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Abstract: Consumption of soluble dietary fibre is recommended as part of a healthy diet. Evidence
has shown that soluble dietary fibre slows gastric emptying, increases perceived satiety and plays
a significant role in appetite regulation. This systematic review examined the effects of soluble
dietary fibre using randomised-controlled trials (RCTs). Three different electronic databases were
used, namely PubMed, Scopus® and the Cochrane Central Register of Controlled Trials (CENTRAL).
Effect size (Cohen’s d) was calculated based on the intergroup mean difference and standard deviation
(SD) followed by Cochran’s Q and I2 determination. The effect size was statistically pooled in the
meta-analyses and presented as a forest plot. The risk of bias was high for each study as assessed
using the Jadad scale. Meta-analysis of statistically pooled data for guar gum showed a sizeable effect
on post-meal energy intake, followed by β-glucan, alginate, polydextrose and pectin, with pooled
effect sizes of −0.90, −0.44, −0.42, −0.36 and −0.26, respectively. Guar gum (5 g) effectively reduced
energy intake when prepared in milk beverages compared with control milk (p < 0.001). Alginate,
when prepared in liquid (5 g) or solid (9 g) meals, effectively reduced energy intake compared with
control (p < 0.001). A high dose of polydextrose (25 g) prepared in liquid meal form significantly
reduced energy intake (p = 0.01). This study suggests that soluble fibres are not all created equal.
Further interventional studies are needed to determine whether combinations of these soluble fibres
might have greater effects than individual fibres per se.

Keywords: soluble dietary fibre; guar gum; alginate; β-glucan; polydextrose; pectin; satiety;
energy intake

1. Introduction

The benefit of dietary fibre on gut health is well established [1]. Dietary fibre is categorised into
soluble and insoluble fibre. The distinction between soluble and insoluble dietary fibres is that the
former solubilise in hot aqueous solution [2]. The physiological effects of soluble dietary fibres are
attributed to its unique physico-chemical properties, namely viscosity, gel formation or fermentability
in the colon [3]. Previous studies have demonstrated the physiological effects of soluble fibre as follows:
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(1) increased viscosity in the upper gastrointestinal tract [4,5], and (2) partial or full fermentation in the
colon [6] and (3) exertion of a prebiotic effect [7,8].

Different dietary fibres might have different viscosities depending on their structure, concentration
and chemical composition (types of monomers) [9,10]. Viscous soluble dietary fibres are believed to
be more capable of inducing satiety compared to non-viscous soluble dietary fibres. Viscous soluble
dietary fibre increases digesta viscosity and consequently delays gastric emptying [11–13], slowing
digestion and the absorption of nutrients [14], and reducing enzyme diffusion [15] and the formation
of an unstirred water layer [16]. Viscous soluble dietary fibres are not being digested in the stomach;
instead, they are fermented in the colon and result in a rise in short chain fatty acids (SCFAs). SCFAs,
particularly propionate, modulate the secretion of various appetite-regulating peptides (PYY, GLP-1
and CCK) throughout the colon and are associated with increased perceived satiety and reduced food
intake [17–20]. Furthermore, the presence of soluble dietary fibre selectively boosts the growth or
activity of a restricted number of colonic bacteria, ultimately enhancing host health [21]. Soluble fibre
alters the balance of the gut microflora towards what is considered to be a healthier one [22].

Satiety is defined as a process that leads to inhibition of further eating, declining hunger and an
increase in fullness after a meal, leaving one satisfied [23]. However, there have been inconsistent
findings regarding the benefits of soluble dietary fibre on perceived satiety. Studies have shown the
effects of soluble fibre to depend on factors such as dose, molecular size and solubility, and food
matrix [24,25]. Hence, the aim of this review was to answer the following questions: (1) What is the
best type of soluble dietary fibre to reduce energy intake? (2) What is the best dose for such an effect?
(3) What is the optimal food matrix (solid, semi-solid or liquid meal)? The information was extracted
from randomised-controlled trials followed by qualitative and quantitative analyses.

2. Methods

2.1. Eligibility Criteria

This review included studies examining healthy male or female free-living adults aged 18 years
or above with a normal body mass index (18.5 to 24.9 kg/m2) [26] and not taking any supplements or
antibiotics during the study period. The review excluded studies in which participants had undergone
surgical procedures with the potential to affect gastrointestinal function or digestibility, which may
interfere with results and contribute to clinical heterogeneity [27].

This review examined only interventions investigating the effects of soluble dietary fibre using
randomised-controlled trials (RCTs). RCTs were chosen as they are considered as cornerstone of clinical
research on intervention and offer the highest level of evidence [28]. Studies were excluded if the
comparator groups were absent or not specified [29]. The outcome measures are as follows: energy
intake, perceived satiety, appetite hormones, gastric emptying time and colonic transit time. Studies
were excluded if they were observational in nature, that is, cross-sectional, retrospective or prospective
cohort, longitudinal or case-control studies as well as case reports, case series, animal or in vitrostudies.
There was no restriction on the time frame and type of study setting. Only full-text English articles
were included in this review. Studies written in languages other than English were excluded due to
potential bias of information resulting from poor translation. Given advances in research methodology,
only studies published between 2007 and 2017 were included.

2.2. Search Strategy

Three different electronic databases were used to systematically search the literature as follows:
(i) PubMed website (US National Library of Medicine and National Institute of Health); (ii) Scopus®

(Elsevier B.V.); and iii. The Cochrane Central Register of Controlled Trials (CENTRAL, Cochrane
library). PubMed was selected as it contains 27 million biomedical studies from MEDLINE and life
science journals. Scopus was chosen as it is the largest database for scientific journals covering the
fields of science and medicine, with 100% MEDLINE, EMBASE and Compendex. The Cochrane Central
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Register of Controlled Trials (CENTRAL) is the largest database and the most comprehensive source of
reporting for RCTs. The search strategy for all three databases was carried out over the course of two
weeks in August 2017. For Scopus, only articles in the fields of ‘agriculture and biological science’,
‘biochemistry’, ‘genetics and molecular biology’ and ‘medicine’ were included.

