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Abstract

The amount of observational data available for research is growing rapidly with the rise of 

electronic health records and patient-generated data. However, these data bring new challenges, as 

data collected outside controlled environments and generated for purposes other than research may 

be error-prone, biased, or systematically missing. Analysis of these data requires methods that are 

robust to such challenges, yet methods for causal inference currently only handle uncertainty at the 

level of causal relationships – rather than variables or specific observations. In contrast, we 

develop a new approach for causal inference from time series data that allows uncertainty at the 

level of individual data points, so that inferences depend more strongly on variables and individual 

observations that are more certain. In the limit, a completely uncertain variable will be treated as if 

it were not measured. Using simulated data we demonstrate that the approach is more accurate 

than the state of the art, making substantially fewer false discoveries. Finally, we apply the method 

to a unique set of data collected from 17 individuals with type 1 diabetes mellitus (T1DM) in free-

living conditions over 72 h where glucose levels, insulin dosing, physical activity and sleep are 

measured using body-worn sensors. These data often have high rates of error that vary across time, 

but we are able to uncover the relationships such as that between anaerobic activity and 

hyperglycemia. Ultimately, better modeling of uncertainty may enable better translation of 

methods to free-living conditions, as well as better use of noisy and uncertain EHR data.
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1. Introduction

Chronic diseases like diabetes, hypertension, and heart disease account for most U.S. deaths 

each year [1], and unlike acute illnesses they are primarily managed not by clinicians but by 
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patients themselves. Blood glucose management in people with type 1 diabetes mellitus 

(T1DM) imposes a particularly significant cost on time and attention. Patients make frequent 

(~hourly) decisions about the timing and dosing of insulin to manage their blood glucose 

with infrequent (~semiannually) feedback from clinicians while having to account for many 

factors that affect glucose including physical activity, meals, and illness. Managing blood 

glucose is key to avoiding secondary complications like stroke, but requires constant 

vigilance from patients with little external feedback and support.

Yet, patients now generate massive amounts of health data through tracking symptoms and 

disease progression, uploading sensor data into patient portals, and sharing information with 

one another through social networks like PatientsLikeMe [2]. These patient-generated data 

may fill in information gaps between medical visits and help engage patients but there have 

been concerns about data quality and how to integrate patient-generated data into care 

without overloading clinicians [3]. Tests with providers, though, found the primary question 

was whether the data provided actionable information [4].

Most work has focused on how these data can improve encounters with providers, but 

continuously-collected data from body-worn sensors and devices such as continuous glucose 

monitors (CGMs), insulin pumps, and activity monitors could be used as input to a patient-

centered decision support system, which would reduce the burden placed on patients with 

diabetes and other chronic diseases. While CGMs allow continuous recording of glucose 

data, these and other sensors can have errors, and imperfect use in real-world settings leads 

to new challenges (e.g. samples contaminated by inadequate hand-washing, loss of 

connectivity). Further, not all sensors can be worn during all activities (e.g. swimming) or 

may be removed by a patient for other reasons, leading to missing data. These issues are 

present in many types of observational biomedical data, yet this uncertainty is rarely taken 

into account when analyzing the data (e.g. ICD9 codes, from the International Classification 

of Diseases, Ninth Revision, are often used as proxies for diagnoses), impeding the 

development of patient-centered technologies.

We aim to demonstrate the utility of data collected in free-living environments from 

consumer-grade sensors for finding causal relationships. We propose that these data may be 

able to reproduce findings from highly controlled studies (at lower cost), while also enabling 

observation of a wider variety of scenarios than observed in the lab (e.g. activity from 

running to catch a bus or athletic competition). While we aim specifically to infer causes to 

enable accurate prediction of glucose trends and effective interventions to correct unhealthy 

highs and lows, there is not yet a method that can weight different observations of a variable 

differently during inference (based on the certainty of measurements). We hypothesize, 

though, that this is critical for robust inferences from such data. That is, if we are sure that a 

particular measurement of glucose indicates hypoglycemia, that measurement should be 

weighted more strongly in finding causes of hypoglycemia than a measurement that has an 

equal chance of being within the normal range. Since errors and the values of glucose 

measurements are not evenly distributed throughout the range, and devices have significant 

error rates, ignoring this underlying uncertainty of the data can lead to false positives and 

false negatives. In many cases information on error rates is available, but is not routinely 

incorporated into inference. For example, studies evaluate accuracy of continuous glucose 
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monitors in various scenarios (e.g. [5,6]) and models of this error have been developed (e.g. 

[7,8]), leading to the ability to determine which data points may be untrustworthy but not yet 

the ability to use that information in causal inference.

To handle this, we extend a causal inference method to handle uncertain data, by separating 

the observation of an event or measurement of a variable’s value from the underlying truth 

of what occurred. This ensures that conclusions drawn from highly uncertain measurements 

are given less weight than those drawn from reliable measurements and a completely 

uninformative variable will be treated as missing, instead of propagating errors. The 

methods are applied to data collected from 17 individuals with T1DM in free-living 

conditions, using a variety of body-worn sensors. We demonstrate that these patient-

generated data can be successfully used to uncover some causes of unhealthy glucose 

excursions in people with diabetes – but only when uncertainty of the data is properly 

accounted for.

