based evaluation similar to 
the transformation registration error (TRE) [22], (Fig. 3C). Definition 
and further information on these landmarks are detailed in Supplemen-
tary Table E.1. Note that some landmarks were only identifiable for 

Fig. 2. Schematic of the two image registration pathways in our study. The red pathway represents the two-step registration (Pathway 1). First, the registration is 
performed within subgroups (using the CCS in the same set-up positioning), then the prone CCSs are registered to the supine CCSs and propagated this registration to 
the subgroup. The blue pathway represents a single-step registration (Pathway 2) where all patients were directly registered to the supine CCS, regardless of set-up 
positioning. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The regions of interest for evaluating inter-patient image registration performance: (A) box over the chest region for NCC assessment in the representative and 
full cohort, (B) breast contour for DSC, MDA, and 95 %HD analysis, and (C) anatomical landmarks chosen to be relevant for breast radiotherapy for interpatient 
landmark registration uncertainty in the representative cohort.
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raised arms due to large anatomical differences. The average uncertainty 
of image registration in each pathway was defined by the average 
standard deviation from ILRU as it provides the quantitative vector unit.

2) Evaluation of Image Registration for the Full Cohort: we evalu-
ated the registration performance of the full cohort by using the image- 
based metric NCC. Differences in NCC between the representative cohort 
and full cohort were analysed using the Mann-Whitney test in SPSS 
version 29.

3) Consistency of Image Registration for Additional CCS: To 
investigate the reproducibility of image registration in multiple CCS, we 
randomly selected two patients around the centroid of the supine sub-
group to be the new CCS (2nd and 3rd CCSs). DIR was performed for the 
supine subgroup to the first full cohort reference and two new CCSs. The 
performance of DIR among each CCS was reported in terms of NCC to 
ensure the consistency and repeatability of the spatial normalisation.

3. Results

3.1. Definition of image registration approach

Registration performance for all registration pathways and algo-
rithms is shown in Fig. 4. The highest registration accuracy was obtained 
with B-spline_NiftyReg-NMI, achieving the lowest MDA (0.23 ± 0.19 
cm, 0.38 ± 0.26 cm, and 1.19 ± 1.08 cm), 95 %HD (1.17 ± 1.18 cm, 
1.55 ± 0.90 cm, and 4.18 ± 2.45 cm), and ILRU (0.51 cm, 0.53 cm, 0.90 
cm) in supine-supine, prone-prone, and supine-prone registration, 
respectively. Likewise, it achieved a high NCC (0.98 ± 0.01, 0.96 ±
0.03, 0.95 ± 0.06) and high DSC for each sub-cohort (0.91 ± 0.04, 0.86 

± 0.09, and 0.61 ± 0.21). Registration pathway 1 (two-step) performed 
better than pathway 2. The best registration performance was observed 
for the supine-supine registrations (sd = 0.06, 0.11, 0.36 cm, and 1.49 
cm for NCC, DSC, MDA, and 95 %HD), common to both pathway 1 and 
pathway 2. Performance for the prone registration was better for 
pathway 1 (each prone patient registered to each prone specific CCS 
before registering to the supine CCS, sd=0.07, 0.16, 0.55 cm, and 1.57 
cm for NCC, DSC, MDA, and 95 %HD), than for pathway 2 (all prone 
patients registered to the supine CCS, sd=0.09, 0.19, 1.19 cm, and 2.45 
cm for NCC, DSC, MDA, and 95 %HD). Note that further dividing sub-
groups and using multiple CCSs did not improve registration perfor-
mance, see supplementary Figure E.2 and Table E.2.

