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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the leading 

causes of cancer-related mortality worldwide [1]. 

Considerable progress has been achieved in the 

prevention, monitoring, early screening, diagnosis and 

treatment of HCC over the past few decades. However, 

in many countries, the incidence and specific mortality 

of HCC continue to rise [2]. There are a number of  

 

reasons for the high mortality rate of HCC; most 

importantly, in many parts of the world, patients are 

diagnosed at an advanced stage [1]. Thence, it is of 

great clinical implication to identify effective tumor 

markers and explore their role in the occurrence and 

development of HCC. 

 

Next-generation sequencing (NGS) is a powerful 

platform for high-throughput sequencing of different 
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ABSTRACT 
 

Background: Emerging evidence suggests that long non-coding RNA (lncRNA) plays a crucial part in the 
development and progress of hepatocellular carcinoma (HCC). The objective was to develop novel molecular-
clinicopathological prediction methods for overall survival (OS) and recurrence of HCC. 
Results: An 8-lncRNA-based classifier for OS and a 14-lncRNA-based classifier for recurrence were developed by 
LASSO COX regression analysis, both of which had high accuracy. The tdROC of OS-nomogram and recurrence-
nomogram indicates the satisfactory accuracy and predictive power. The classifiers and nomograms for 
predicting OS and recurrence of HCC were validated in the Test and GEO cohorts.  
Conclusions: These two lncRNA-based classifiers could be independent prognostic factors for OS and 
recurrence. The molecule-clinicopathological nomograms based on the classifiers could increase the prognostic 
value. 
Methods: HCC lncRNA expression profiles from the cancer genome atlas (TCGA) were randomly divided into 1:1 
training and test cohorts. Based on least absolute shrinkage and selection operator method (LASSO) COX 
regression model, lncRNA-based classifiers were established to predict OS and recurrence, respectively. OS-
nomogram and recurrence-nomogram were developed by combining lncRNA-based classifiers and 
clinicopathological characterization to predict OS and recurrence, respectively. The prognostic value was 
accessed by the time-dependent receiver operating characteristic (tdROC) and the concordance index (C-index). 
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genetic factors, which helps researchers to obtain more 

accurate and comprehensive data of gene variation [3]. 

The rich and standardized clinical data and abundant 

samples for different types of cancer generated by the 

Cancer Genome Atlas (TCGA) enabled a joint analysis 

of multiple influencing factors associated with tumor 

oncogenesis [4, 5]. 

 

Long non-coding RNAs (lncRNAs) which contain 

more than 200 nucleotides is a type of the non-coding 

RNAs (ncRNAs) [6]. For a long time, lncRNA is 

considered as a kind of non-functional RNA, but 

emerging research has proved that these RNAs were 

important regulators of gene expression networks [7, 

8]. Their functions contain controlling nuclear 

architecture and mRNA stability, participating in the 

transcription, translation and post-translational 

modifications, which involve all aspects of cellular 

gene expression [9, 10]. In recent researches, many 

lncRNAs have seemed as biomarkers of early 

detection and prognosis of HCC, but these studies 

only involved minority lncRNA and lack a large 

number of clinical samples for analysis [11, 12]. 

 

In current study, we collected a large cohort of HCC 

patients who contained clinical information and 

complete sequencing results in the TCGA database. 

Thereafter, we performed least absolute shrinkage and 

selection operator method (LASSO) COX select model, 

a method that could be applied to high dimensional 

regression prediction, to establish and validate two 

multi-lncRNA-based classifiers which have high 

veracity of predicting overall survival (OS) and 

recurrence in HCC patients. 

 

RESULTS 
 

Data processing  

 

The workflow of this article is shown in Figure 1. In 

the expression profiles of HCC tumors compared with 

the samples from normal tissues, we identified 669 

differentially expressed lncRNAs (DElncNRAs) of 

|log Fold Change| ≥ 2 and p < 0.05(Supplementary 

Table 1 and Figure 2A). Of which, 595 lncRNAs were 

down-regulated and 74 lncRNAs were up-regulated. 

As shown in Figure 2B, significant differential 

expression was detected between the tumor and  

the adjacent normal groups. Subsequently, the 

DElncRNAs with P <0.05 were selected by univariate 

COX regression analysis. Therefore, a total of 191 

OS-related lncRNAs and 86 recurrence-related 

lncRNAs were reserved for further study (Figure 2C). 

After taking the intersection with GSE76427 and 

GSE116174, 21 recurrence-related lncRNAs and  

85 OS-related lncRNAs were finally obtained for 

classifier development. A total of 312 patients with 

OS data were randomized 1:1 into two groups, the 

training cohort (n=156) and the test cohort (n=156). 

The GSE116174 (n=64) was reserved as a validation 

cohort for predicting OS. Meanwhile, a total of 269 

patients with recurrence data were randomly divided 

equally into two groups, the training cohort (n= 130) 

and the test cohort (n=139). GSE76427 (n= 81) was 

used as a validation cohort to validate recurrence-

related models. LASSO COX selection method was 

applied to training cohort to develop a prediction 

model (OS: Figure 3A, 3B; recurrence: 3F, 3G). As 

shown in Supplementary Tables 2, 8 OS-related 

DElncRNAs and 14 recurrence-related DElncRNAs 

were identified by the LASSO COX selected model. 

 

Multi-lncRNAs-based classifier 

 

In order to contrive multi-lncRNAs-based classifiers for 

predicting OS and recurrence in HCC, LASSO COX 

selection method was performed with the 85 OS related 

lncRNAs and 21 recurrence related lncRNAs expression 

data. An 8-lncRNA-based classifier for OS (Figure 3A 

and 3B) and a 14-lncRNAs-based classifier for 

recurrence were constructed by training cohort (Figure 

3E, 3F). All those lncRNAs are listed in Supplementary 

Table 2. 8-lncRNAs-based classifier = 0.0299*EXP 

(AC090921.1) +  0.0125*EXP (AC096637.2) + 0.1838* 

EXP(AP002478.1) + 0.2221*EXP (C10orf91)+ 0.0437* 

EXP (LINC01116) + 0.0251*EXP (LINC01224) + 

0.0137*EXP (MAFG-DT) -0.1168*EXP(SERTAD4-

AS1); 14-lncRNAs-based classifier = -0.0255*EXP 

(AC004477.1)+0.1647*EXP(AC010307.4)+0.0416*EX

P(AC034229.4)+0.1580*EXP (AC209154.1)+0.3958* 

EXP(C10orf91)+0.0233*EXP(CDKN2A-DT)+0.0037* 

EXP(CDKN2B-AS1)+0.00057*EXP(FIRRE)-0.1140* 

EXP(LINC01549)+0.1813*EXP (LINC01572)+ 

0.0958*EXP(MAFA-AS1)+ 0.1348*EXP(MAFG-DT)-

0.365*EXP (MIR9-3HG)-0.0761*EXP (SNHG25). All 

patients were divided into low and high risk groups 

according to the optimal cut-off value calculated by X-

TILE. The optimal cutoff value for the OS-related 

classifier was 0.2, and for the recurrence-related classifier 

was 0.1. The Kaplan-Meier log rank test illustrated that 

there were significant differences in OS and recurrence in 

the training cohort (Supplementary Figure 1A, 1E), the 

test cohort (Supplementary Figure 1B, 1F), the TCGA 

cohort (Supplementary Figure 1C, 1G), and the GEO 

cohort (Supplementary Figure 1D, 1H). 