This paper makes two main contributions: (1) we extend causal inference methods to better 

handle uncertainty in observational data; (2) we present a novel set of free-living data from 

people with diabetes that is available for research use (https://idash.ucsd.edu). We 

demonstrate the utility of the method through rigorous comparison on simulated data and its 

successful application to the free-living data.

2. Background

2.1. Diabetes

Chronic diseases are rising in prevalence, necessitating tools that can provide feedback 

directly to individuals, in contrast to the clinician-centered decision-support paradigm. 

Diabetes in particular affects over 29 million people in the U.S. (over 9% of the population) 

[9] and the CDC estimates that if current trends continue, this will grow to 33% of the U.S. 

population by 2050 [10]. The annual cost of diabetes in the U.S., including medical costs 

and loss of work, was estimated at over $245 billion in 2012, a 41% increase over the 2007 

estimate of $174 billion [11]. People with diabetes incur substantial out-of-pocket costs, 

impeding access to preventative medical services [12]. Diabetes puts patients at risk for 

many other diseases, and is the primary cause of chronic kidney disease [13], a leading 

cause of amputations and blindness [14], and a risk factor for heart disease and stroke [15].

T1DM is a chronic autoimmune condition characterized by an inability to produce insulin 

and is currently an unpreventable, incurable, disease requiring life-long insulin therapy. 

Since complications are primarily from long-term high or low blood sugar (hyper- or 

hypoglycemia), they may be preventable with better glucose management [16]. However this 

requires patients to frequently test their blood glucose and determine whether to administer 

insulin (to correct high glucose levels) or ingest carbohydrates (to counter falling glucose 

levels). While glucose has traditionally been measured before and after meals with 

fingerstick monitors, these discrete samples cannot provide feedback on trends. CGMs 

instead provide constant feedback on glucose levels, potentially enabling better management 

[17].
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Artificial pancreas systems aim to create closed-loop systems, linking the CGM and insulin 

pump with control algorithms that regulate glucose without a patient’s intervention. These 

systems have demonstrated increases in glucose within normal ranges (euglycemia) and 

reductions in hypoglycemia [18], but most tests are conducted overnight in hospitals when 

glucose control is simpler and they have not been routinely used in ambulatory 

circumstances where meals, physical activity, and daily life can confound results. Outpatient 

studies have primarily focused on demonstrating the safety of these systems [19]. The 

problem is further complicated by the input to the control algorithms: CGMs measure 

glucose in the interstitial fluid between cells, rather than in blood. This can lead to a delayed 

signal that is a shifted and transformed version of blood glucose [20], requiring strategies to 

accurately reconstruct it [21]. Further, while sensors do not have perfect accuracy (due to 

factors such as noise or calibration errors), understanding real-world performance and 

factors affecting it has been a significant area of work [5,6]. However, it remains to 

incorporate what is known about error rates into inference.

Data from body-worn sensors (e.g. heart rate and activity monitors) and mobile apps may 

provide a more complete picture of the causes of changes in glucose and fill in information 

gaps. Physical activity can improve glycemic control [22] and increase insulin sensitivity 

[23], but creates challenges in glucose management since its effects are a function of the 

activity context (training vs. competition), duration and intensity, and even time of day [24], 

and physical activity includes both formal exercise and things like running to catch a bus 

[25]. Recent articles have assessed activity monitors and phone apps in laboratory and free-

living conditions, finding that step counts are accurate, but other activity measures may 

differ from research-grade devices [26,27]. However, it is unclear whether devices are more 

accurate at tracking changes from a given individual’s baseline. More fundamentally, little 

work has been done to assess causes of hypo- and hyperglycemia in an integrated way in 

realistic settings (rather than understanding one piece of the puzzle at a time in controlled 

experiments). To this end, we show that consumer-grade sensors can be used to monitor 

factors that affect glucose, and with proper analysis can do so accurately enough to find 

causes of changes in glycemia and eventually, to better inform patients. Further, our publicly 

available dataset, collected in real-world environments, may enable researchers conducting 

lab-based studies to understand how these relate to uncontrolled environments and may 

facilitate computational researchers developing new algorithms to handle the challenges of 

these data.

2.2. Causal inference

Many types of uncertain observational data are used for research, including EHRs and 

patient generated data streams, but there have been few approaches that address the specific 

challenges of using these uncertain data to find causal relationships. This is critical for 

ensuring that interventions, such as to lower blood glucose, will be effective. Data mining 

methods have addressed uncertainty due to missing data with imputation of missing values 

[28,29]. Multiple imputation handles this by imputing multiple values for each missing 

instance, and aggregating results. However, this is addressing a somewhat different problem 

than the one we discuss here, which is uncertainty in observed values, and incorporating that 

information into causal inference. Other approaches exist for weighting multiple observed 
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measurements, such as when combining the results of many studies in a meta-analysis. 

Inverse-variance weighting, for example, gives less weight to variables or studies as their 

variance increases [30]. However, in our application variance in a measure is not necessarily 

a proxy for certainty, and this approach can’t be used to assign different weights to different 

observations of a single variable within an individual (as variance cannot be calculated for 

each individual observation). Other methods exist for directly representing uncertainty, 

including probability intervals [31], possibility theory [32], and belief functions [33], but 

these have yet to be incorporated into causal inference from time series and generally 

assume one begins with a known structure. Thus, these methods do not yet address our task: 

causal inference from uncertain data.