Boolean operators were included in the keyword searches of all three electronic databases.
The main keywords were ‘type of soluble fibre’ AND ‘appetite’ AND ‘satiety’. Key search terms
for type of soluble fibre were ‘soluble dietary fibre’, ‘soluble dietary fiber’, ‘beta glucan OR beta
glucans OR b-glucan OR β-glucan’, ‘guar gum OR guaran OR gellan gum’, ‘alginate OR alginates
OR alginic OR algin’, ‘pectin OR pectins’, ‘laminarin OR laminarins’, ‘polydextrose’, ‘PolyGlycopleX’,
‘maize-based soluble fibre OR maize-based soluble fiber’, ‘galactomannan OR galactomannans/konjac’,
‘NUTRIOSE’, ‘plantain’, ‘soluble corn fiber OR fibre’, ‘soluble maize fiber OR fibre’, ‘arabinoxylan OR
arabinoxylans’, ‘mixed-linkage glucans’, ‘pullulan’, ‘plant gum OR plant gums OR gum OR gums OR
plant mucilage OR mucilage’. Key search terms for appetite and satiety were ‘appetite hormones’,
‘gut hormones’, ‘glucagon-like peptide 1 OR GLP-1′, ‘Peptide YY OR PYY’, ‘cholecystokinin OR CCK’,
‘gastric insulinotropic polypeptide OR GIP’, ‘colonic transit time’, ‘gastrointestinal’, ‘gastric emptying
time’, ‘energy intake OR energy intakes’ and ‘satiety’.

2.3. Data Management and Analysis

All articles were uploaded in Mendeley referencing software and duplication removed use of the
‘remove duplicate’ function. Three reviewers independently screened the titles and abstracts based
on the pre-defined criteria described above. Full-text articles were carefully reviewed to determine
whether the articles met the inclusion or exclusion criteria. Primary data extraction was done to
identify studies investigating the effects of soluble fibre on energy intake, perceived satiety, appetite or
gut hormones, gastric half-emptying time and/or colonic transit time as outcome measures. Secondary
data extraction was done to exclude studies that did not meet the defined criteria, studies that failed
to report certain details and studies that did not fall within the definition of RCTs. Data extraction
included RCTs, the type of comparator clearly described (i.e., control/placebo), sample size calculation,
dosage used, study duration, participant characteristics (free-living, normal body mass index (BMI)
and healthy) and type of soluble dietary fibre related to outcome of interest.

2.4. Evaluation of Studies and Data Synthesis

For primary outcomes, the effect size (Cohen’s d) was calculated based on the intergroup mean
difference and standard deviation (SD) in energy intake, perceived satiety, gastric half-emptying time,
and appetite or gut hormones between treatment and control groups. The quantitative measure of
the standardised mean differences (effect sizes) between the groups was considered as small (0.2),
medium (0.5) and large (0.8). A negative value indicates that the intervention favoured the treatment
group, while a positive value indicates that the intervention favoured the control or placebo group [30].
Means and standard deviations were manually calculated when the exact outcomes measures were
not reported. The standard error of the means was converted into standard deviations to derive
Cohen’s d [31]. P-values of less than 0.05 were deemed statistically significant. A study was excluded
from the meta-analysis if the effect size could not be calculated.

For the secondary outcomes, Cochran’s Q and I2 were manually calculated using Excel worksheets
in accordance with Neyeloff, Fuchs, and Moreira [32]. Cochran’s Q was calculated as the weighted sum
of squared difference between each study’s effects and the pooled effect across studies with the weight
used in the pooling method. Q was distributed as a chi-square statistic (χ2) with k minus 1 degree
of freedom (df) whereas k is number of studies. The p-value was obtained by comparing Q against
a table of critical values where a lower Q indicated that the studies were similar (i.e.,homogenous).
The I2 statistic describes the percentage of total variation across studies due to true heterogeneity.
I2 was calculated based on the formula (Q−df)/Q × 100, where ‘df’ stands for degrees of freedom
and Q is Cochran’s heterogeneity statistic. A negative value of I2 was considered to be zero (studies
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were homogenous). Statistical heterogeneity of meta-analyses (I2) values of 25%, 50% and 75% were
considered as low, moderate and high, respectively [33]. A fixed-effect model was selected if the test
of heterogeneity was not significant and the I2 value was low (< 50%). The random effects model
was used for heterogeneity ≥ 50%. The effect size was statistically pooled in the meta-analyses and
presented as a forest plot.

The risk of bias of each individual study was assessed using the Jadad scale. The scale specifies
whether double-blinding, randomisation, drop-outs and withdrawals were clearly described in the
study [34]. The highest possible score is 5 and is suggestive of a low potential for reporting bias.
Studies were rated as having low, moderate or high risk of bias.

3. Results

3.1. Study Selection

Figure 1 illustrates the study selection based on the PRISMA search strategy. An initial sample
of 5755 articles was identified. Of these, 3080 articles were from Scopus®, 1359 articles were from
PubMed, and the remaining 1316 articles were from CENTRAL. Duplicates were excluded and all
articles were screened on the basis of their titles and abstracts. Seventy-nine full-text articles were
retrieved to assess their eligibility, and 15 articles met the defined criteria and were subsequently
included in the qualitative analysis. A subset of 10 articles was included in the meta-analysis.
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3.2. Study Characteristics

Table 1 presents a summary of the randomised-controlled trials (RCTs) (N = 15 articles) involving
17 interventional studies with 31 soluble fibres [35–49]. A total of eight soluble dietary fibres were
identified: alginate, arabinoxylan, β-glucans, guar gum, high-amylose maize, pectin, polydextrose,
and PolyGlycopleX. There were a total of 31 soluble fibre types, doses or viscosities included in
this review as follows: alginate (n = 3), arabinoxylan (n = 2), β-glucans (n = 3), guar gum (n = 6),
high-amylose maize (n = 2), pectin (n = 4), polydextrose (n = 8) and PolyGlycopleX (n = 3). While all 31
soluble fibres were included in the systematic review (qualitative study), only 21 were included in the
meta-analysis (quantitative study). Ten fibres were excluded from the meta-analysis for the following
reasons: energy intake not measured (n = 7), control not available (n = 1) and only one study available,
hence meta-analysis cannot be done (n= 2).