 

Patient characteristics  

 

Since the training cohort and test cohort were equally 

randomly grouped, there was no significant difference 

or deviation between them. (Supplementary Tables 9–

11, Table 1). 
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Figure 1. The workflow of this work. 
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Overall survival 

 

In the training cohort, 156 patients were enrolled. As 

shown in Supplementary Table 9, there were no 

significant differences were detected in the distribution 

of age (P = 0.598), neoplasm histologic grade (P = 

0.179), vascular invasion (P = 0.872), performance 

status (P = 0.155), TNM T stage (P=0.523), TNM M 

stage (P = 0.298), adjacent hepatic tissue inflammation 

(P = 0.656), liver fibrosis Ishak score category (P = 

0.923), family history (P = 0.922), race category (P = 

0.968), HBV infection (P = 0.080), HCV infection (P = 

0.139), alcohol consumption (P = 0.287), Child-Pugh 

classification (P = 0.068), AJCC pathological stage (P = 

0.521) and gender (P = 0.849). 

 

In the test cohort, the distribution of data was similar to 

the training cohort. The proportion of patients with 

performance status (2 + 3) (P = 0.018), TNM N stage 

(N1) (P = 0.031) and neoplasm histologic Grade 

(G3+G4) (P = 0.027) in the high-risk group was higher 

than the low risk group.  

 

 
 

Figure 2. Prognostic DElncRNAs identification process. (A) Volcano plot of differentially expressed lncRNAs in TCGA-LICH dataset; (B) 

Hierarchical clustering of HCC with or without tumor using 669 differentially expressed lncRNAs using Euclidean distance and average linkage 
clustering; (C) Venn diagram of prognostic DElncRNAs in prognostic lncRNAs (OS/recurrence multivariate cox p < 0.05) and 
DElncRNAs(|logFC| >2 and padj < 0.05); (D) Venn diagram of lncRNAs related to OS/recurrence. TCGA, The Cancer Genome Atlas; LICH, Liver 
hepatocellular carcinoma; HCC, hepatocellular carcinoma; DElncRNA, differentially expressed long non-coding RNA; OS, overall survival; 
LASSO, least absolute shrinkage and selection operator method. 
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In the TCGA cohort, 312 patients were included for 

further study. The proportion of patients with 

performance status (2 + 3) (P = 0.018), tumor grade (G3 

+ G4) (P = 0.012), and HBV infection (P = 0.043) in the 

high-risk group was higher than the low risk group.  
 

In the GSE116174 cohort, 64 patients were enrolled. As 

shown in Supplementary Table 9, there were no 

significant differences were detected in the distribution 

of age (P = 0.516), gender (P = 0.418), vascular 

invasion (P = 0.612), HBV infection (P = 0.849), HCV 

infection (P = 0.139), Alcohol consumption (P = 0.167), 

and AJCC pathological stage (P = 0.754). 
 

As shown in Supplementary Figure 2A–2D), the AJCC 

pathological stage, performance status, HBV infection 

and neoplasm histologic grade are significantly 

correlated with the 8-lncRNAs-based classifier. The 8-

lncRNAs-based classifier scores for the performance 

status (2 & 3 & 4), stage (III & IV), HBV positive,  

and tumor grade (G3 & G4) groups were higher than 

those of the performance status (0 & 1), stage (I & II), 

HBV negative, and tumor grade (G1 & G2) groups. 
 

Recurrence 
 

In the training cohort, 130 patients were enrolled. As 

shown in Supplementary Table 10, the proportion of 

patients with performance status (2 + 3) (P=0.026), 

Child-Pugh classification (C&D) (P=0.030), TNM T 

stage (T3 + T4) (P=0.006), and AJCC pathological 

stage (III & IV) (P=0.023) in the high-risk group was 

higher than the low risk group.  

 
In the test cohort, the proportion of patients with tumor 

grade (G3 + G4) (P=0.006) in the high-risk group  

was higher than the low risk group. The remaining risk 

factors were not significantly different in distribution 

compared to the training cohort (Supplementary  

Table 10).  

 
In the TCGA cohort, a total 269 patients were 

enrolled. As shown in Supplementary Table 10, The 

proportion of patients with tumor grade (G3 + G4)  

(P = 0.005), HBV infection (P = 0.001), TNM T  

stage (T3 + T4) (P = 0.029), TNM N stage (N1)  

(P = 0.023), and AJCC pathological stage (III & IV)  

(P = 0.007) in the high-risk group was higher than the 

low risk group. 

 
In the GSE76427 cohort, 81 patients were enrolled. As 

shown in Supplementary Table 10, there were no 

significant differences were detected in the distribution 

of age (P = 0.960), AJCC pathological stage (P = 0.303) 

and gender (P = 0.117). 

 

 
 

Figure 3. Development and verification of 8-lncRNAs-based and 14-lncRNAs-based classifiers. (A) LASSO coefficient profiles of 

the 86 Significant difference lncRNAs in OS set. A vertical line is drawn at the value chosen by 10-fold cross-validation; (B) Ten-time cross-
validation for tuning parameter selection in the LASSO model; (C, D) Time-dependent ROC curves and calibration curves of 8-lncRNAs-based 
classifier; (E) Time-dependent ROC curves of Liao’s biomarker for overall survival; (F) LASSO coefficient profiles of the 21 Significant difference 
lncRNAs in recurrence set, A vertical line is drawn at the value chosen by 10-fold cross-validation; (G) Ten-time cross-validation for tuning 
parameter selection in the LASSO model; (H) Time-dependent ROC curves and calibration curves of 14-lncRNAs-based classifier. LASSO,  
least absolute shrinkage and selection operator method; lncRNA, long non-coding RNA; OS, overall survival; ROC, receiver operating 
characteristic. 



 

www.aging-us.com 12901 AGING 

Table 1. Univariate and multivariate COX analyses of the lncRNA-based classifier for recurrence.  

Prognostic parameter 
Univariate analysis  Multivariate analysis 

HR 95% CI P value  HR 95% CI P value 

Training Cohort        

RiskScore   4.434 2.860-6.874 0.001  6.210 3.092-12.474 0.001 

Age 0.980 0.613-1.566 0.932     

M 5.661 1.325-24.179 0.019  1.957 0.388-9.871 0.416 

N 

Stage 

6.040 

2.392 

0.794-45.943 

1.364-4.196 

0.082 

0.002 
 

 

4.872 

 

2.023-11.732 

 

0.001 

T classification 2.486 1.469-4.207 0.001     

Bilirubin 1.140 0.908-1.430 0.259     

Child-Pugh classification  

Performance Status               

Family History 

Fraction Genome Altered 

Grade 

Adjacent hepatic tissue 

inflammation 

HBV 

HCV 

Alcohol 

Liver fibrosis Ishak score 

category 

Mutation Count 

Platelet count 

Race Category 

Albumin 

Gender 

Vascular Invasion 

BMI 

AFP 

0.744 

1.766 

0.851 

2.187 

0.650 

1.098 

 

0.403 

1.463 

1.063 

1.077 

 

1.001 

1.000 

1.123 

1.067 

1.252 

0.785 

0.979 

0.992 

0.262-2.111 

1.276-2.445 

0.508-1.428 

0.671-7.133 

0.383-1.104 

0.704-1.712 

 

0.230-0.705 

0.845-2.530 

0.639-1.769 

0.887-1.308 

 

1.000-1.002 

1.000-1.000 

0.893-1.413 

1.014-1.123 

0.745-2.103 

0.509-1.211 

0.936-1.024 

0.938-1.050 

0.579 

0.001 

0.542 

0.194 

0.111 

0.681 

 

0.001 

0.173 

0.814 

0.453 

 