While causal inference is necessary, current methods do not account for the types of 

uncertainty we face. We need be able to use that a variable’s measurement at, say, 2:00 pm 

on a particular day is less certain than that at 8:00 pm when inferring causal structures. 

Variable and time-dependent error rates are available in many forms. In the case of glucose 

measurement, comparison of a CGM to a fingerstick monitor can uncover mismatches 

between values at specific times, and device error rates can provide prior information on 

both overall accuracy of a variable’s measurement and factors affecting the accuracy of 

specific measurements (e.g. sensor used past recommended duration). We also cannot 

assume that overall the incorrect observations will average out, as errors may not be evenly 

distributed across either a variable’s range or throughout time. For example, if a new sensor 

for a CGM is always inserted on Sunday, values on Sunday will always be less accurate than 

those on Monday, which will be an even greater problem if this coincides with the day a user 

always engages in vigorous exercise. Graphical model-based methods such as Bayesian 

networks [34,35] or dynamic Bayesian networks (DBNs) [36] aim to find probabilistic 

models representing a system’s causal structure. Efforts to incorporate uncertainty into these 

methods mainly address uncertainty at the level of independence relations in static networks 

[37,38] or in other types of prior knowledge about a structure [39] rather than at the level of 

variables and individual observations during structure inference. The primary type of 

uncertainty faced here is when constraints are in conflict, and the methods enable inference 

to use the more reliable constraints in such cases. Thus, the uncertainty is in the model as a 

whole rather than in a specific data point. This is the difference between representing 

uncertainty in whether a particular common cause screens off its effects and whether specific 

instances of the common cause are trustworthy observations. These approaches also face 

challenges in inferring complex relationships and their timing. Granger causality [40] aims 

to determine whether one time series is predictive of another, but its more accurate 

multivariate form is too computationally complex to be used with many variables over many 

time lags, while the bivariate form may erroneously find relationships between effects of a 

common cause.

We are not aware of any methods for finding complex temporal relationships from data 

where variables have differing levels of uncertainty that may also differ across time. It is 

critical to incorporate this uncertainty to avoid biasing inference. For example, during 

periods of high uncertainty, an individual may make more measurements of their blood 

glucose. In a frequency-based approach, these measurements would then be overrepresented 

in the data, while incorporating uncertainty in individual observations enables these to 
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contribute only a weak signal. Further, that these measurements have higher uncertainty can 

be automatically inferred based on the unusual measurement density. We build on the 

approach of [41], where each relationship has an associated time window (that can be 

inferred from the data) rather than a discrete time lag as with DBNs or Granger causality. In 

body-worn sensor data, even if the underlying relationship has a single lag, errors and gaps 

in measurements make it unlikely that this would be observed as such. In the approach we 

build on, relationships and their timing are inferred directly from the data so that one may 

begin by testing for relationships between all variables and elevated glucose in 10–100 min 

and ultimately find that vigorous activity leads to high glucose in 5–30 min with probability 

at least 0.3. We augment this approach to handle patient-generated data by incorporating 

uncertainty in measurements, which allows each observation of each variable to have an 

associated probability, rather than simply being true or false. Ultimately this approach can be 

used more broadly to represent uncertainty such as that of imputed values for missing data, 

diagnoses (single ICD9 code versus multiple pieces of evidence), and concepts extracted 

from free text.

3. Causal inference

Many causal inference methods take a probabilistic approach, with probabilities based on 

frequencies, so a conditional probability such as P(e|c) is defined as the number of 

occurrences of c ∧ e divided by the number of times c is true. Each observation has the same 

impact on the calculation – yet some variables are more error-prone than others and 

individual measurements may further differ. We now discuss how to use information on 

observation uncertainty during inference, so that when finding causes of high blood glucose, 

timepoints that are less likely instances of hypoglycemia will have less of an impact. We 

begin with a brief overview of the inference method being extended, then discuss the 

incorporation of uncertainty into the calculations and the computational complexity of the 

approach.

3.1. Background

The causal inference approach is based on that developed in [41], which separates causes 

from correlations using a calculation of a cause’s average impact on an effect’s probability. 

We briefly review the inference approach here and refer the reader to the prior work for 

more details. Each relationship is represented by a probabilistic temporal logic formula, 

enabling inference of relationships involving conjunctions, durations, and sequences of 

events, along with their timing, without prior knowledge [41]. For example, “vigorous 

activity (v) leads to (⇝) high glucose (g) in 5–30 min with probability at least 0.3,” is 

represented by:

(1)

The significance of cause c for effect e, where X is the set of all variables that raise the 

effect’s probability, is:
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(2)

where c and x are potential causes of the form c ⇝≥r,≤s e and x⇝≥r′,≤s′ e. After each 

potential cause occurs, e is thus most likely to occur in the time window [r, s] and [r′, s′] 

respectively. Note that 0 ≤ r ≤ s, and if r = s, this is simply a single lag. Thus if c is only an 

effect of a common cause, it will make a small difference when the true cause is held fixed. 

Timing subscripts are omitted here, but the probabilities refer to e occurring at a time after x 
and c such that either could have caused it (i.e. their windows overlap).

Formally, the (in)significant causes are defined as follows. The terminology is significant/

insignificant rather than genuine/spurious, as seemingly significant causes may be due to 

bias or hidden confounders and insignificant causes may actually just be weak genuine 

causes.