The doses of fibre used in the studies were in the range of 2 to 31.5 g and supplemented
either liquid, semi-solid, solid or composite meals. All studies included were of randomised
crossover-controlled design. Of the 17 interventional studies, one was double-blinded, 13 were
single-blinded and three were not-blinded. The sample size ranges from 6 to 121 participants with a
total sample size of 453 participants. The durations of outcome measures for energy intake, satiety,
gut hormones and gastric emptying time range from 90 to 240 min, 30 to 240 min, 90 to 180 min and
90 to 360 min, respectively. The shortest duration of food intake measures was 90 min [42,44], while the
longest was 240 min [38,41] (Table 1).

3.3. Outcome Measures

The outcome measures in this review are energy intake, perceived satiety, appetite hormones and
gastric emptying time. Twenty-four of the 31 studies investigated the effects of soluble fibre on energy
intake between treatment and control groups [35–45,48]. Twenty-two studies favoured treatment, but only
four reported significant differences [34,36–42,44–48] (Table 1). Another 12 of the 31 studies focused on
satiety, while 11 out of 31 investigated the gastric emptying rate and seven out of 31 investigated the
effects of soluble dietary fibre on appetite hormones (PYY, GLP-1, CCK and GIP) (Figure 2).

It was observed that only four test products significantly reduced energy intake, as follows: 5 g
of alginate and 5 g of guar gum in milk beverages [35], 9 g of alginate in chocolate cookies [36] and
25 g of polydextrose in chocolate-flavoured beverages [42] (Table 1). However, all fibres supplemented
in the liquid food matrix favoured treatment rather than control groups [35,37,39,40,42,44]. Soluble
fibre supplemented in the solid food matrix such as cookies, soya bean curd, white wheat bread or
cooked white rice did not significantly reduce energy intake, except for high-dose alginate in chocolate
cookies [36]. B-glucan (2.9 g) [38] showed a higher effect size on energy intake reduction compared
with 6 g of alginate [36], with d = −0.35 (p = 0.28) (medium effect size) and d = −0.04 (p = 0.78) (small
effect size), respectively. A high dose of alginate (9 g) is necessary in order to have significant effects
(effect size = −0.52, p < 0.001) on reduced energy intake [36]. However, the effect of 9 g of alginate
supplemented in chocolate cookies was larger than the effect of 12 g of polydextrose added to low-
and high-protein soya bean curd, with effect sizes of −0.42 and −0.48, respectively [43].

Juvonen et al. [45] demonstrated that high viscosity β-glucan reduced energy intake compared
with low viscosity β-glucan, with an effect size of −2.03 (p = 0.026). Wanders et al. [40] investigated
the effects of 10 g of pectin in different forms, that is, bulking, viscous and gelled, on energy intake.
No significant effects were observed with different types of pectin on energy intake compared with
control (Table 1). Gelled pectin was further supplemented in liquid (as beverage) and capsule (so the
pectin hydrated in the stomach) form. Pectin in capsule form exhibited lower energy intake than pectin
in liquid form (p = 0.03) (Table 1). The lowest dose of soluble fibre found in this systematic review
was 2 g of partially hydrolysed guar gum [37], while the highest dose was 31.0 g of high-amylose
maize [48]. However, 2 g of partially hydrolysed guar gum showed a higher effect size on energy
reduction (d = −0.41, p = 0.28) than 31.0 g of high-amylose maize (d = −0.05, p = 0.83).
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Table 1. Summary of randomized-controlled trials (RCTs) included in systematic review (n = 15).

Study Fibre type Dose Study Overview
Appetite Hormone

(Mean (SD))
(pmol·min/L)

Gastric Emptying
Rate (min) Energy Intake (kcal) Perceived Satiety

(Mean (SD)) (mm)

Arshad et al.,
2016 [35]

Alginate 5 g
Subjects: 30 (F: 18–30 y)

Study design: randomised, single blinded
Washout: 1-week

Energy intake interval: 120 min
Satiety: 170 min

Food matrix: liquid (milk served chilled and iso-volumetric
(250 mL)

Control: milk (250 mL) without fibre

Data not available Data not available
611.76 (35.01)

(p < 0.001)
Effect size = −0.81

76.36 (1.82)
(p < 0.05)

Effect size = −0.90

Guar gum 5 g Data not available Data not available 551.71 (23.52) 61.81 (1.82)
(p < 0.001) (p < 0.05)

Effect size = −3.55 Effect size = −3.93

Wanders et
al., 2013 [36]

Alginate
(MW: 60–1000

kDA)

(i) 6 g
(ii) 9 g

Study 1 (energy intake):
Subjects: 121 (45M/76F: 18–50 y)

Study design: randomised, single blinded
Washout: 2-day

Energy intake interval: 105 min
Food matrix: solid (400 g chocolate cookies with 500 mL of

water)
Control: chocolate cookies without fibre

Study 2 (gastric emptying):
Subjects: 10 (4F/ 6M: 18–50 y)

Study design: randomised, single blinded
Washout: 7-day

Gastric emptying rate: every 15 min and up to 240 min
Food matrix: solid (400 g chocolate cookies with 500 mL of

water)
Control: chocolate cookies without fibre

Data not available

Study 2:
AUC, 13C breath used

(i) 2126 (p < 0.05)
(ii) 2145 (p < 0.01)

No SD available to
calculate effect size

Study 1:
(i) 943.44 (406.04)

(p = 0.77)
Effect size = −0.04
(ii) 702.68 (429.92)

(p < 0.001)

Data not available

Data not available

Study 2:
AUC, 13C breath used

Study 1:
(i) 931.50 (501.58)

Data not available

(i) 1918 (p = 0.63)
(p > 0.05) Effect size = −0.52

Guar gum (i) 5.6 g (ii) 1864 Effect size = −0.07
(MW: 17–710

kDA) (ii) 6.9 g (p > 0.05) (ii) 979.27 (525.46)

No SD available to
calculate effect size (p = 0.66)

Effect size = 0.06

Rao et al.,
2015 [37]

Partially
hydrolsed guar
gum (PHGG)

Study 1:
2 g PHGG

Study 1 (breakfast, liquid yogurt):
Subjects: 24 (12M/ 12F)