0.085 

0.452 

0.320 

0.013 

0.386 

0.273 

0.363 

0.792 

 

 

1.119 

 

 

 

 

 

0.782 

 

 

 

 

 

 

 

1.008 

 

0.536 

 

 

0.740-1.692 

 

 

 

 

 

0.402-1.984 

 

 

 

 

 

 

 

0.953-1.065 

 

0.291-0.987 

 

 

0.595 

 

 

 

 

 

0.782 

 

 

 

 

 

 

 

0.792 

 

0.045 

 

Test Cohort        

RiskScore 1.448 1.060-1.977 0.020  1.448 0.903-2.324 0.125 

Age 0.829 0.520-1.320 0.430     

M 1.000  1.000     

N 

Stage 

0.845 

0.001 

0.117-6.134 

1.530-3.945 

0.868 

0.001 
 

 

0.658 

 

0.051-8.531 

 

0.749 

T classification 2.232 1.405-3.547 0.001  2.311 0.196-27.305 0.506 

Bilirubin 1.045 0.948-1.152 0.379     

Child-Pugh classification  

Performance Status 

Family History 

Fraction Genome Altered 

Grade 

Adjacent hepatic tissue 

inflammation 

HBV 

HCV 

Alcohol 

Liver fibrosis Ishak score 

category 

Mutation Count 

Platelet count 

3.187 

1.922 

0.929 

2.598 

1.509 

1.386 

 

0.537 

1.578 

1.104 

0.989 

 

1.002 

1.000 

1.218-8.338 

1.471-2.513 

0.566-1.526 

0.808-8.350 

0.960-2.373 

0.880-2.181 

 

0.314-0.918 

0.864-2.882 

0.700-1.742 

0.842-1.161 

 

1.000-1.004 

1.000-1.000 

0.018 

0.001 

0.772 

0.109 

0.075 

0.159 

 

0.023 

0.138 

0.670 

0.891 

 

0.118 

0.260 

 

2.516 

1.494 

 

 

 

 

 

0.793 

 

 

 

 

 

 

0.636-9.949 

0.802-2.784 

 

 

 

 

 

0.395-1.592 

 

 

 

 

 

 

0.188 

0.206 

 

 

 

 

 

0.514 
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Race Category 

Albumin 

Gender 

Vascular Invasion 

BMI 

AFP 

0.995 

0.986 

0.962 

1.101 

1.004 

1.042 

0.785-1.259 

0.937-1.038 

0.612-1.512 

0.739-1.640 

0.982-1.027 

0.988-1.097 

0.964 

0.592 

0.866 

0.637 

0.712 

0.127 

 

 

 

0.953 

 

 

 

 

0.516-1.761 

 

 

 

 

 

0.878 

 

 

TCGA Cohort        

RiskScore 2.065 1.625-2.626 0.001  2.043 1.458-2.863 <0.001 

Age 0.903 0.650-1.255 0.543     

M 7.067 2.197-22.730 0.001  7.520 2.250-25.14 0.001 

N 

Stage 

1.648 

2.405 

0.405-6.701 

1.683-3.435 

0.485 

0.001 
 

 

 

 

 

 

 

T classification 2.320 1.643-3.277 0.001  1.646 0.374-7.247 0.510 

Bilirubin 1.060 0.974-1.153 0.180     

Child-Pugh classification  

Performance Status 

Family History 

Fraction Genome Altered 

Grade 

Adjacent hepatic tissue 

inflammation 

HBV 

HCV 

Alcohol 

Liver fibrosis Ishak score 

category 

Mutation Count 

Platelet count 

Race Category 

Albumin 

Gender 

Vascular Invasion 

BMI 

AFP 

GSE76427 Cohort 

RiskScore 

Age 

Gender 

Stage 

1.323 

1.863 

0.901 

2.356 

1.034 

1.222 

 

0.457 

1.453 

1.074 

1.028 

 

1.001 

1.000 

1.054 

0.999 

1.078 

0.908 

0.998 

1.016 

 

1.433 

1.069 

0.613 

1.279 

0.658-2.661 

1.520-2.283 

0.630-1.288 

1.026-5.411 

0.740-1.445 

0.891-1.676 

 

0.311-0.671 

0.971-2.172 

0.768-1.504 

0.908-1.164 

 

1.000-1.002 

1.000-1.000 

0.895-1.241 

0.994-1.004 

0.769-1.512 

0.677-1.217 

0.975-1.021 

0.978-1.056 

 

0.920-2.232 

0.586-1.951 

0.269-1.394 

0.608-2.693 

0.433 

0.001 

0.568 

0.043 

0.845 

0.213 

 

0.001 

0.069 

0.676 

0.660 

 

0.031 

0.189 

0.530 

0.700 

0.663 

0.517 

0.853 

0.403 

 

0.112 

0.828 

0.243 

0.517 

 

 

1.770 

 

1.177 

 

 

 

0.849 

 

 

 

 

 

 

 

 

 

0.951 

 

 

 

 

 

 

 

1. 376-2.276 

 

0.368-3.765 

 

 

 

0.510-1.414 

 

 

 

 

 

 

 

 

 

0.656-1.397 

 

 

 

 

 

 

 

 

<0.001 

 

0.784 

 

 

 

0.530 

 

 

 

 

 

 

 

 

 

0.790 

 

 

 

 

 

 

 

HR, Hazard ratio; CI, confidence interval; lncRNA, long non-coding RNA. 
 

As shown in Supplementary Figure 2A–2D), the AJCC 

pathological stage, performance status, HBV infection 

and neoplasm histologic grade were significantly 

correlated with the 14-lncRNAs-based classifier. The 

14-lncRNAs-based classifier scores for the performance 

status (2 & 3), stage (III & IV), HBV positive, and 

tumor grade (G3 & G4) groups were higher than those 

of the performance status (0 & 1), stage (I & II), HBV 

negative, and tumor grade (G1 & G2) groups. In 

addition, we also investigated the relationship between a 

total of 20 lncRNAs. The results are shown in 

Supplementary Table 9. 

Prognosis value of the lncRNA-based classifiers 

 
Additionally, we assessed the prognostic value of 

lncRNA-based classifiers. 

 

Overall survival 
 

Cox univariate analysis showed that the Performance 

Status, the tumor stage, TNM T classification, HBV 

infection, and the 8-lncRNA-based classifier were 

correlated with OS, whether in the training cohort, test 

cohort, or the TCGA cohort. After multivariable 
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adjustment by these variables, Performance Status (HR: 

2.589, 95% CI: 1.355-4.947; P = 0.004), TNM M stage 

(HR: 7.703, 95% CI: 1.603-37.021; P = 0.011), and the 

lncRNA-based classifier (HR: 15.483, 95% CI: 6.149-

38.989; P < 0.001) remained to be powerful and 

independent factors for OS in the TCGA Cohort 

(Supplementary Table 11). In addition, multiple 

lncRNAs-based classifier was still an independent risk 

factor in the validation cohort (GSE116174). 

 

In the time-dependent ROC curve, the 8-lncRNAs-

based classifiers can effectively predict the 1-year, 3-

year, and 5-year survival rates, and their AUC is 0.801, 

0.789 and 0.755, respectively (Figure 3C). The average 

predicted probability (predicted survival rate) and 

Kaplan-Meier estimated (observed survival rate) were 

plotted, and the dotted line indicated the ideal reference 

line corresponding to the predicted survival rate and the 

actual survival rate. The calibration curve of 1-, 3- and 

5-year survival probability based on 8-lncRNAs-

classifier were in good agreement with the actual 

observed values. The C-index of 1-year, 3-year, and 5-

year were 0.797, 0.751 and 0.746 respectively, 

indicating that the prediction model had high accuracy 

(Figure 3D). Compared with tdROC of liao et al., [13] a 

larger AUC indicated that our model had a good 

prediction ability (Supplementary Figure 4A–4C). 