Definition 1—A potential cause c of an effect e is an ε-insignificant cause of e if εavg(c, e) 

≤ ε.

Definition 2—A potential cause c of an effect e that is not an ε-insignificant cause of e is 

an ε-significant or just-so cause of e.

This can then be treated as a hypothesis testing problem, where one aims to control the false 

discovery rate (FDR) or false negative rate (FNR) and can use this rate to choose a threshold 

for ε.

The key assumptions required are that causal relationships are stationary across time (that is, 

the system is governed by one underlying causal structure); and to find genuine causes and 

not simply statistically significant causal hypotheses, all common causes of pairs of 

variables must be measured.

This approach has been compared against others (BNs, DBNs, Granger) on data from 

multiple domains (finance, biology) [42,43], with significantly fewer false discoveries on 

time series data and accurate inference of time windows without prior knowledge. To 

discover time windows, the approach essentially uses an iterative refinement of the time 

windows (expanding, shrinking, and shifting them earlier and later), greedily aiming to 

increase the causal significance score. This has been proven to converge to the true windows, 

assuming data are sampled regularly, and was shown to recover the correct time windows on 

simulated data where ground truth is known [41]. The key point for inference of timing is 

that the method does not simply accept or reject hypotheses proposed by a user, but rather 

infers both the relationship and its true timing (which might be different than that initially 

tested) directly from the data.

Inference has two phases (1) generating hypotheses and finding potential causes, and (2) 

assessing the significance of potential causes. In the simplest case hypotheses are pairwise 

relationships between all variables across a set of time windows, but one may iteratively test 
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more complex formulas. At a minimum, a potential cause must occur before and raise the 

probability of an effect. To distinguish between confounding due to a common cause and a 

potentially significant causal relationship, the difference in probability of the effect is 

averaged in the presence and absence of the cause, holding fixed other potential causes.

3.2. Intuition behind adding uncertainty

Using the method described in the previous section, probabilities are calculated using the 

frequencies with which the various conjunctions were observed. Thus P(e|c ∧ x) could be 

calculated with ⧣(c ∧ e ∧ x)/⧣(c ∧ x), making εavg:

(3)

Each instance of c ∧ x adds equally to the sum, even if some observations are less certain 

than others. Yet, even though we know that CGM readings after a new sensor is inserted and 

near the end of a sensor’s life are less accurate than others, this is not used in standard 

frequency-based estimates of probability. We aim to be able to use this type of information 

during inference, so that when finding causes of high blood glucose, these timepoints will 

have less of an impact. Note that while probabilities calculated from larger samples (e.g. 

500/1000) have higher precision than those from smaller samples (e.g. 1/2) we do not yet 

incorporate this information. However, it may be possible to do so using the same approach 

of incorporating probabilities of probabilities.

Instead of each observed instance having the same weight in this count, we propose to sum 

their probabilities. Intuitively this means that if there is an observation of c ∧ x, but it is very 

uncertain (low probability), then whether or not e is observed after, it will not have as large 

an impact on the calculation as more reliable observations will. On the other hand, this 

enables one to not simply throw away data points that may potentially be outliers or errors 

(since distinguishing between an outlying value and an important extreme value in a 

critically ill patient can be challenging). To simplify calculations we assume the uncertainty 

in each observation of each variable is independent. However, this may not hold when they 

are measured by a single device (such as a 9-axis motion sensor). The relationship between 

error in subsequent observations of a single variable, though, can be handled by the prior 

model. For example, our belief in the correctness of a blood glucose measurement may 

depend on when it was inserted (i.e. if it still needs to be calibrated or is past its lifespan). 

However, this does not require a model of dependent error in the measurements, but rather 

prior beliefs that account for time since sensor insertion.

3.3. Notation

Before reformulating the approach described to handle uncertain observations, we briefly 

introduce some new notation. Where i is a timepoint in a series of observations T, P(xi) is 

the posterior probability of proposition x at that specific actual time (and is conditioned on 

the data and our prior beliefs about the reliability of measurement). For discrete and certain 

data, this is 1 if it is observed and 0 otherwise.
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The probability of x at each time in window [i, j] is:

(4)

When uncertainties are independent then this calculation simplifies to:

(5)

The probability of x occurring at least once in [i, j] is:

(6)

3.4. Calculating causal impact with uncertainty

To incorporate uncertainty into inference, we now replace the frequency-based counts of Eq. 

(3) with ones based on sums of probabilities. Due to the time windows associated with each 

relationship (as shown in Eq. (1)), this is more complex than replacing each event with a 

single probability. When calculating P(e|c ∧ x) in the certain case, we iterate over instances 

of c and x such that the time windows where they may cause e overlap, summing how often 

this occurs. Previously e either occurred at least once in the window or did not. Now we may 

have multiple observations of e with varying probabilities. If e is observed twice, once with 

P(e) = 0.1 and once with P(e) = 0.6, our belief in the occurrence of e during that window 

should then be somewhat greater than 0.6. We now aim to calculate the probability of e 
happening at least once during the overlap of time windows.