Similar findings were observed when examining ILRU values pre-
sented in Table 2. ILRU for all landmarks were lower for supine-supine 
and prone-prone registrations compared to prone-supine CCS. We 
observed high variation in the shoulder region around 0.94 ± 0.22 cm 
and a low variation in the breast and chest region (0.52 ± 0.27 cm) 
when considering the ILRU of the B-spline_NiftyReg-NMI (Table 2). The 
average ILRU for Antero-posterior (AP), Superior-inferior (SI), and 
Right-left (RL) directions in the shoulder region were 0.16 cm, 0.62 cm, 
and 0.86 cm, and 0.21 cm, 0.43 cm, and 0.49 cm for chest and breast 
regions. The lowest mean variation was observed for the carina land-
mark (0.11 cm for similar position registration and 0.51 cm for differ-
ence position registration when considering at B-spline_NiftyReg-NMI), 
while the largest mean variation was found for the humeral head 
landmark, around 1 cm. For the best and worst registrations using B- 
spline_NiftyReg-NMI, see supplementary Figure E.3.

In the representative supine subgroup, no difference in DIR accuracy 
was observed between ipsilateral and bilateral arm(s) raised (see sup-
plementary Figure E.4). The NCC, DSC, MDA, 95 %HD, and ILRU for B- 
spline_NiftyReg-NMI registration from patients treated with bilateral 
arms raised were 0.98 ± 0.02, 0.92 ± 0.03, 0.21 ± 0.16 cm, 1.12 ±
1.11 cm, and 0.34 ± 0.15 cm, while these values were 0.98 ± 0.01, 0.90 
± 0.04, 0.27 ± 0.23 cm, 1.28 ± 1.33 cm, and 0.42 ± 0.18 cm for ipsi-
lateral arm raised registration.

3.2. Evaluation of image registration for the full cohort

The median NCC for the full cohorts was 0.98 (IQR 0.01) when 
applying pathway 1, showing no significant difference from the repre-
sentative cohort, p = 0.534 (supplementary Figure E.5A). By considering 
the performance of image registration in additional CCS, the median 
NCC for the first, second, and third CCS was 0.98 (IQR 0.01), 0.98 (IQR 
0.01), and 0.98 (IQR 0.03), respectively (supplementary Figure E.5B).

4. Discussion

The feasibility of a spatial normalisation pathway for breast IBDM 
was demonstrated in our in-depth analysis. We identified a two-step 
registration approach using Nifty registration with NMI that is suitable 
for breast spatial normalisation. This approach optimised registration 
metrics in both the breast and the shoulder regions. To quantify the 
spatial normalisation uncertainty for both these regions, we propose and 
describe a set of landmarks other researchers can adopt. Quantifying the 
accuracy of spatial normalisation is key, as it affects dose mapping to the 
CCS and identifying any dose-sensitive regions [23,24].

We identified many challenges in applying spatial normalisation to 
breast patients. Our study shows the feasibility of using the patient at the 
centroid or nearby the centroid as a reference for entire sub-cohorts, 
divided by set-up position (supine, left-prone, right-prone). In previ-
ous IBDM work considered in other anatomical sites, the reference pa-
tient for IBDM was randomly selected from the entire cohort [16] or was 
represented by an anatomical phantom [25]. Our registration result 
from the selected approach for breast spatial normalisation complies 
with the criteria suggested by AAPM task group 132 when considering 
DSC (above 0.8) and MDA (0.2–0.3 cm) for the representative cohort 
and was in line with the recommendations in the “roadmap to clinical 
translation” proposed by McWilliam et al. [22,24]. Although the right- 
prone cohort registration showed a lower agreement of registration 
performance, it is still in the acceptable range of the recommendation.

We found that increasing the number of reference patients did not 
improve the registration accuracy, see supplementary Figure E.2 and 
Table E.2; therefore, the use of a single reference patient is proposed for 
each set-up position. This result was also observed in the study by 
Vasquez Osorio et al. (2018) on the robustness of reference patient se-
lection in lung cancer, which showed that the choice of reference patient 
did not change the identified region of IBDM [26]. However, a recent 
IBDM study on head and neck showed that in a small cohort of about 100 
patients, different sub-regions could be identified when applying alter-
native reference patients [17]. Therefore, it will be important to use 
multiple CCS to assess the consistency of identified sub-regions in breast 
IBDM, even if the impact on registration accuracy is limited.