 

Recurrence 

 

Cox univariate analysis showed that Performance 

Status, the tumor stage, TNM T stage, TNM M stage, 

HBV infection, and the 14-lncRNA-based classifier 

were correlated with recurrence, whether in the training 

cohort, test cohort, or the TCGA cohort. After 

multivariable adjustment by these variables, 

Performance Status (HR: 1.608, 95% CI: 1.213-2.131; P 

< 0.001), TNM M stage (HR: 5.782, 95% CI: 1.631-

20.501; P = 0.007) and the lncRNA-based classifier 

(HR: 2.076, 95% CI: 1.457-2.957; P < 0.001) remained 

to be powerful and independent factors for recurrence in 

the TCGA cohort (Table 1). 

 

In the time-dependent ROC curve, the 14-lncRNAs-

based classifiers can effectively predict the 1-year, 3-

year, and 5-year survival rates with AUC of 0.800, 

0.686 and 0.789, respectively (Figure 3G). The average 

predicted probability (predicted survival rate) and 

Kaplan-Meier estimated (observed survival rate) were 

plotted, and the dotted line indicated the ideal reference 

line corresponding to the predicted survival rate and the 

actual survival rate. The calibration curve of 1-, 3- and 

5-year survival probability based on 14-lncRNAs-

classifier are in good agreement with the actual 

observed values. The C-index of 1-year, 3-year, and 5-

year were 0.759, 0.717 and 0.719 respectively, 

indicating that the prediction model had good 

performance (Figure 3H). Compared with tdROC of 

liao et al., [13] a larger AUC indicated that our model 

had a good prediction ability. (Supplementary Figure 

4D–4F) 

 

Construction and evaluation of the nomogram 

 

Subsequently, we constructed a gene-clinical nomogram 

(Figure 4A, 4B) by multivariate cox regression analysis 

(Supplementary Table 11, Table 1), combined with 

clinical characterization and lncRNAs-based classifier. 

TNM M stage, Performance Status and an 8-lncRNAs-

based classifier were included in the gene-clinical 

nomogram of OS, while TNM M stage, Performance 

Status and 14-lncRNAs-based classifier were included 

in the gene-clinical nomogram of recurrence. 

Nomograms can visually predict the prognosis of 

patients according to their genes and clinical 

information, and accurately predict the survival and 

recurrence of patients at 1-, 3-, and 5 years. Moreover, 

the score of the nomogram was retained for 

development and validation of the performance of the 

nomogram risk score (Supplementary Tables 3 and 4). 

The risk score of OS-nomogram = 1/(-45.629*Classifier 

- 47*M - 16*Performance Status + 134.689). The risk 

score of recurrence-nomogram = 1/(-20*Classifier - 

43*M -17.3*Performance Status + 94.7). And the 

accuracy of the nomogram in 1, 3 and 5 years was 

analyzed by tdROC, and the corresponding calibration 

curve was drawn (Figure 4).  

 

Overall survival 

 

The OS-nomogram based on an 8-lncRNAs-based 

classifier combined with the TNM M stage and 

Performance Status has an AUC of 0.898, 0.834, and 

0.814 for predicting 1, 3, and 5 years of OS, 

respectively. The C-index of 1, 3, and 5 years was 

0.878, 0.838, and 0.828, respectively (Figure 4C–4F). 

The results indicated that the combination of the 

lncRNA-based classifier models, TNM M stage and 

Performance Status could enhance the capability to 

predict the prognosis of survival. Kaplan-Meier curve 

analysis showed that the two groups divided by cutoff 

value (0.006953) calculated by X-tile were still 

statistically significant in OS (Supplementary Figure 

3A–3C). 

 

Kaplan-Meier curve showed that patients in the 

training cohort, the test cohort and the TCGA cohort 

distributed by lncRNA-based classifiers with 

Performance Status had significantly different 

prognosis (p < 0.0001, Figure 5A–5C). As shown in 

Supplementary Table 5, the tests were performed by 

log rank test between groups. 
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Recurrence 

 

The td-ROC showed that the recurrence-nomogram 

based on classifier, TNM M stage and Performance 

Status has an AUC of 0.786, 0.711, and 0.752 for 

predicting 1, 3, and 5 years of recurrence, respectively. 

The C-index of 1, 3, and 5 years was 0.719, 0.692, and 

0.692, respectively (Figure 4G–4J). The Kaplan-Meier 

curve analysis also indicated that the prognosis of 

patients stratified by cutoff value (0.01470) calculated 

by X-tile was significantly different (Supplementary 

Figure 3D–3F). The lncRNA-based classifiers with 

TNM stage could distinguish patients in the training 

cohort, the test cohort and the TCGA cohort into the 

different risk of recurrence (p< 0.0001, Figure 5D–5F). 

As shown in Supplementary Table 6, the tests were 

performed by log rank test between groups. 

GSEA identifies KEGG signaling pathway 

 

In order to investigate different activated KEGG 

signaling pathways in HCC, GSEA was performed on 8 

OS-related lncRNAs and 14 recurrence-related 

lncRNAs expression datasets. We considered the 

difference as statistically significant when | NES | ≥ 1, 

NOM p-value <0.01 and FDR q-val <0.25. All 

significant enrichment pathways were listed in 

Supplementary Tables 7 and 8. Figure 6 showed the 

most significant KEGG pathway function enrichment of 

8-OS-related lncRNAs. Figure 7 showed the most 

significant KEGG pathway function enrichment of 14-

recurrence-related lncRNAs. The results showed that 

Aminoacyl TRNA biosynthesis, Arginine and proline 

metabolism, Basal transcription factor, Base excision 

repair, Bladder cancer, Cytoplasmic DNA sensing 

 

 
 

Figure 4. Development and verification of OS-nomogram and recurrence-nomogram. (A) OS-nomogram based on 8-

lncRNAs-based classifier, TNM M classifier and Performance Status; (B) recurrence-nomogram based on 14-lncRNAs-based classifier, 
TNM M classifier and Performance Status; (C–E) The 1, 3, and 5-year Time-dependent ROC curves compare the prognostic accuracy of 
the OS-nomogram; (F) 1, 3, and 5 year calibration curve and C-index of the OS-nomogram; (G–I) The 1, 3, and 5-year Time-dependent 
ROC curves compare the prognostic accuracy of the recurrence-nomogram; (J) 1, 3, and 5 year calibration curve and C-index of the 
recurrence-nomogram. OS, overall survival; lncRNA, long non-coding RNA; ROC, receiver operating characteristic; C-index, 
concordance index.  
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Figure 5. Kaplan-Meier analysis in the training, validation and whole cohorts according to the lncRNA-based classifiers 
stratified by clinicopathological risk factors. (A–C) Kaplan-Meier survival curves of LIHC patients with combinations of lncRNA-classifier 

and TNM T classifier in the training, test and TCGA cohorts for OS; (D–F) Kaplan-Meier survival curves of LIHC patients with combinations of 
lncRNA-classifier and TNM stage in the training, test and TCGA cohorts for OS. lncRNA, long non-coding RNA; OS, overall survival; LIHC, Liver 
hepatocellular carcinoma. 
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pathway, DNA replication, Epithelial Signaling in 

Helicobacter Pylori Infection, Focal adhesion, Gap 

junction, homologous recombination, leukocyte 

transendothelial migration, mapk signaling pathway, 

Nod like receptor signaling pathway, P53 signaling 

pathway, pathways in cancer, Nucleotide excision 

repair, RNA degradation, cell cycle, spliceosome, 

VEGF signaling pathway, and WNT signaling pathways 

showed consistent enrichment in the up-regulated 

phenotypes of 8-OS-related lncRNAs (Figure 6). The 

results showed that Basal transcription factor, Base 

excision repair, DNA replication, mismatch repair, 

Lysosome,  proteasome, homologous recombination, 

leukocyte transendothelial migration, P53 signaling 

pathway, pathways in cancer, Nucleotide excision 

repair, RNA degradation, cell cycle, and spliceosome 

signaling pathways showed consistent enrichment in the 

up-regulated phenotypes of 14-recurrence-related 

lncRNAs (Figure 7). 