In the uncertain case, we must ask what counts as an instance of c ∧ x? Instead of 

determining whether there merely exists an instance of x such that its time window overlaps 

c’s, we now calculate the probability of this happening at least once. Thus if the potential 

relationships are c ⇝≥1,≤2 e, and x ⇝≥2,≤2 e, and c is observed at t = 2, then the constraints 

are as shown in Fig. 1. First, the window for e to be caused by c is [3, 4], as shown with the 

shaded bar. Then, for x to cause an instance of e (which it can only do in exactly two time 

units) in conjunction with c2 it must occur at either time 1 (t + 1 − 2) or time 2 (t + 2 − 2). If 

for example P(x1) = 0 while P(x2) ≠ 0, then the shaded window would be solely the 

timepoint t = 4.

More generally, the conditional probabilities in Eq. (3) are now replaced with the following 

calculations. First, P(e|c ∧ x) is updated:

(7)
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The window [i, j] is the set of times where x may occur and have a time window that 

overlaps c’s, and is given by:

(8)

Analogously, the window [k, l] is the set of times after c ∧ x where either could have caused 

e and is defined by:

(9)

where xs is the first time in [i, j] where P(xs) ≠ 0 and xe is the last.

In calculating the significance score in Eq. (7) we calculate the probability of an effect when 

a cause and other condition are present. We compare this to the probability of the effect 

when the cause is absent and other condition is held fixed, P(e|¬c ∧ x), modifying the 

equation to incorporate uncertainty as follows:

(10)

The window [g, h] is then the set of times such that c occurring at these would lead to its 

window overlapping x’s:

(11)

The window for e is now just the window of x after its occurrence at time t′:

(12)

We now iterate over instances of x, finding the probability of there being no instance of c 
that overlaps with x. Unlike the previous case we have a conjunction rather than a 

disjunction (i.e. P(¬cg ∧¬cg+1 ∧ …∧ ¬ch)).

In Fig. 2 is an illustration of the timing constraints for one observation of c at time t, with 

potential causal relationships c ⇝≥r,≤s e, and x ⇝≥r′,≤s′ e. Shown in grey to the right of c is 

the time window [t + r, t + s]. Then, for r = r′ = 2 and s = s′ = 4, the corresponding window 

[i, j] where x’s window may overlap c’s is shown. Diagonal lines indicate the timespan for 

which x is observed with nonzero probability. Finally, the window [k, l] for e is indicated 

below these.

Assuming uncertainties are independent across variables and observations of each variable, 

Eq. (7) simplifies to:
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(13)

and Eq. (10) to:

(14)

Definition 3—The significance of cause c for effect e, where X is the set of all factors that 

raise the probability of e is:

(15)

where

(16)

In the certain case, where a variable’s probability is one when observed and zero otherwise, 

this reduces to the frequency-based calculation.

3.4.1. Complexity—The complexity of testing pairwise relationships between N variables 

in a time series of length T in the certain case (once all logical sub-formulas have been 

checked) is O(N3T). Adding uncertainty does not change the theoretical bounds, but 

increases the computation time in practice. Usually an event is not occurring at every 

timepoint, and the various calculations can be done for only the times where the event is 

true. However, a proposition now has a probability at each timepoint and all of these times 

will be incorporated in the calculation so we are always iterating over the T timepoints. Note 

that N2 of the computations are independent and can be done in parallel.

3.5. Uses for uncertainty

We can now enable probabilistic discretization, by defining distributions, rather than bins, 

mapping values to states. This is critical, as many methods cannot use continuous data and 

often the boundaries between states are not precisely known (or there is a transition that is 

not captured by a binary mapping). Incorporating probabilities captures this uncertainty 

while allowing the benefits of discretization. Now instead of mapping each value of a 

variable to one of a set of discrete states, one can map each value to the probability of a 

particular state. For instance, when glucose moves from 69 to 70 mg/dl there is not a sudden 

shift from hypo- to euglycemia. Instead, a set of three probability distributions (one each for 
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low, normal, and high glucose) can be created so that each value of blood glucose has a 

probability of being in each of these states.

Probabilities can be used more generally to incorporate prior knowledge (such as about 

device accuracy), deal with missing data, and account for error. Probabilities can indicate the 

likelihood of a variable taking a particular value given that it is recorded to represent 

measurement error. Thus one can incorporate device uncertainty and bias (e.g. a device is 

more likely to give a false positive than a false negative). For missing data, imputation of a 

single value can lead to many errors, while multiple imputation (finding a set of values for a 

variable and averaging results across inferences with each) increases computational 

complexity [44]. Instead one can determine for each missing value the probability of a 

variable being in each of its possible states. This enables multiple imputation while not 

increasing computational complexity, as inference is still done only once (rather than for 

each imputed value).

When variables are measured at different timescales (but all theoretically measurable values 

are present), gaps are often too large for imputation. One can determine in a variable-specific 

way the probability of the last value being accurate as a function of time after its 

measurement. For instance, measurements of weight may be very reliable for a period of 

days while heart rate quickly becomes uninformative.

Finally, ICD9 and other diagnosis codes are often used as indicators for whether a patient 

has a particular condition, but errors and omissions are common [45] and it can be difficult 

to figure out which patients have a chronic disease and when it started based on the EHR 

alone [46]. By incorporating uncertainty, though, we can represent that a patient with 

multiple pieces of evidence (ICD9 code, medications, symptoms in text) is more likely to 

have, say, heart failure, than a patient with only a single diagnosis code. Further, as new 

evidence is amassed, this probability can increase or decrease, ultimately letting us represent 

diagnoses as probability trajectories based on the evidence at each timepoint.