Study design: randomised, double blinded
Washout: 2-weeks

Energy intake interval: 180 min
Satiety: 240 min

Food matrix: liquid (yogurt, 125 g)
Control: Energy Intake: yogurt with dextrin

Satiety: yogurt without fibre
Study 2 (lunch, solid rice):

Subjects: 6 (4M/ 2F)
Study design: randomised, single blinded

Washout: 2-days
Satiety: 300 min

Food matrix: solid (cooked rice)
Control: cooked rice without fibre addition

Data not available Data not available

Study 1:
731.60 (162.76)

(p = 0.17)
Effect size = −0.41

Study 1 (breakfast, 2 g):
14.9 (15.19)
(p < 0.05)

Effect size = 0.46

Data not available Data not available Data not available

Study 2:
6 g PHGG

Study 2 (lunch, 6 g):
22.8 (10.78) (p > 0.05)

Effect size = 1.29
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Table 1. Cont.

Study Fibre type Dose Study Overview
Appetite Hormone

(Mean (SD))
(pmol·min/L)

Gastric Emptying
Rate (min) Energy Intake (kcal) Perceived Satiety

(Mean (SD)) (mm)

Aoe et al.,
2014 [38] β-Glucan 2.9 g

Subjects: 21 (F: 30–49 y)
Study design: randomised, not-blinded

Washout: 7-days
Energy intake interval: 240 min

Food matrix: solid (cooked white rice)
Control: cooked white rice without fibre

Data not available Data not available
783.94 (147.47)

(p = 0.28)
Effect size = −0.34

Data not available to
calculate effect size

Lumagaet al.,
2012 [39]

β-Glucan
(viscosity = 55

mPas)
3 g Subjects: 14 (8M/ 4F:24–39 y)

Study design: randomised, single blind
Washout: 7-day

Measurement of gut hormones: 180 min
Energy intake interval: 180 min

Satiety: 180 min
Food matrix: liquid (250 mL beverages with isocaloric

breakfast)
Control: beverages without fibre

AUC: (pg·min/mL)
(i) GLP-1: 1312.5
(467.71) (p > 0.05)
Effect size = 0.18

PYY: 13125 (2806.24)
(p > 0.05)

Effect size = 0.13
GIP: 7000 (9354.14) (p >

0.05)
Effect size = −0.11

Data not available 767.5 (246.2) (p = 0.13)
Effect size = −0.59

AUC (mm·min)
5400 (748.33) (p < 0.05)

Effect size = 1.65

Pectin
(viscosity = 90

mPas)
2.5 g

AUC: (pg·min/mL)
(ii) GLP-1: 1125(62.5) (p

> 0.05)
Effect size = −0.18

PYY: 135,00 (5612.99) (p
> 0.05)

Effect size = 0.17
GIP: 6000 (3741.66) (p>

0.05)
Effect size = −0.28

Data not available
871.2 (296.71)

(p = 0.59)
Effect size = −0.20

AUC (mm·min)
6000 (1122.5) (p < 0.05)

Effect size = 1.94

Wanders et
al., 2014 [40]

Pectin
(different fibre

forms)

10 g
(i) bulking (25

kDa)
Subjects: 29 M (18–30 y)

Study design: randomised, single blinded
Washout: 12-days

Gastric emptying rate: 180 min
Energy intake interval: 180 min

Food matrix: dairy based liquid 150 mL
Control:

Different fibre formfor EI and GER: dairy based liquid without
fibre

Different supplementation methods: Gelled pectin in the form
of capsule or liquid

Data not available

13C recovery
(i) 74.0 (20.4) min

(p < 0.05)
Effect size = 0.19

(i)1058.09 (341.55)
(p = 0.44)

Effect size = −0.21
(bulking)

Data not available

10 g
(ii) viscous (80

kDa)
Data not available

13C recovery
(ii) 75.5 (21.0) min

(p < 0.05)
Effect size = 0.2

(ii) 1058.091 (272.28)
(p = 0.38)

Effect size = −0.23
(viscous)

Data not available

10g
(iii) gelled (15

kDa)
Data not available

13C recovery
(iii) 82.2 (17.8) min (p <

0.05)
Effect size = 0.65

(iii) 1024.65 (238.85)
(p = 0.17)

Effect size = −0.36
(gelled)

Data not available
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Table 1. Cont.

Study Fibre type Dose Study Overview
Appetite Hormone

(Mean (SD))
(pmol·min/L)

Gastric Emptying
Rate (min) Energy Intake (kcal) Perceived Satiety

(Mean (SD)) (mm)

Wanders et
al., 2014 [40]

Different
method

supplementation
(gelled pectin)

10g
(iv) capsule (15

kDa)
Data not available

13C recovery
(iv) 64.1 (21.9)

(p < 0.05)
Effect size = −0.91

(iv) 955.38 (308.11)
(p = 0.03)

Effect size = −0.42
(capsule vs. liquid)

Data not available

10g
(v) liquid (15

kDa)
Data not available

13C recovery
(v) 98.3 (21.1)

(p < 0.05)
Effect size = 0.82

Data not available

Martinelli et
al., 2017 [41] Polydextrose 6 g

Subjects: 25 (19F/ 6M:18–50 y)
Study design: randomised, single blinded

Washout: 7-days
Energy intake interval: 240 min

Satiety: 30 to 240 min
Food matrix: composite meal (100 g pudding with 200 mL

semi-skimmed milk)
Control: Pudding without fibre

Data not available Data not available
1021.27 (356.60)

(p = 0.53)
Effect size = −0.18

iAUC (mm·min)
5166.67 (666.67)

(p = 0.934)
Effect size = −0.27

Astbury et
al., 2013 [42]

Polydextrose
(i) 6.3 g Subjects: 21 (12M/ 9F)

Study design: randomised, single blinded
Washout: 1-week

Energy intake interval: 90 min
Food matrix: liquid (chocolate-flavoured liquid, 400 mL)

Control: chocolate-flavoured liquid, 400 mL without fibre

Data not available Data not available
(i) 1206.5 (420.58)

(p = 0.22)
Effect size = −0.38

Data not available

(ii) 12.5 g Data not available Data not available
(ii) 1128.59 (421.58)