This work was performed with a cohort of about 1000 patients from 
9 centres in 5 countries. As such, they represent a range of clinical 
practices, e.g. regarding CT image resolution, positioning approaches 
(prone vs supine, ranges of arm positions in the supine position), etc. as 
well as a range of BMI and breast size. However, 94 % of the cohort were 
European ancestry, and this lack of diversity constitutes a limitation. We 
investigated four different registration algorithms and showed that the 
choice of image registration algorithm did impact registration accuracy 
in the breast and shoulder area, depending on breast shape and volume. 
This is in agreement with published studies in lung cancer [27]. 
Therefore, consideration should be given to the selection of the best 
registration algorithm and optimisation parameters for breast IBDM. 
Because a gross misregistration will result in patients being excluded 
from the subsequent voxel-based analysis. Eliminating some patients 
could introduce biases and limit the applicability of the results to pa-
tients outside the cohort studied, as well as decrease the size or toxicity 
event of the cohort.

Evaluating image registration accuracy in breast cancer also requires 
assessment of the axilla and shoulder area in order to enable analysis of 
toxicity endpoints such as lymphoedema and shoulder morbidities. 
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Fig. 4. The image registration accuracy for all registrations considering (A) NCC, (B) DSC, (C) MDA, and (D) 95% HD. For NCC and DSC, the ideal value is one, while 
for MDA and 95% HD, zero is ideal. Note that supine-supine CCS registrations are common for pathway 1 and pathway 2. Registrations for prone-prone CCS were part 
of pathway 1 (highlighted in grey), while registrations for prone-supine CCS were part of pathway 2. The performance of Affine_Aladin is presented as it is the 
preliminary step for all DIR pathways.
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Table 2 
Average standard deviation vector for evaluation of the interpatient landmark registration uncertainty (ILRU). Results are presented as combined for ipsi- and 
contralateral sides, and for ipsilateral side only. The landmarks representing the breast region include the 4thRibs Joint, Scapular, Suprasternal notch, Carina, Medial 
and Lateral pectoralis minor, and Latissimus dorsi, while the Acromioclavicular joint, Coracoid process, and Humeral head landmarks represent the shoulder region.

The average vector of standard deviation,  (cm)

Approach 1 and 2:

Supine – Supine Registration

Approach 1

Prone – Prone Registration

Approach 2

Supine – Prone RegistrationLandmark

Affine_Aladi
n

B-spline_NiftyReg-
NMI

Affine_Aladi
n

B-spline_NiftyReg-
NMI Affine_Aladin B-spline_NiftyReg-

NMI

Acromioclavicular 
joint

0.97 0.85 0.89 0.79 1.06 1.08

Ipsilateral treatment 
side

0.93 0.63 0.97 0.94 0.99 0.74

Coracoid process 1.35 0.73 0.74 0.67 0.95 0.95

Ipsilateral treatment 
side

1.03 0.54 0.86 0.85 0.86 0.72

B
on

y 
la

nd
m

ar
ks

Humeral head

Ipsilateral treatment 
side

0.94

0.88

0.86

0.72

1.24

1.79

1.15

1.64

1.59

1.95

1.36

1.23

4thRibs Joint

Ipsilateral treatment 
side

0.43

0.32

0.28

0.23

0.60

0.76

0.59

0.80

1.08

0.94

0.99

0.51

Scapular 0.55 0.56 0.42 0.44 0.86 0.82

Ipsilateral treatment 
side

0.45 0.39 0.42 0.47 0.71 0.74

Suprasternal notch 0.23 0.25 0.31 0.19 0.76 0.64

Carina 0.24 0.14 0.23 0.08 0.59 0.51

Lateral pectoralis 
minor

Ipsilateral treatment 
side

0.64

0.62

0.52

0.48

0.75

0.74

0.68

0.76

1.00

0.76

0.96

0.60

Latissimus dorsi 0.59 0.59 0.51 0.45 0.86 0.82

Ipsilateral treatment 
side

0.47 0.43 0.59 0.56 0.62 0.58

Medial pectoralis 
minor

0.31 0.30 0.34 0.28 0.98 0.90

So
ft 

tis
su

e

Ipsilateral treatment 
side

0.28 0.24 0.36 0.26 0.96 0.87

*Highlight is the best registration result among each pathway of the landmark investigated.
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Image-based metric such as NCC may not be suitable for analysing the 
shoulder region due to the differences in the set-up of arm position. The 
shoulder and axillary anatomy are complexly linked bony, soft tissue 
and vascular structures which are not routinely delineated in breast 
radiotherapy. Our study focuses on breast registration. However, 
registration of OARs would also be of interest, for example, to investi-
gate late cardiac effects. Though this is out of scope for this work, the 
pipeline could easily be modified to allow this investigation in the 
future.

In this study, we only evaluated the performance of image registra-
tion based on the breast contour and anatomical landmarks within the 
external thorax region. The inter-observer variation of both contour (e. 
g., breast and heart) and landmarks can reduce the validity of the 
geometrical evaluation of DIR [28,29]. Hence, delineating more rele-
vant contours for breast radiotherapy, such as the humeral head, major- 
and minor-pectoralis muscle, and individual lymph node level, could 
increase the robustness of registration analysis. However, there is 
currently a lack of a universally accepted benchmark for evaluating 
image registration in the breast, shoulder, and axilla region, whether 
using contour-based or point-based methods. It is the fact that it is 
difficult to define soft tissue landmarks directly in the axillary region. 
Therefore, we propose a set of anatomical points, Supplementary 
Table E.1, based on the feasibility of consistent, reproducible identifi-
cation on CT scan and coverage of the relevant anatomy for the expected 
radiotherapy dose distribution (on and off target) in patients treated 
with whole breast and/or regional lymph node irradiation.

Even though our study found spatial normalisation for IBDM in 
breast RT was feasible, we still faced some limitations when using the 
best-performing algorithm of our study (B-spline_NiftyReg-NMI) in the 
very large and pendulous breast where the breast could fall by the side of 
the body. Thus, investigating skin toxicity for breast radiotherapy may 
not be possible when applying our registration algorithm. Perhaps an 
additional landmark for point-point registration [30], surface-based 
registration, or using artificial intelligence for breast registration may 
further improve the performance of DIR [31]. However, those methods 
cannot yet achieve the performance observed in our study [32]. In 
addition, AI-based DIRs will require a large training model dataset to 
achieve robust results.

Our study includes only free-breathing patients. However, many 
breast cancer treatments are now delivered in deep inspiration breath- 
hold patients. As DIBH images are clearer and contain fewer artifacts, 
we expect that the performance of our pipeline would only improve, but 
this hypothesis will require confirmation.

Only one experienced clinician generated landmarks in our study; 
therefore, it might generate a subjective error, and multiple observers 
may be required. In future research, using our proposed landmarks in a 
point-based registration may be beneficial. In addition, dose metric 
evaluation is not performed in our spatial normalisation study. Still, it 
would benefit the dose mapping variation assessment, the next step of 
the voxel-based analysis [24]. Finally, though we have demonstrated the 
feasibility of DIR performance in breast RT, it remains important to test 
DIR performance in each cohort where IBDM is applied, especially when 
gathering large cohort data from multiple centres.

In conclusion, spatial normalisation for breast IBDM is feasible. Our 
findings will be useful for enabling IBDM investigations and integrating 
the registration uncertainty in the spatial normalisation processes for 
breast IBDM.
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