3.6. Example

We now illustrate the approach with a simple example where the observations themselves 

are considered trustworthy, but the mapping from continuous values to discrete states is 

uncertain. This example demonstrates how the calculations proceed and how proper 

handling of uncertainty can improve causal inference.

Fig. 3 shows a subset of a time series with three variables: c (a meal high in carbohydrates), 

e (moderate exercise) and g (blood glucose). The variables c and e are discrete, while g is 

continuous. In bold are values of g that would be considered instances of euglycemia 

(normal blood glucose) using the traditional range of [70, 120]. The values for P(gn) show a 

mapping of glucose values to the probability of euglycemia (glucose in normal range), 

which captures the smooth transition between states, allowing that a value of 135 is still 

much more likely to be an instance of euglycemia than one of 158.

First, using the traditional discretization and calculating the impact of e on gn at one time 

unit holding fixed c, we find:
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(17)

Here it seems e has no impact at all on gn. Incorporating uncertainty into the calculation, 

using P(gn), we instead have the following. Note that P(c) and P(e) are either one or zero at 

each time, and the window is exactly one time unit, so we simply use P(gn) at each time, 

instead of calculating the probability across a time window.

Instead of no impact, we now find that exercise combined with a meal has a significant 

impact on glucose as compared to a meal alone. In contrast, values close to normal (135 and 

140) following “c and e” were indistinguishable from the higher values following “c and not 

e” (158 and 165) when strictly discretizing according to a fixed window. By assigning 

probabilities, we can capture this distinction in the continuous values.

4. Data collection

4.1. Simulated data

To evaluate the inference method we simulated data with known ground truth and varied the 

uncertainty in measurements. The goal of these experiments is to determine whether causal 

relationships can be accurately inferred from uncertain data with the proposed method, and 

determine how the level of uncertainty affects inference accuracy. Our primary evaluation is 

the false discovery rate and false non-discovery rate (FDR and FNR).

We randomly generated 5 causal structures with 10 or 20 relationships among 25 variables 

(including chains, cycles, self loops, etc.), with each relationship having a lag of one time 

unit. Fig. 4 shows one example structure. We did not generate relationships with longer lags 

or windows to isolate the effect of uncertainty and noise.

At each time an event (variable) may occur spontaneously (probability = 0.1) or may occur 

if one of its causes occurred at the previous time (probability = 0.9). This yields strong 

relationships, enabling us to distinguish between uncertain observations and weak 

relationships.

After generating the ground-truth data (20,000 timepoints), we added uncertainty in two 

ways.

4.1.1. Static uncertainty—Here, each variable in each dataset was independently 

assigned a randomly generated probability of being correctly reported (i.e. output says true if 

it occurred). Probabilities were in the range [p, 1] with p ∈ {0.55, 0.75, 0.85, 0.9, 0.95, 1}. 

Thus there may be certain observations of only cause or effect and not both. In all, 60 

datasets of this type were generated (5 structures, 6 probability ranges, 2 runs for each 

combination).
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4.1.2. Varied uncertainty—A key feature of our method is incorporating observation-

specific uncertainty. To test this, we generated 8 datasets (2 structures, 2 probability ranges, 

2 runs each) where the probability of each observation (rather than variable) being correctly 

reported was randomly chosen within [0.55, 1] and [0.9, 1]. That is, if a variable is actually 

true at a given time (e.g. individual has hyperglycemia), we flip a weighted coin to 

determine whether the output reports true or false. With probabilities in [0.9, 1], most 

observations are correct, while in the wider probability range there will be many more 

instances of erroneous output.

4.2. Real-world data

We aim to demonstrate both the feasibility of continuous physiologic monitoring in 

individuals with T1DM in free-living conditions and that these data can be used to gain 

insight into causes of changes in glycemia. Our primary evaluation is face validity of the 

relationships, assessing how they relate to prior knowledge. The Diabetes Management 

Integrated Technology Research Initiative (DMITRI) study collected data from 17 

participants (10 male, 7 female) ages 19–61 with T1DM. Participants were active, with all 

exercising at least 2–4 times per week, and most (13 of 17) >4 times per week. Average 

duration of diabetes and HbA1c were 14.9 ± 11.0 years and 7.3 ± 1.3% respectively. Data 

are available through iDASH (https://idash.ucsd.edu). Participants were monitored over 

approximately 72 h plus a baseline assessment, though we focus on the sensor and device 

data. The continuously collected data and body-worn sensors include: glucose (Dexcom 7+ 

CGM), insulin dosing (insulin pump), activity status (BodyMedia SenseWear, Respironics 

Actiwatch), heart rate (Polar chest strap), temperature (SenseWear), and sleep (Zeo Personal 

Sleep Coach). Data collection frequencies differed between devices, so all were synced to 

the 5-min intervals of the CGM.

Each continuous-valued variable was discretized, with a probabilistic approach used when 

possible. Data were prepared as follows:

Activity: The SenseWear activity monitor outputs the fraction of each five-minute interval 

spent in sedentary, moderate, vigorous, or very vigorous activity based on METs (metabolic 

equivalents),1 using ranges of under 3.0 (sedentary), 3.0–6.0 (moderate), 6.0–9.0 (vigorous) 

and above 9.0 (very vigorous). Since the values range from 0 to 1 and the values for a given 

interval sum to 1, they were used as probabilities of the corresponding activity during that 

five-minute interval.