(p = 0.08)
Effect size = −0.56

Data not available

(iii) 25 g Data not available Data not available
(iii) 1042.54 (346.10)

(p = 0.01)
Effect size = −0.81

Data not available

Soong et al.,
2016 [43]

Polydextrose

12 g
(i) low protein

Subjects: 27 (M: 21–40 y)
Study design: randomised, single blind

Washout: 5-day
GLP-1 hormone: 90 min

Gastric emptying rate: 90 min
Energy intake interval: 180 min

Satiety: 75 min
Food matrix: solid (soya bean curd)

Control: soya bean curd without fibre

GLP-1: (n=15)
(i) 338.97 (484.63)

(p < 0.05)
Effect size = 0.18

(i) 0.26 (0.14) min
(p = 0.05)

Effect size = −0.47

(i) 790.71 (231.73)
(p = 0.13)

Effect size= −0.42

iAUC (mm·min)
(i) 1892.44 (1570.33)

(p > 0.05)
Effect size = −0.05

12 g
(ii) high
protein

GLP-1: (n=15)
(ii) 625.59 (776.77)

(p < 0.05)
Effect size = 0.60

(ii) 0.18 (0.17) min
(p < 0.05)

Effect size = −0.72

(ii) 774.21 (242.86)
(p = 0.08)

Effect size=−0.48

iAUC (mm·min)
(ii) 1809.11 (1402.49)

(p > 0.05)
Effect size = −0.11

Hull, et al.,
2012 [44]

Polydextrose

(i) 6.25 g
Subjects: 34 (10M/ 24F)

Study design: randomized, crossover, single blind
Washout: 1-week

Energy intake interval: 90 min
Food matrix: liquid (drinking yogurt)

Control: drinking yogurt with glucose syrup

Data not available Data not available
(i) 731.36 (228.56)

(p = 0.61)
Effect size = −0.14

Data not available to
calculate effect size

(ii) 12.5 g Data not available Data not available
(ii) 711.52 (263.40)

(p = 0.44)
Effect size = −0.21

Data not available to
calculate effect size
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Table 1. Cont.

Study Fibre type Dose Study Overview
Appetite Hormone

(Mean (SD))
(pmol·min/L)

Gastric Emptying
Rate (min) Energy Intake (kcal) Perceived Satiety

(Mean (SD)) (mm)

Juvonenet al.,
2009 [45] β-Glucan

(i) High
viscosity (10 g)
(>3000 mPas)

Subjects: 20 (16F/ 4M)
Study design: randomized, single blinded

Washout: > 2-days
Measurement of gut hormones: 180 min

Gastric emptying rate: 90 min
Energy intake interval:180 min

Food matrix: liquid (300mL isoenergy and isovolumetric
beverage with 200mL water

*Low viscosity acts as control

GLP-1 (AUC):
(pg·min/mL)
(i) 74 (89.44)

(ii) 189 (214.66)
(p = 0.030)

Effect size = −0.70
PYY (AUC):

(i) 129 (720.01)
(ii) 668 (822.87)

(p = 0.038)
Effect size = −0.70
CCK (AUC): n=17

(i) 250 (181.42)
(ii) 449 (300.99)

(p = 0.006)
Effect size = −1.78

Paracetamol
AUC (*n = 10)

(i) 14670 (3443.55)
(µmol·min/L)

(ii) 16340 (5567.81)
(µmol·min/L)

(p = 0.051)
Effect size = −0.36

Combined
(preload + rest of the

day)
(i) 1733 (113.05)

(ii) 2007.89 (154.16)
(p = 0.026)

Effect size = −2.03

Data not available
(ii) Low

viscosity (10 g)
(<250
mPas)

*Differed only
in viscosity

Boll et al.,
2015 [46]

(i) AXOS, 8.9 g Subjects: 19 (9M/ 10F: 20–35 y)
Study design: randomised, not blinded

Washout: 1-week
GLP-1: acute (180 min)

Food matrix: solid (white wheat bread with 250–300 mL water)
Control: white wheat bread without fibre

GLP-1:
(i) 1.01 (0.92)

(p > 0.05)
Effect size = 0.10

Data not available Data not available Data not available

(ii) hiAXOS,
18.4 g

GLP-1:
(ii) 1.04 (0.92)

(p > 0.05)
Effect size = 0.19

Data not available Data not available Data not available

Thazhath et
al., 2014 [47]

Guar gum
MW: 220 kDa 9 g

Subjects: 12 (6M/ 6F)
Study design: randomized, crossover, not blinded

Washout: 5-day
Gastric emptying rate: every 5 min for 1st hour and every 15

min for further 3 h (240 min)
Food matrix: semisolid (mashed potato, 300 mL)

Control: semisolid mashed potato 300 mL without fibre

Data not available

13C2 breath used
285 (93.53)
(p < 0.05)

Effect size = 1.02

Data not available Data not available

Luhovyy et
al., 2014 [48]

High-amylose
maize

(i) 17.5 g Subjects: 30M (18–30 y)
Study design: randomized, crossover, single blinded

Washout: 1-week
Energy intake interval: 120 min

Food matrix: solid (cookies)
Control: cookies without fibre

Data not available Data not available
(i) 1163.9 (279.34)

(p = 0.99)
Effect size = 0.00

Data not available

(ii) 31.5 g Data not available Data not available
(ii) 1147.5 (310.56)

(p = 0.83)
effect size = −0.05

Data not available
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Table 1. Cont.