 

DISCUSSION 
 

HCC is a malignant tumor with high heterogeneity, 

which adds to the difficulty of prognosis and treatment 

[14]. The progression of hepatocellular carcinoma 

involves genetic and epigenetic changes, which are 

closely related to the poor prognosis of HCC [15]. 

Previous studies have shown that commonly used 

clinicopathological parameters (such as age, TNM 

staging, sex, viral infection, and AFP levels) were not 

sufficient to accurately predict prognosis of patients. 

Emerging evidence illustrates that lncRNA plays a 

critical role in regulating the progression of 

hepatocellular carcinoma (HCC) [16, 17]. Some studies 

have been conducted from the genetic perspective to 

screen lncRNA as a biomarker of HCC in the past few 

decades [18, 19]. To date, however, studies have 

attempted to predict the prognosis of patients by gene 

signature, but limited by sample size, biological 

heterogeneity, inappropriate data processing methods, 

and validation methods, there was usually not a good 

prediction ability.  

 

In this study, we developed two lncRNA-based 

classifiers to predict survival and recurrence, 

respectively. Compared with previous studies, our 

research has the following advantages. First, we 

included 312 patients in the OS group and 269 patients 

in the recurrence group to reduce the deviation caused 

by insufficient sample size. Since only a small number 

of lncRNA were identified in previous studies, 15113 

lncRNAs were isolated from the gene expression profile 

of LICH data set in this study. Furthermore, in order to 

identify useful lncRNA markers in high-dimensional 

data sets, an appropriate approach is required. The 

LASSO-Cox regression model was a popular tool for 

regression using high-dimensional predictors, which can 

more effectively perform dimensionality analysis on 

high-throughput sequencing data to construct more 

accurate gene signatures. The experience expansion of 

LASSO punishment can reduce the error discovery rate 

in the high-dimensional Cox regression model [20]. 

Finally, in addition to factors such as age, gender, TNM 

stage, and tumor stage, we also analyze AFP, HBV, 

HCV, Alcohol, Family history, Fibrosis Ishak 

score/Liver cirrhosis, BMI, Platelet result, Performance 

status, Child-Pugh grade, ALB, Region/Race, Adjacent 

tissue inflammation, etc. Among them, AFP, HCV, 

Alcohol, Family history, Fibrosis Ishak score/Liver 

cirrhosis, BMI, Platelet result, ALB, Region/Race, 

 

 
 

Figure 6. Gene set enrichment analysis of lncRNAs of overall survival related classifier. GSEA results showed in (A) AC090921.1, 

(B) AC096637.2, (C) AP002478.1, (D) C10orf91, (E) MAFG−DT, (F) SERTAD4−AS1, (G) LINC01116, and (H) LINC01224. GSEA, Gene set 
enrichment analysis. 
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Adjacent tissue inflammation are not independent 

factors with significant statistical differences. The lack 

of data in some of these samples may affect the results, 

and larger sample studies are still needed. In conclusion, 

the prognostic ability of classifiers in this study is more 

reliable and accurate than previous studies. In addition, 

the nomogram risk score based on classifier and clinical 

characterization as a method to predict prognosis 

provides a visual method for predicting OS and 

recurrence in HCC patients. The nomogram based on 8-

lncRNAs-based classifier combined with TNM M stage 

and performance status can visually predict OS, and a 

14-lncRNAs-based classifier combined with TNM M 

stage and performance status can be used to visually 

predict recurrence, both having excellent predictive 

power and accuracy. 

 

Some of the lncRNAs involved in this study have been 

investigated in past studies. AP002478.1 can predict 

hepatitis virus positive HCC as prognostic targets [21].  

Research by Lou et al suggests that C10orf91 is one of 

five lncRNAs expression as competing endogenous 

RNAs in regulating hepatoma carcinoma [22]. 

LINC01116 was significantly associated with HCC 

patients' poor outcomes [23]. CDKN2B-AS1 has been 

reported promotes tumor growth and metastasis of HCC 

by targeting let-7c-5p/NAP1L1 axis [24]. FIRRE has 

been reported in the literature to activate the Wnt/β-

catenin signaling pathway to promote the growth of 

diffuse large B lymphoma cells by regulating the 

nuclear translocation of β-catenin [25]. Chen et al. 

found that LINC01572 can distinguish between early 

and advanced lung squamous cell carcinoma [26]. 

MIR9-3HG was considered to be related to the survival 

time of Head and neck squamous cell carcinoma in the 

study by Hu et al. [27]. These lncRNAs have been 

studied in a variety of cancers, including HCC. In the 

classifier of our study, AC090921.1, AC096637.2, 

 

 
 

Figure 7. Gene set enrichment analysis of lncRNAs of recurrence related classifier. GSEA results showed in (A) AC004477.1, (B) 

AC010307.4, (C) AC034229.4, (D) FIRRE, (E) LINC01572, (F) MAFG−DT, (G) CDKN2A−DT, (H) CDKN2B−AS1, and (I) MIR9−3HG. GSEA, Gene set 
enrichment analysis. 
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LINC01224, SERTAD4-AS1, AC004477.1, 

AC034229.4, AC209154.1, CDKN2A-DT, CDKN2B-

AS1, LINC01549, MAFA-AS1, MAFA-AS1, MAFG-

DT, MIR9-3HG and SNHG25 has not been reported to 

related to HCC biology, the functions and mechanisms 

of these lncRNAs in HCC need to be further 

investigated. 

 

To further explore the function of the 20 lncRNAs in this 

study. GSEA was used to detect its genetic enrichment. 

KEGG pathway analysis showed that these genes are 

associated with rich metabolic pathways. Enrichment 

with phenotypic consistency was also found in 

pathways such as Aminoacyl TRNA biosynthesis, 

Arginine and proline metabolism, Basal transcription 

factor, Base excision repair, Bladder cancer, 

Cytoplasmic DNA sensing pathway, DNA replication, 

Epithelial Signaling in Helicobacter Pylori Infection, 

Focal adhesion, Gap junction, homologous 

recombination, leukocyte transendothelial migration, 

Mapk signaling pathway, Nod like receptor signaling 

pathway, p53 signaling pathway, pathways in cancer, 

nucleotide excision repair, RNA degradation, cell cycle, 

spliceosome, VEGF signaling pathway, and WNT 

signaling pathways. These results indicate that these 20 

lncRNAs may participate in the occurrence and 

development of HCC through these pathways. As an 

important process of cell division and growth, the active 

DNA replication pathway promotes tumor growth and 

proliferation. Studies have shown that N7-alkyl-dG can 

block DNA replication, suggesting that these lncRNAs 

can be potential targets for tumor drug treatment [28]. 