Glucose measurements are often volatile and the usual approach of calling values in the 

range [70, 120] (mg/dL) normal (euglycemia), values below hypoglycemia, and values 

above hyperglycemia may not accurately distinguish true hypo/hyperglycemic episodes in 

people with diabetes. So discretizing 68 mg/dL as “low glucose” and 70 mg/dL as “normal” 

overstates the confidence in these measurements [49]. Instead, we defined a probability 

distribution based on this range that ensures a value of, say, 68 mg/dL, still has a high 

probability of corresponding to euglycemia. Distributions corresponding to hypo- and 

hyperglycemia were created by subtracting the euglycemia distribution from 1, as shown in 

1These measurements correlate well with actual energy expenditure, though studies have been limited in scope [47,48].
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Fig. 5. A data point may correspond to multiple categories, with different probabilities, and a 

possible but unlikely hyperglycemic episode will not overly influence determination of 

factors affecting hyperglycemia.

Heart rate (HR) zones, to determine intensity of activity, were calculated for each subject 

using age and baseline resting heart rate. Maximum HR (HRmax) was estimated, using a 

standard approach, as 220-age, making the zones: X * (HRmax − HRrest)+HRrest, where X 
was in the interval [.5, .85, 1]. HR below 90 was defined as resting, and between 90 beats 

per minute and 50% of HRmax, elevated.

Insulin pump data is broken into two types: basal rate (continuous insulin dosing) and bolus 

(discrete infusion). We used presence or absence of a bolus at each time.

Sleep: From the Zeo sleep monitor, we recorded mode sleep stage during each interval. The 

SenseWear activity monitor also recorded percentage of each interval spent in sleep and 

percentage lying down (each was treated as the probability of each activity during that 

interval).

Temperature was treated similarly to glucose, with a probability distribution of euthermia 

centered at 33 °C (as temperature was measured on the surface of the skin), and declining 

rapidly above and below. The result is three distributions corresponding to hypo-, hyper-, 

and euthermia.

5. Results

5.1. Simulated data

We first validate the method using the simulated time series. The proposed method used the 

known time lag for relationships and actual probabilities for each variable. The cleanliness 

of the synthetic data, meant the usual approach of fitting the null distribution to the data to 

identify a threshold for ε could not be used (the difference between the insignificant z-

values, which were near zero but skewed negative, and the significant ones was too great). 

We instead used breaks in the distribution (e.g. when a fit to the histogram of significance 

scores goes to zero), but this increases the false negative rate, so performance can be 

improved with better methods for choosing the threshold.

We compared results to those of DBNs using Banjo [50]. Using a single lag and relatively 

small number of variables/timepoints enabled exploration of a large portion of the search 

space (limiting concerns about identifying a local minima with a large search space). 

Parameters used were: simulated annealing with random local moves, runtime of 1 h with 6 

threads, and max parent count (number of parents of a node) of 6.

Table 1 shows false discovery and false negative rates (FDR and FNR) for each algorithm, 

by probability range (each being [p, 1] with p shown) for static uncertainty. Our FDR is 

lower at every probability level, and increases to a max half that of DBNs. Our method 

yields a higher FNR as noise increases, as highly uncertain measurements will be given little 

weight. While the tradeoff between FNR and FDR is specific to each problem and the 

associated costs, in this case the increasing FNR is by design. That is, a completely 
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uncertain variable should not be found as a cause or effect of any other, and should be 

treated as if it were not measured (i.e. latent). The FDR increases as uncertainty does, as this 

weakens true relationships while increasing the number of spurious correlations, so false 

positives make up a larger portion of the inferences (as there are fewer inferences). While 

DBNs made no false negatives in many cases (the true network was a subset of that 

inferred), the FDR increased from 0.064 to 0.204 when going from certain data (p = 1) to a 

5% error rate (p = 0.95), and this is higher than the FDR of our approach with uncertainty at 

0.55 (.123).

Across all 8 datasets with variable uncertainty (varying by observation), our approach had an 

FDR and FNR of zero. For DBNs, the FNR was also zero, but the FDR was.048 and.032 for 

p = [0.55, 1] and [0.9, 1] respectively, as shown in Table 2. Thus by giving less weight to 

possibly erroneous measurements, we can separate the signal from the noise. This is 

particularly important for our application to T1DM, as relying more on certain data (e.g. 

values that are surely hyperglycemic episodes when finding causes of such excursions) may 

help overcome the substantial noise in glucose measurements. DBNs fared much better with 

variable uncertainty than with static uncertainty, as a consistently unreliable variable 

severely reduces their accuracy.

5.2. Real-world diabetes data

Using the DMITRI dataset, we compared uncertain discretization (e.g. each value mapped to 

probabilities of belonging to each category) to traditional categorical discretization (e.g. 

glucose values in [70, 120] are considered normal and above and below are hyper- and 

hypoglycemia respectively). Using a data-driven approach, we tested for causal relationships 

between all variables and hypo-, hyper- and euglycemia over a series of candidate time 

windows (5–15, 15–30, 30–45, and 45–60 min). As actual timings may be different, we used 

the approach of [41] to refine each window for each relationship, before recalculating the 

causal significance scores with the final set of relationships.