Study Fibre type Dose Study Overview
Appetite Hormone

(Mean (SD))
(pmol·min/L)

Gastric Emptying
Rate (min) Energy Intake (kcal) Perceived Satiety

(Mean (SD)) (mm)

Solah et al.,
2014 [48]

PolyGlycopleX
(PGX®)

(i) 2.5 g
Subjects: 10 (20–29 y)

Study design: randomised, single blind
Washout: 2 or 3 days

Satiety: 120 min
Food matrix: liquid (water, 2 × 250 mL)

Control: inulin in 500 mL water

Data not available Data not available Data not available
iAUC (mm·min)

(i) 3501 (2070) (p < 0.05)
Effect size = 0.56

(ii) 5 g Data not available Data not available Data not available
(ii) 2937 (1750)

mm·min (p > 0.05)
Effect size = 0.32

(iii) 7.5 g Data not available Data not available Data not available
(iii)3942 (2250)

mm·min (p < 0.05)
Effect size = 0.74

iAUC, incremental area under curve; AUC, area under curve; SD, standard deviation; EI, energy intake; GER, gastric emptying rate; CCK, cholescytokinin; GLP-1, glucagon-like peptide 1;
GIP, gastric inhibitory polypeptide; PYY, peptide YY.
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3.4. Risk of Bias within Studies Based on Jadad Score

Table 2 illustrates the quantified risks of bias within a study according to the features of RCTs,
namely randomisation, double-blinding and withdrawals or drop-outs [34]. Risks of bias were
relatively high with most studies showing an average score of 3 and below [35–49]. Five studies showed
moderate risk of bias [37,40,42,43,49] while a further 12 showed high study bias [35,36,38,39,45–47]
(Table 2).

Table 2. Jadad scores of RCTs (n = 17).

Studies Randomisation Double-Blinding Withdrawals and Drop-Outs Score

Arshad et al., 2016 [35] 1 0 1 2

Wanders et al., 2013 [36]
Study 1 1 0 1 2
Study 2 1 0 1 2

Rao et al., 2015 [37] *
Study 1 1 1 1 3
Study 2 1 0 1 2

Aoe et al., 2014 [38] 1 0 1 2
Lumaga et al., 2012 [39] 1 0 1 2
Wanders et al., 2014 [40] 2 0 1 3
Martinelli et al., 2017 [41] 1 0 1 2
Astbury et al., 2013 [42] 2 0 1 3
Soong et al., 2016 [43] 2 0 1 3
Hull, et al., 2012 [44] 1 0 1 2

Juvonen et al., 2009 [45] 1 0 1 2
Boll et al., 2015 [46] 1 0 1 2

Thazhath et al., 2014 [47] 1 0 1 2
Luhovyy et al., 2014 [48] 1 0 1 2

Solah et al., 2014 [48] 2 0 1 3

* only study 1 was double-blinded.

3.5. Random Effects Analysis

Studies investigating the effects of alginate (n = 2) and guar gum (n = 3) on energy intake showed
a high level of heterogeneity and hence were analysed using random effects analysis (Figures 3
and 4). Figure 3 shows the effect sizes of mean energy intake reduction in studies with alginate
supplementation (n = 2), ranging from very small (d = −0.04, p = 0.78) to large (d = −0.81, p < 0.001).
Mean energy intake reduction in all three doses of test product favoured treatment. Five grams of
alginate in milk beverages (liquid) and 9 g in chocolate cookies (solid) significantly (p < 0.05) reduced
energy intake compared with control [35,36]. The effect size of 5 g of alginate was larger [35] than that
of 9 g of alginate [36]. However, a meta-analysis showed a medium and non-significant difference in
mean energy intake reduction favouring alginate supplementation (pooled effect size of −0.42; 95% CI
(–0.84, 0.01); I2 = 80.9%) (Figure 3).

Figure 4 shows the effect size of mean energy intake reduction after guar gum supplementation
(n = 3). The effect sizes range from small (d = 0.06, p = 0.65) to very large (d = −3.55, p < 0.001). Mean
energy intake in three test products favoured treatment groups except for 6.9 g of guar gum [36].
Either 2 g of partially hydrolysed guar gum or 5 g of guar gum prepared in the liquid food matrix
significantly reduced energy intake [35,37]. However, a large but non-significant pooled effect size
of −0.90 (95% CI (−1.83, 0.03); I2 = 95.8%) was observed for guar gum on energy intake reduction
(Figure 4).
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Figure 4. Effects of guar gum on energy intake reduction (random effects model). The axis lines on
±0.2, ±0.5 and ±0.8 represent small, medium and large effect sizes respectively. A negative value of
summary effect size suggests that the guar gum supplementation decreases energy intake compared to
control. *2 g of partially hydrolysed guar gum (PHGG); : 5.6 g of guar gum; N: 6.9 g of guar gum.
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3.6. Fixed Effects Analysis

The level of heterogeneity was low for the effects of β-glucan (n = 2), pectin (n = 2) and
polydextrose (n = 4) on energy intake and hence these were analysed using fixed effects analysis
(Figures 5–7). Meta-analysis of the studies shows a non-significant difference in mean energy intake
reduction favouring β-glucan supplementation with medium effect (pooled effect size of −0.44; 95%
confidence interval: −0.91 to 0.04; I2 = 0%). Individual studies of β-glucan showed high effect size
when prepared in liquid (d =−0.59, p = 0.13) compared with solid meal form (d =−0.34, p = 0.28) [38,39]
(Figure 5).
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Pectin supplementation (n = 2) did not significantly reduce energy intake with effect sizes of
−0.20 to −0.36 [39,40]. A small and non-significant pooled effect size of −0.26 (95% CI (−0.53, 0.02);
I2 = 0%) was observed for pectin on energy intake reduction (Figure 6).

Polydextrose supplementation (n = 4) resulted in a small (−0.14) to a large (−0.81) effect size
on mean energy intake reduction [41–44] (Figure 7) with a small and significant pooled effect size of
0.36 (95% CI (−0.56, −0.017); I2 = 0%) (Figure 7). Polydextrose supplemented in chocolate-flavoured
beverages significantly reduced energy intake with a large effect size of -0.81 [42]. Polydextrose (6.25 g)
prepared in liquid matrix and polydextrose (6 g) in pudding with semi-skimmed milk (composite
meal) showed small effect sizes of d = −0.14 and d = −0.18, respectively. Interestingly, this review also
found that polydextrose with the same doses (12.5 g) and same liquid food matrix exhibited distinct
effect sizes, both small (d = −0.21) and medium (d = −0.56) [42,44] with small and significant pooled
effect size of −0.36 (95% CI (−0.56, −0.17); I2 = 0%) (Figure 7).
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Figure 7. Effects of polydextrose on energy intake reduction (fixed effects model). The axis lines on
±0.2, ±0.5 and ±0.8 represents small, medium and large effect sizes respectively. A negative value of
summary effect size suggests that polydextrose supplementation decreases energy intake compared to
control. d = effect size; CI = confidence interval; LP = low protein; HP = high protein.
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4. Discussion

A total of eight soluble fibres were identified as follows: alginate, guar gum, arabinoxylan,
β-glucan, high-amylose maize, pectin, polydextrose and PolyGlycopleX. Guar gum showed the greatest
energy intake reduction, followed by β-glucan, alginate, polydextrose and pectin. The risk of bias
was high; only four studies clearly reported how randomisation was conducted. The randomisation
procedure was not clearly described in most studies, resulting low Jadad scores. Only one study was
double-blinded [37].