In this study, multiple lncRNAs were enriched in the 

cell cycle pathway, and drugs acting on the cell cycle 

may benefit patients [29, 30]. However, further research 

is needed to investigate and verify the function of these 

22 lncRNAs. 

 

Current research inevitably has some limitations that 

can be explored in the future. First, we developed a 

lncRNAs-based classifier based on half of the LIHC 

data and used another part for verification, but the 

limited number of validation sets required a larger 

sample to further validate our model. Secondly, this 

study was based on a study of the TCGA database that 

determines a retrospective study, and a larger sample of 

more regional prospective studies was still needed. 

Third, in this study, the significance of lncRNAs in the 

development of HCC is unquestionable, but the 

mechanism behind it was not yet clear and further 

researches were needed. Moreover, the RNA 

sequencing data of this study were based on clinical 

specimens, which increase the difficulty of clinical 

application. Finally, whether it was TCGA's RNA-seq 

or GEO's Array chip, its expensive price was also an 

obstacle to clinical practice. If we could extract the 

lncRNA we need a more accessible blood sample, it 

would become a more potentially valuable method. 

 

In conclusion, we proved that the lncRNA-based 

classifier devised by LASSO cox method can accurately 

predict survival and recurrence, and divide HCC 

patients into low- and high-risk groups. Furthermore, 

the novel nomogram constructed based on this classifier 

combined with clinical characterization can not only 

visually predict HCC survival and recurrence, but also 

increase its prognostic value, making it a potentially 

valuable biomarker signature in clinical practice. 

 

MATERIALS AND METHODS 
 

Patient data 

 

Liver Hepatocellular Carcinoma (LIHC) read counts 

data was downloaded from TCGA, a publicly available 

portal (up to May 10, 2019, https://tcga-data.nci. 

nih.gov/tcga/). Forty-nine adjacent non-tumor samples 

and 368 HCC samples were obtained after the removal 

of non-HCC patients and patients who lost critical data. 

Clinical characteristics of patients were obtained from 

the cBioportal platform (http://cbioportal.org/) [31], A 

web resource for visual exploration and analysis 

multidimensional cancer genome data. The exclusion 

criteria were as follows: 1) not HCC samples; 2) 

samples with clinical data but without lncRNA 

sequence data; 3) samples missing important clinical or 

biological data; and 4) Patients were followed up for 

less than three months. After the removal of non-HCC 

patients and patients lacking critical information, 312 

patients were finally reserved for further study. The 

expression matrices for GSE76427 and GSE116174 

were downloaded from the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 

The expression matrices for GSE76427 and GSE116174 

were downloaded from the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 

GSE116174 contains 64 patients with OS > 90 days. In 

GSE76427, 81 patients with recurrence follow-up 

longer than 90 days were used for further analysis. 

 

Data processing 

 

LncRNAs of LIHC set was re-annotated by the gene 

annotation file " gencode.v30.long_noncoding_RNAs ", 

which is Downloaded from the gencode website. 15113 

lncRNAs were identified from LIHC set. The 

expression value of each lncRNA was normalized with 

the TMM function of the ‘limma’ and ‘edgeR’ package 

for further analysis [32]. We used the ‘edgeR’ package 

to test all the data to identify lncRNAs that were 

differentially expressed by |logFC| >2 and padj < 0.05 

in the tumor compared with normal samples. Then, the 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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differentially expressed lncRNAs (DElncRNAs) were 

subjected to univariate Cox regression, and lncRNAs 

with p < 0.05 were identified as prognostic DElncRNAs 

for further research. GEO's lncRNAs were identified by 

the gpl platform annotation file and the Fasta file 

"gencode.v32.lncRNA_transcripts.fa".3494 lncRNAs 

were identified from GSE76427 and 5690 lncRNAs 

were identified from GSE116174. The OS-related 

prognostic DElncRNAs that intersect with GSE116174 

are used for the development of OS-classifiers. 

Prognostic DElncRNAs associated with recurrences that 

intersect with GSE76427 are used to construct 

recurrence-classifiers. Because the detection methods 

used by the TCGA database and the GEO database are 

different, the background noise is also different. So we 

log2 (x + 1) the TCGA data set and normalize it using 

the zscore method. zscore normalization is also 

performed in the GEO dataset. The "sva" package is 

used to remove batch effects between TCGA and GEO 

datasets. 

 

Construction of lncRNAs classifier 

 

LASSO is a commonly used high-dimensional 

predictive regression method. The method is a 

compression estimation. By constructing a penalty 

function, it can get a more refined model, and make it 

compress some regression coefficients, that is, the sum 

of the absolute values of the forcing coefficients is less 

than a certain fixed value. Also, set some regression 

coefficients to be zero. Therefore, it retains the 

advantage of subset contraction and is a biased 

estimation for processing data with complex collinearity 

[33]. The lncRNAs related to OS and recurrence were 

identified by LASSO COX regression model [34]. The 

regression coefficients (β) of each related lncRNAs are 

reserved for the development of lncRNAs-based 

classifier. The lncRNAs based classifier = ∑ 

EXP(lncRNA) * β. Based on the optimal cut-off value 

calculated by x-tile software version 3.6.1 (Yale 

University School of Medicine, New Haven, CT, USA), 

the LIHC set was divided into high and low risk groups 

[35]. The time-dependent receiver operating 

characteristic (tdROC) curve analysis, calibration curve 

analysis, Kaplan-Meier survival analysis were used to 

evaluate predictive ability of the models in training 

cohort, test cohort, TCGA cohort, and the GEO cohort. 

After that, we began to construct genomic-clinical 

nomograms to predict the prognosis and mortality of 

each HCC patient individually [36]. 

 

Data analysis 

 

The Chi-square test, COX survival analysis, and other 

data processing were completed by SPSS 19.0. 

Kaplan-Meier log rank test was calculated by medcalc 

(Version 19.0). Time-dependent ROC (tdROC) was 

used to assess the performance of lncRNA-based 

classifier with “time ROC” package in R 

software(Version 3.6.1). And area under ROC (AUC) 

was used to assess the accuracy of the prediction. 

Calibration curve and C-index are performed by ‘rms’ 

package. The larger C-index indicates that the 

prediction model has better accuracy [37]. ‘Hmisc’, 

‘rms’, and ‘survival’ were used to develop a 

nomogram. When all the hypotheses are P < 0.05, the 

difference is statistically significant. 

 

Gene set enrichment analysis 

 

To identify the activation of different KEGG signaling 

pathways in HCC, we conducted GSEA between down-

regulated and up-regulated phenotypes. The lncRNAs 

of the classifier were divided into up- and down-

regulated groups by median. Gene Set Enrichment 

Analysis (GSEA) was performed by JAVA program 

GSEA 4.0.2 with the MSigDB Collection 

(c2.cp.kegg.v7.0.symbol). Normalized enrichment score 

(NES), nominal p-value and false discovery rate (FDR) 

were used to quantify enrichment magnitude and 

statistical significance, respectively [38]. When | NES | 

≥ 1, FDR q-val <0.25 and NOM p-value <0.01 were 

considered significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Kaplan-Meier analysis in the training, validation and whole cohorts according to the lncRNA-based 
classifiers. Kaplan-meier survival analysis was performed to predict overall survival in the (A) training cohort, (B) test cohort, (C) TCGA 

cohort and (D) GEO cohort, according to the high-risk and low-risk groups stratified by the 8-lncRNAs-based classifier. Kaplan-meier survival 
analysis was performed to predict recurrence in the (E) training cohort, (F) test cohort, (G) TCGA cohort and (H) GEO cohort,, according to the 
high-risk and low-risk groups stratified by the 14-lncRNAs-based classifier. 