Unsurprisingly, we found that glucose tended to remain high/low/normal at a short timescale 

(i.e. being low causes glucose to remain low). Using the proposed method we made another 

finding, though: that very vigorous exercise as a significant cause of hyperglycemia. This 

finding was made separately using activity estimates based on heart rate in 5–15 min (with 

estimated anaerobic activity zones) and an activity monitor calculating METs (metabolic 

equivalents) in 15–30 min, with both having fdr < 0.01. Heart rate was somewhat more 

significant (εavg 0.32 vs. 0.29), because of the specificity of the measurement. These 

relationships between intense activity and hyperglycemia were the most significant at all 

timescales by a wide margin (aside from those between the glucose states and themselves), 

but did not reach statistical significance in other time windows. This suggests that we 

identified when the effect peaks, but it may occur over a longer timescale. Further work with 

a larger sample is needed to confirm the timing.

While the data contain a limited number of glucose excursions (deviations from euglycemia) 

and episodes of intense exercise, we were able to find this relationship from only a few days 

of data collected for 17 individuals. Hyperglycemia after anaerobic activity has been 

previously identified in individuals with T1DM [51], giving us confidence in the 
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methodology and sensor data quality. This finding was not made from data discretized 

according to the traditional range (only the relationships between hypo/hypo, eu/eu, and 

hyper/hyperglycemia were identified), demonstrating that incorporating uncertainty into 

discretization can improve inference power in noisy data.

6. Discussion

Patients themselves make many chronic disease management decisions during daily life 

rather than in the context of medical treatment. Decision support systems have primarily 

focused on clinicians, while patient-centered treatment has tried to remove the need for 

active involvement (e.g. closed-loop glucose control). Yet, many systems fail during 

translation from controlled environments to the real-world. We propose that (1) patient-

generated data are a viable and important data source for researchers and (2) these data 

require specialized methods due to their specific challenges. We report the development of a 

unique type 1 diabetes dataset from free-living conditions and introduce a novel extension of 

a causal inference method to handle uncertain data. These data may potentially be used by 

researchers to uncover causes of changes in glycemia and understand whether findings from 

controlled laboratory environments translate to real-world environments.

In contrast to existing work, which weights all data points equally during causal inference 

we develop an approach that incorporate probabilities into traditionally frequency-based 

calculations of causal significance. This enables representation of beliefs and information 

such as error rates specific to each observation of a variable, and was shown to lead to fewer 

false discoveries than DBNs in data with simulated uncertainty. While the approach may 

lead to more false negatives in theory (due to treating highly uncertain variables as missing), 

in practice we showed that it can increase power when dealing with noisy real-world data. 

Despite the small sample size and few occurrences of hyperglycemia, by incorporating 

knowledge of the uncertainty inherent in the data, we were able to uncover the causal 

relationship between intense exercise and hyperglycemia, using both heart rate data and 

activity measured by METs. With a larger dataset, more causal inferences may be possible.

The primary limitations of this work are the need for priors about uncertainty, as well as the 

assumptions made about the independence of error across variables. We assumed here that 

the probability distributions and error rates were given as background knowledge, and while 

information from manufacturers and research on device accuracy can provide this in some 

cases, future work is needed on better estimating uncertainty for each variable and 

observation. In particular, this could potentially be identified in a data-driven way, by 

triangulating between multiple measurements of a phenomenon (e.g. finding mismatch 

between heart rate, location, and motion sensing), and combining data with manufacturer-

provided accuracy information. Similarly, many devices contain multiple sensors and when 

one piece of the system fails, others will too. Incorporating dependence in uncertainty will 

be important for better handling such cases. Finally, one limitation of our experimental work 

is the relatively small sample size, with 17 individuals over 3 days and lack of ground truth 

for measurements, which did not allow us to infer or evaluate such models.
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Direct representation of uncertainty in biomedical data may enable better use of other data 

beyond that generated from body-worn sensors. Work extracting phenotypes from EHRs 

may benefit from allowing probabilistic diagnoses, where researchers can represent the 

amount of evidence toward a diagnosis rather than treating this as a binary categorization. 

For instance, a patient with multiple medications for heart failure, multiple visits for the 

condition, and heart failure on their problem list could be distinguished from patients with 

only a diagnosis code. Similarly, concepts extracted from text often have ambiguous timings, 

so instead of assigning a single time to an event, a probability distribution over the likely 

times of occurrence better captures this uncertainty.
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Fig. 1. 
Example illustrating timing constraints for two causal relationships.
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Fig. 2. 
Illustration of time windows.
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Fig. 3. 
Example time series of two discrete variables (c, e) and glucose (g), which is mapped to 

probability of euglycemia (P(gn)).
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Fig. 4. 
One of five randomly generated causal structures.
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Fig. 5. 
Probabilistic discretization of blood glucose (bottom) and traditional step-function (top), 

where values in [70, 120] are considered euglycemia. Based on the value reported by the 

CGM, probabilities of eu-, hyper- and hypoglycemia are assigned.
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Table 2

Comparison of causal inference with uncertain observation to DBNs on simulated time series for varied levels 

of uncertainty, with varied uncertainty for each variable.

Method [0.9, 1] [0.55, 1]

FDR FNR FDR FNR

Uncertain 0 0 0 0

DBN 0.032 0 0.048 0
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