The pooled random effects analysis showed that alginate did not significantly reduce energy intake
in healthy adults (Figure 3). However, when considering individual studies, 5 g of alginate prepared
in 250 mL milk beverages showed a larger and significant effect (d = −0.81, p < 0.001) on energy
intake reduction than 6 g alginate in chocolate cookies (small effect size: d = −0.04, p = 0.78) [35,36].
The time interval for energy intake after consumption of 6 g alginate in cookies was shorter compared
with alginate in liquid drinks, at 105 and 120 min, respectively. It is expected that a shorter time
interval between fibre and ad libitum energy intake would decrease food intake. Hence, it is possible
that other factors, such as preloads energy density (kcal/g) and dose may be responsible for such
an effect. A higher dose of alginate (9 g) in the solid food matrix increased oral processing time and
reduced the rate of gastric emptying [36]. Mechanistically, alginate may form a gel at low pH or in the
presence of divalent cations [50]. Alginate forms a gel in the oral cavity due to the presence of water
and divalent cations from saliva [51]. The measurement of physico-chemical properties suggests that
alginate increases water-holding capacity as well as digesta viscosity [3,36].

Random effects analysis showed that guar gum (n = 3) did not significantly reduce energy
intake in healthy adults (Figure 4). However, when considering individual studies, guar gum (5 g)
in milk beverages showed a large and significant effect on energy intake (d = −3.55, p < 0.001) [36].
The preparation of guar gum in milk beverages reduced short-term food intake and satiety (120 min)
compared with control preloads [36]. This effect might be due the formation of a more stabilised gel
emulsion between milk protein and guar gum in the stomach [52]. Other study has shown reduced
hunger ratings with increasing beverage viscosity [53]. However, the effect might be different when
guar gum is added to the solid food matrix. Wanders et al. [36] showed that both 5.6 g and 6.9 g of
guar gum prepared in cookies did not reduce ad libitumfood intake compared with control. The study
suggested that the liquid food matrix showed more pronounced effects on reduced energy intake
compared with solid food matrix. Rao et al. [37] showed that long-term (two-week long) intake of
2 g partially hydrolysed guar gum (PHGG) for 14 days significantly reduced energy intake at lunch
and evening snacks compared with control dextrin. PHGG is produced from guar gum with the
same molecular structure but with shorter chain length [54]. Natural guar gum is extremely viscous
and might form a very viscous product when added to products, lowering acceptability. Hence,
a low molecular weight guar gum is more favourable than a high molecular weight one for product
development. An early study by Ellis et al. [55] showed that low molecular weight guar gum markedly
increased product palatability compared with high molecular weight guar gum.

Pectin is a natural fibre present in fruit and vegetables and one of the major plant cell wall
components. Pectin has varying viscosity and gelling ability in accordance with its molecular
weight [56]. Pectin behaves differently when hydrated in the liquid food matrix [40]. Wanders et al. [40]
showed that viscous (80 kDa) and bulking pectin (25 kDa) had similar effects on energy reduction
followed by gelled pectin (15 kDa). However, the effects were not statistically significant [40].
This study demonstrated that 10 g of pectin with a molecular weight of 15 kDa formed a gel while
80 kDa pectin increased the viscosity of dairy-based liquid drinks. All three type of pectin reduced
gastric emptying, as indicated by 13C recovery in breath samples. However, this study showed that
reduced gastric emptying was not associated with a reduction in energy intake. Wanders et al. [40]
further investigated different modes of pectin delivery, namely supplemented as equal dose of gelled
pectin (10 g, 15 kDa) in liquid beverage and capsule form. The latter approach was taken so that the
pectin would form a gel in the stomach. The encapsulated pectin significantly reduced energy intake
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compared with gelled pectin in a liquid beverage [40]. Product viscosity rather than stomach viscosity
reduced ad libitum intake [57]. It may be that the encapsulated pectin is entrapped in the food matrix
within the stomach and must be hydrated first [3,58]. More water was retained, increasing small bowel
transit time [59,60].

β-glucan is a soluble fibre extracted from oat and barley. Four grams of β-glucan per 30 g of
available carbohydrate has been approved by the European Food Safety Authority to reduce blood
glucose without disproportionately increase insulin levels [61]. β-glucan confers other health benefits,
such as improving insulin resistance, dyslipidaemia, hypertension and obesity [62]. The results from
fixed effects analysis show that β-glucan does not significantly reduce energy intake (Figure 5). In this
review, 2.9 g of β-glucan in the solid food matrix (cooked white rice) did not reduce energy intake
compared with control (d = −0.34, p = 0.28) [38]. β-glucan supplementation (3.0 g) in beverages
reduced energy intake (medium effect size, d = −0.59), but the difference was not significant (p = 0.13)
compared with control [39]. These two individual studies suggest that 2.9 g to 3.0 g of β-glucan
either in the liquid or solid food matrix had small to medium, non-significant effects size on reducing
energy intake. The satiety mechanism is complex and involves an integrated physiological system
(the food-gut-brain axis) [63]. These physiological responses determine what we eat and how much of
it we consume. In this review, we focused on the role of adding soluble fibre to food to manipulate
the satiety response. Research has shown that adjusting the energy density of food by increasing its
volume (e.g., by adding water or dietary fibre) while maintaining the macronutrient composition
might be a good strategy to enhance satiety [64].