 

 
 

Supplementary Figure 2. Boxplot of lncRNA-based classifier score in patients with clinicopathological risk factors. Boxplot of 8-

lncRNAs-based classifier score and 14-lncRNAs-based classifier score in patients with (A) Performance Status, (B) TNM stage, (C) HBV, and (D) 
grade.  
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Supplementary Figure 3. Kaplan-Meier analysis in the training, validation and whole cohorts according to the molecular-
clinicopathological nomograms. Kaplan-meier survival analysis was performed to predict overall survival in the (A) training cohort, (B) 

test cohort, and (C) TCGA cohort, according to the high-risk and low-risk groups stratified by the OS-nomogram. Kaplan-meier survival 
analysis was performed to predict recurrence in the (D) training cohort, (E) test cohort, and (F) TCGA cohort, according to the high-risk and 
low-risk groups stratified by the recurrence-nomogram. OS, overall survival. 
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Supplementary Figure 4. Comparison of Classifiers and Liao’s Biomarkers. (A–C) The 1, 3, and 5-year Time-dependent ROC curves 

compare the prognostic accuracy of the OS-related Classifier and Liao’s Biomarkers (D–F) The 1, 3, and 5-year Time-dependent ROC curves 
compare the prognostic accuracy of the recurrence -related Classifier and Liao’s Biomarkers; OS, overall survival; lncRNA, long non-coding 
RNA; ROC, receiver operating characteristic.  
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. lncRNA differentially expressed in tumor vs. normal. 

Supplementary Table 2. The detailed information of lncRNAs for constructing the prognostic signature. 

Gene name ENSG_ ID Gene_type bp Chromosome β 
Cutoff 

Value 

8-lncRNA-based classifier for OS 0.2 

AC090921.1 ENSG00000214803 lincRNA 1195 Chromosome 8: 124,192,671-124,247,398 0.0299 0.7 

AC096637.2 ENSG00000265415 antisense 1846 Chromosome 17: 59,202,677-59,203,829 0.0125 0.8 

AP002478.1 ENSG00000266401 antisense 1455 Chromosome 18: 3,653,030-3,656,282 0.1838 1.5 

C10orf91 ENSG00000180066 lincRNA 1846 Chromosome10: 132,444,327-132,449,408 0.2221 1.3 

LINC01116 ENSG00000163364 lincRNA 1502 Chromosome 21: 44,477,850-44,478,493 0.0437 1.4 

LINC01224 ENSG00000269416 lincRNA 2766 Chromosome 19: 23,399,233-23,416,075 0.0251 1.2 

MAFG-DT ENSG00000265688 
bidirectional_promoter_ 

lncRNA 
1895 Chromosome 17: 81,927,829-81,930,753 0.0137 1.3 

SERTAD4-AS1 ENSG00000203706 antisense 726 Chromosome 1: 210,231,456-210,234,047 -0.1168 -0.9 

14-lncRNA-based classifier for recurrence  0.1 

AC004477.1 ENSG00000263412 processed_transcript 2910 Chromosome 17: 48,045,141-48,048,073 -0.0255 0.6 

AC010307.4 ENSG00000250244 antisense 389 Chromosome 5: 133,256,492-133,275,977 0.1647 1.5 

AC034229.4 ENSG00000272417 lincRNA 441 Chromosome 5: 10,203,600-10,204,040 0.0416 1.0 

AC209154.1 ENSG00000276399 lincRNA 3801 Chromosome 17: 22,406,019-22,413,744 0.1580 0.3 

C10orf91 ENSG00000180066 lincRNA 1846 Chromosome10: 132,444,327-132,449,408 0.3958 0.5 

CDKN2A-DT ENSG00000224854 antisense 823 Chromosome 9: 21,966,929-21,967,751 0.0233 0.7 

CDKN2B-AS1 ENSG00000240498 antisense 7173 Chromosome 9: 21,994,139-22,128,103 0.0037 0.7 

FIRRE ENSG00000213468 processed_transcript 5506 Chromosome X: 131,688,779-131,830,862 0.00057 1.1 

LINC01549 ENSG00000232560 lincRNA 1702 Chromosome 21: 17,438,821-17,450,104 -0.1140 -1.1 

LINC01572 ENSG00000261008 lincRNA 3298 Chromosome 16: 72,236,281-72,665,014 0.1813 0.5 

MAFA-AS1 ENSG00000254338 antisense 417 Chromosome 8: 143,417,679-143,419,150 0.0958 1.3 

MAFG-DT ENSG00000265688 
bidirectional_promoter_ln

cRNA 
1895 Chromosome 17: 81,927,829-81,930,753 0.1348 -0.8 

MIR9-3HG ENSG00000255571 lincRNA 5607 Chromosome 15: 89,361,579-89,398,487 -0.365 -0.7 

SNHG25 ENSG00000266402 lincRNA 278 Chromosome 17: 64,145,970-64,146,476 -0.0761 0.4 

LINC02499 ENSG00000250436.1 lincRNA 763 Chromosome 4: 73,508,803-73,534,128 -0.19279  
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Supplementary Table 3. Correlation points about nomogram prediction of overall survival. 

Performance 
Status 

Points riskScore Points 
Total 
Points 

1-year 
Survival 

Probability 

Total 
Points 

3-year 
Survival 

Probability 

Total 
Points 

5-year 
Survival 

Probability 
0 64 -0.8 100 70 0.1 105 0.1 122 0.1 
1 48 -0.6 91 84 0.2 119 0.2 135 0.2 
2 32 -0.4 82 93 0.3 128 0.3 145 0.3 
3 16 -0.2 73 102 0.4 137 0.4 153 0.4 
4 0 0 64 110 0.5 145 0.5 161 0.5 
M Points 0.2 55 117 0.6 152 0.6 169 0.6 
0 47 0.4 45 126 0.7 161 0.7 177 0.7 
1 0 0.6 36 135 0.8 170 0.8 187 0.8 

  
0.8 27 149 0.9 184 0.9 200 0.9 

  
1 18 

      
  

1.2 9 
      

  
1.4 0 

      
 
Supplementary Table 4. Correlation points of nomogram prediction of recurrence. 

Performance 
Status 

Points riskScore Points 
Total 
Points 

1-year 
Survival 

Probability 

Total 
Points 

3-year 
Survival 

Probability 

Total 
Points 

5-year 
Survival 

Probability 
0 52 -2 100 55 0.1 99 0.1 103 0.05 
1 34 -1.5 90 75 0.2 118 0.2 119 0.1 
2 17 -1 80 89 0.3 132 0.3 130 0.15 
3 0 -0.5 70 101 0.4 144 0.4 139 0.2 
M Points 0 60 112 0.5 155 0.5 146 0.25 
0 43 0.5 50 123 0.6 167 0.6 153 0.3 
1 0 1 40 135 0.7 178 0.7 159 0.35 

  
1.5 30 149 0.8 

  
165 0.4 

  
2 20 168 0.9 

  
170 0.45 

  
2.5 10 

    
176 0.5 

  
3 0 

    
181 0.55 

        
187 0.6 

 
Supplementary Table 5. Log rank test of 8-lncRNA-based classifier combined with performance status  