The effect of β-glucan on perceived satiety depends on factors such as dose, molecular weight
and solubility, and food matrix. In the context of doses, this review found that 3.0 g of β-glucan
supplemented in 250 mL beverages significantly increased satiety compared to control beverages [39].
This finding was in line with Lyly et al. [24] who reported that 2.5 g of β-glucan in 300 mL beverages
significantly increased perceived satiety compared with fibre-free beverages. The physical effects of
β-glucan on the ingesta appear to be fundamentally important in shaping their satiating properties.
This effect is highly dependent on the molecular size and solubility of β-glucans [25]. The molecular
weight of β-glucans varies from 31 to 3100 kDa and is a major determinant of their solubility in water
and, hence, satiety [65]. The molecular weight of β-glucan varies depending on the production process,
that is, isolation, purification, and extraction [66].

Food matrix might also play a role on the effect of β-glucan and satiety. In theory, solid foods
are more satiating than liquid foods [67]. However, most studies have failed to show any significant
effect of β-glucan on satiety when prepared in solid or semi-solid compared with liquid meals [24].
Soluble fibres, when prepared in liquid meal form, absorb more water and increase stomach distension,
triggering afferent vagal signals to stop eating (i.e., increasing fullness) [68]. Mattes and Rothacker [53]
elegantly demonstrated that a higher viscosity shake (16,000 cps) was more effective at reducing
perceived hunger than a low viscosity shake (600 cps). Lyly et al. [69] showed that beverages enriched
with soluble β-glucan increased perceived satiety compared with fibre-free beverage. However, both
beverages (β-glucan and control) showed lower perceived satiety compared with a solid meal (white
bread). This suggests that the presence of both liquid and solid food within a trial might mask the
satiating potential of β-glucan. A similar study has demonstrated that the more pronounced satiating
effect of solid food per se may ‘mask’ the satiating potential of β-glucan [62]. Juvonenet al. [45]
demonstrated that increased viscosity produced by oat β-glucan in liquid meal markedly reduced
postprandial appetite hormones, namely, CCK, PYY and GLP-1. High-viscosity β-glucan drinks reduce
intestinal mixing and might prevent the interaction between the nutrients and enteroendocrine L
cells in the distal colon for appetite hormones release [70]. Three-hour ad libitum energy intake was
similar between low- and high-viscosity beverages but was significantly lower when energy intake
was combined for the rest of the day [45]. However, it must be noted that appetite hormones do
not necessarily correlate with food intake and vary between individuals [71]. Lumaga et al. [39]
demonstrated that β-glucan in liquid beverages did not reduce energy intake or significantly affect
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appetite hormones (PYY, GLP-1 and GIP) but did significantly reduce perceived satiety compared
with the control. One study showed that the average colonic transit time for the Western population is
30–40 h [72]. Other studies demonstrated that the effects on appetite might take up to 6 h after the
ingestion of soluble fibre [73,74]. Based on this evidence, it is highly advisable to consider the time
frame for the measurement of appetite hormones.

In this review, we focused on four main outcome measures namely gastric emptying time, appetite
hormones, energy intake and perceived satiety (Figure 2). The majority of the studies focused on
measuring energy intake in isolation (n = 8) and energy intake plus gastric emptying time (n = 7). Only
two studies (n = 2, both are polydextrose) measured all four outcomes. It is strongly advisable to measure
all four elements to have a better understanding of the effects of dietary fibre on appetite regulation.
Polydextrose is a type of soluble dietary fibre and is not digested in the upper gastro-intestinal tract.
Instead, it is partially fermented in the large intestine for the production of SCFAs [75]. Polydextrose is
resistant to digestion and is partially fermented by the intestinal microbiota [76,77]. Polydextrose is
well tolerated up to a dose of 90 g/day and has no laxative effect [78]. In this review, the heterogeneity
for polydextrose was low (I2 = 0%), and these studies were, therefore, analysed using fixed effects
analysis. Polydextrose showed a medium-sized pooled effect (d = −0.36, p < 0.05) on energy intake
reduction. An individual study showed that 25 g of polydextrose significantly reduced (d = −0.81,
p < 0.001) energy intake (90-min post preload) when prepared in 400 mL chocolate-flavoured liquid
drinks compared with control [42]. This was consistent with the findings of the previous study, which
demonstrated that 25 g of polydextrose in 200 g of yogurt significantly reduced energy intake compared
with control yogurt. Similar to other soluble fibres, polydextrose increases gastrointestinal viscosity and
may be subject to colonic fermentation for the production of SCFA [79–81]. However, lower doses of
6.25, 6.3 and 12.5 g of polydextrose prepared in liquid beverages were less effective at reducing energy
intake [42,44]. Soong et al. [43] showed that 12 g of polydextrose prepared with low- and high-protein
(LPP and HPP) soya bean curd significantly reduced gastric emptying time compared with the control.
However, the supplementation did not reduce energy intake or increase perceived satiety compared
with the control. LPP and HPP marginally increased GLP-1 compared with control soya bean curd.
This is consistent with the results of other studies which have shown GLP-1 to slow gastric emptying in
individuals following a high-fibre diet [82,83].

5. Conclusions

In this review, the evidence has shown that soluble fibre can potentially be used as an active
ingredient for the formulation of functional foods. Soluble fibres might play a role in reducing energy
intake and hence could be incorporated in the daily dietary intake. However, not all soluble fibres
have similar effects on appetite regulation, that is, appetite hormones, gastric emptying and perceived
satiety. Further long-term study is needed to determine whether these fibres could reduce energy
intake and hence help maintain long-term body weight. Future research should aim to determine
whether there is a synergistic effect when combining different soluble fibres together in the food matrix
to reduce energy intake and/or stimulate appetite hormones. In addition, studies have not focused on
the effects of soluble dietary fibre on colonic transit time. Thus, there is a need for future studies to
explore this angle. This systematic review suggests that the food matrix of preloads is important to
induce satiety, preferably as the liquid food matrix. Based on our earlier research questions, 5 g of guar
gum in a liquid meal is optimal for reducing subsequent energy intake. Guar gum effectively reduces
energy intake, but it is not always as palatable as other soluble fibres. We suggest using a combination
of guar gum with other soluble fibres, for instance alginate, β-glucan, pectin and/or polydextrose,
in order to improve palatability, reduce energy intake and increase appetite hormones.
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