Log Rank 
(Mantel-
Cox)  

group 
low+Status0&1 low+Status2&3&4 high+Status0&1 high+Status2&3&4 
chi-

square 
P values 

chi-
square 

P values 
chi-

square 
P values chi-square 

P 
values 

Training 
cohort 

low+Status0&1 
  

11.3 0.001 15.511 0 34.829 0 

 
low+Status2&3&4 11.3 0.001 

  
0.003 0.959 4.066 0.044 

 
high+Status0&1 15.511 0 0.003 0.959 

  
4.208 0.04 

 
high+Status2&3&4 34.829 0 4.066 0.044 4.208 0.04 

  
Test cohort        low+Status0&1 

  
19.896 0 2.102 0.147 65.568 0 

 
low+Status2&3&4 19.896 0 

  
2.489 0.115 1.502 0.22 

 
high+Status0&1 2.102 0.147 2.489 0.115 

  
12.862 0 

 
high+Status2&3&4 65.568 0 1.502 0.22 12.862 0 

  
TCGA 
cohort         

low+Status0&1 
  

30.199 0 18.938 0 108.295 0 

 
low+Status2&3&4 30.199 0 

  
0.858 0.354 5.167 0.023 

 
high+Status0&1 18.938 0 0.858 0.354 

  
14.022 0 

 
high+Status2&3&4 108.295 0 5.167 0.023 14.022 0 
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Supplementary Table 6. Log rank test of 14-lncRNA-based classifier combined with performance status. 

Log Rank 

(Mantel-Cox)          

group low+Status0&1 low+Status2&3 high+Status0&1 high+Status2&3 

chi-square P values chi-square P values chi-square P values chi-square P values 

Training cohort low+Status0&1   1.934 0.164 16.623 0 42.66 0 

 low+Status2&3 1.934 0.164   0.079 0.778 2.609 0.106 

 high+Status0&1 16.623 0 0.079 0.778   7.997 0.005 

 high+Status2&3 42.66 0 2.609 0.106 7.997 0.005   

Test cohort low+Status0&1   15.487 0 8.36 0.004 27.763 0 

 low+Status2&3 15.487 0   2.423 0.12 0.334 0.563 

 high+Status0&1 8.36 0.004 2.423 0.12   5.571 0.018 

 high+Status2&3 27.763 0 0.334 0.563 5.571 0.018   

TCGA cohort low+Status0&1   19.964 0 24.73 0 65.312 0 

 low+Status2&3 19.964 0   1.395 0.238 3.5 0.061 

 high+Status0&1 24.73 0 1.395 0.238   14.741 0 

 high+Status2&3 65.312 0 3.5 0.061 14.741 0   

 
Please browse Full Text version to see the data of Supplementary Tables 7, 8. 

 

Supplementary Table 7. Gene sets enriched in overall survival related classifier. 

Supplementary Table 8. Gene sets enriched in recurrence related classifier. 
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Supplementary Table 9. Correlation between overall survival-classifier-related lncRNAs and recurrence-classifier-
related lncRNAs. 

lncRNA-based classifier for OS lncRNA-based classifier for recurrence cor p value 

AC090921.1 AC034229.4 0.208874156 0.000578559 

AC090921.1 AC209154.1 0.134326063 0.027898715 

AC090921.1 C10orf91 0.21696736 0.000346205 

AC090921.1 LINC01549 -0.167598529 0.005952943 

AC090921.1 MAFA-AS1 0.145372058 0.017247764 

AC090921.1 MAFG-DT 0.180382687 0.003041263 

AC096637.2 AC034229.4 0.285522048 2.02E-06 

AC096637.2 C10orf91 0.230304099 0.000142449 

AC096637.2 CDKN2A-DT 0.143301482 0.018919805 

AC096637.2 LINC01572 0.12455441 0.041604634 

AC096637.2 MAFA-AS1 0.131372909 0.031559886 

AC096637.2 MAFG-DT 0.28949342 1.43E-06 

AC096637.2 SNHG25 0.198976 0.001056771 

AP002478.1 AC004477.1 0.259711142 1.66E-05 

AP002478.1 AC010307.4 0.259539077 1.69E-05 

AP002478.1 AC209154.1 0.244094535 5.38E-05 

AP002478.1 C10orf91 0.140072512 0.021808497 

AP002478.1 CDKN2A-DT 0.172834139 0.004545744 

AP002478.1 CDKN2B-AS1 0.163611629 0.007274098 

AP002478.1 FIRRE 0.146847125 0.016136627 

AP002478.1 LINC01572 0.238742496 7.90E-05 

AP002478.1 MAFG-DT 0.293178891 1.03E-06 

C10orf91 AC004477.1 0.169090332 0.005516772 

C10orf91 AC010307.4 0.223319151 0.000228295 

C10orf91 AC034229.4 0.224312505 0.000213672 

C10orf91 CDKN2B-AS1 0.130183888 0.033145673 

C10orf91 FIRRE 0.170799934 0.005052355 

C10orf91 LINC01549 -0.218043958 0.000322882 

C10orf91 LINC01572 0.149601672 0.014228252 

C10orf91 MAFA-AS1 0.169959418 0.005276101 

C10orf91 MAFG-DT 0.241248479 6.61E-05 

C10orf91 MIR9-3HG 0.189558585 0.001826946 

LINC01116 C10orf91 0.271001376 6.79E-06 

LINC01116 MAFG-DT 0.131794777 0.031013017 

LINC01224 AC034229.4 0.29166297 1.18E-06 

LINC01224 AC209154.1 0.168876724 0.005577414 

LINC01224 C10orf91 0.241786227 6.36E-05 

LINC01224 FIRRE 0.243081896 5.79E-05 

LINC01224 LINC01572 0.149374266 0.014377938 

LINC01224 MAFA-AS1 0.270744672 6.93E-06 

LINC01224 MAFG-DT 0.158255714 0.009458505 

LINC01224 MIR9-3HG 0.257762954 1.93E-05 

LINC01224 SNHG25 0.145502969 0.017146522 

MAFG-DT AC004477.1 0.217947287 0.000324915 

MAFG-DT AC010307.4 0.249828932 3.53E-05 

MAFG-DT AC034229.4 0.235960325 9.62E-05 
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MAFG-DT C10orf91 0.241248479 6.61E-05 

MAFG-DT CDKN2A-DT 0.149773026 0.014116366 

MAFG-DT CDKN2B-AS1 0.120368864 0.049013373 

MAFG-DT LINC01572 0.197606609 0.001146105 

MAFG-DT MAFA-AS1 0.170178478 0.005216945 

MAFG-DT MIR9-3HG 0.19080438 0.001701746 

MAFG-DT SNHG25 0.23188722 0.000127749 

SERTAD4-AS1 AC034229.4 -0.156188541 0.010446167 

SERTAD4-AS1 C10orf91 -0.145826459 0.016898567 

SERTAD4-AS1 CDKN2B-AS1 -0.133468183 0.02892273 

SERTAD4-AS1 LINC01549 0.259481918 1.69E-05 

SERTAD4-AS1 MAFA-AS1 -0.268111694 8.57E-06 

SERTAD4-AS1 SNHG25 -0.140105715 0.021776952 

 

Please browse Full Text version to see the data of Supplementary Tables 10–12. 

 

Supplementary Table 10. Correlations between risk score of the 8-lncRNA-based classifier with overall survival and 
clinicopathological characteristics in training cohort, test cohort, TCGA cohort and GEO cohort. 

Supplementary Table 11. Correlations between risk score of the 14-lncRNA-based classifier with recurrence and 
clinicopathological characteristics in training cohort, test cohort, TCGA cohort and GEO cohort. 

Supplementary Table 12. Univariate and multivariate COX analyses of the lncRNA-based classifier for OS. 


